• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Monodisperse Silica Spheres Based on Improved St?ber Method and Their Mechanism of Formation

    2017-09-03 08:40:08,,,,
    關(guān)鍵詞:硅酸分散性二氧化硅

    , , , ,

    (1. School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China; 2. College of Biology Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

    材料科學(xué)

    Preparation of Monodisperse Silica Spheres Based on Improved St?ber Method and Their Mechanism of Formation

    DINGYanbo1,WANGCunxu1,BIXiaoguo1,ZHANGDong1,

    LIYucai1,SONGShiwei1,WANGJian1,WANGGang1,WANGHan1,LIULiying1,XUZhao1,ZHAOZiqing2

    (1. School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China; 2. College of Biology Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

    In this paper, monodispersed spherical silica particles were prepared by sol-gel hydrolysis of tetraethoxy silane (TEOS) in alcohol-water mixed solvent using ammonia as catalyst by improved St?ber method. Effect of the concentration of TEOS, the type of solvents, the concentration of ammonia, the particle diameter and morphology of silica were investigated. Scanning electron microscopy to characterize the structure and morphology of the silica microspheres, the result shows that the hydrolysis of TEOS is control step in SiO2preparation and the diameter of SiO2increased as the concentration of ammonia increased.

    monodisperse; Silica; formation mechanism

    0 Introduction

    Silica microspheres with high mechanical strength, good liquidity are widely used in chromatographic column packing, structure of ceramic materials, coatings, cosmetics, printing ink additives, etc.[1-2]. Beside, the silica has a non-toxic, high biological activity. The surface of the silicon hydroxyl group is very suitable as a modified bridge which suitable for variety of functionalization[3]due to their great potential application value in the fields of composite materials, catalysis, sensors, biomedical etc. In addition, after E. Yablonovitch's concept of photonic crystal, the dielectric function in space can change the mode of photon state in materials[4], which received wide attention of scientists interested of photonic crystals. The existence of photonic band gap in photonic crystals has produced a lot of new physical properties and phenomena, thus showing a very broad development and application prospects. The photonic crystal has become the hot research focus of physics and materials science, and developing rapidly at present.

    1In the preparation of many photonic crystals, the process of preparing the photonic crystal by the colloidal crystal template method is considered as the most simple and effective, and also has the most development and application prospect[5]. However, one of the most challenging problems in the preparation of photonic crystals by this process is the large area preparation of ordered thin film photonic crystals.

    Monodispersed silica microspheres prepared by self-assembly have been extensively application in the field of photonic crystal, data storage, optoelectronics which attracting a wide range of scientists interested[6]. There are many preparation methods of silica microspheres, such as micro emulsion method, plasma, chemical vapor deposition, etc. However, micro emulsion method needs large amounts of organic matter during the preparation process[7]. The recycling is much more troublesome, high cost and may cause pollution to the environment, the plasma method and chemical vapor deposition methods require specific device, high energy consumption[8]. On the basis of St?ber method using alcohol as solvent to make silicon alkoxide under ammonia catalytic hydrolytic condensation, then preparing silica microspheres through a post-processing, which not only simple in process, but also low cost, and can get good monodispersity products[9]. In this paper, based on the St?ber method for preparing silica microspheres, broadening the range of particle size of particles, the different alcohol solvent for the effect of silica particle size and dispersion under ammonia catalyst and its mechanism are discussed systematically.

    1 Experimental section

    Reagents used were anhydrous ethanol C2H5OH(A.R.), isopropyl alcohol CH3CH(OH)CH3(A.R.),butanol CH3CH2CH2CH2OH(A.R.), ammonia NH3·H2O(A.R.), tetraethyl orthosilicate (C2H5O)4Si (TEOS) (A.R.).Water used in all experiments was purified with a resistivity greater than 18ΩM/cm.

    The improved St?ber method was used in this experiment. At first adding water into the reactor, then adding ethanol and ammonia solution into water, stirring for about 5 min.Finally, adding drops of TEOS slowly into reactor, constant temperature react about 5 hours to make the TEOS complete hydrolysis. The silica colloidal particles can easily obtain after TEOS sufficiently hydrolyzed. The improved St?ber method can avoid the larger initial concentration of TEOS which would make a good reproducibility of sample preparation. The particle size and morphology of silica microspheres can also be more precise control.

    At the end of reaction, the product was spin-evaporated at 70 ℃ and 60 r/min, cleaned with ethanol until the pH was 7, dried in an oven to obtain SiO2samples Monodispersed silica microspheres was ultrasonic for 20 min in ethanol, take a certain amount of dispersed droplets on the aluminum film after drying, The silica microspheres was measured by scanning electron microscope (SEM) of Philips S-4800 type field-scanning microscope.

    2 Results and discussion

    2.1 Effect of Ethylorthosilicate and Formation Mechanism of Silica Microsphere

    This experiment studied the adding amounts of ethylorthosilicate on silica microspheres. Fig.1 shows morphologies of silica microspheres with the concentrations of TEOS varying. The SEM micrographs of SiO2microspheres with the addition of 10% TEOS shown on Fig.1a. The SiO2particle size is 326 nm with smooth surface, high sphericity, uniform particle size and good monodispersity. Fig.1b shows the SEM micrographs of SiO2microspheres with the addition of 12% TEOS. The particle size of SiO2is 297 nm, the SiO2particle size is uniform, the monodispersity is good and the sphericity is high. Fig.1c shows the SEM micrographs of SiO2microspheres with 14% TEOS addition. It can be seen that SiO2is also spherical with smooth surface, but the particle size is not uniform and a double-size distribution occurs, obviously. The hydrolysis of ethylorthosilicate is the controlling step of the whole reaction. Once the supply of ethylorthosilicate exceeds its hydrolytic capacity, the monodisperse balance of the system will be destroyed, which will could not accord with the requirement of colloidal crystals self-assembly. TEOS addition should be controlled within 14% during the preparation of SiO2microspheres. Monodispersed SiO2synthesis of the main components of the alkyl silicates, short-chain alcohol, a certain concentration of ammonia and ultra-pure water, orthosilicate alkyl ester hydrolysis and polycondensation reaction principles usually described by the following reactions[10].

    (1)

    (2)

    (3)

    R in Equation is alkyl groups CxH2x+1, in (1) hydrolysis reaction, alcohol-based functional groups (RO-) are replaced by (OH-) functional groups, and then with (2) and (3) the polycondensation reaction, generate Si-O-Si, at the same time water and alcohol generate. Water and alcohol generating, Simultaneously. All these reactions are reversible. The reverse reactions of these reactions are hydrolysis and alcoholysis, respectively. The polycondensation can take place in both acidic and basic conditions. The adverse reactions of these are hydrolyzed and alcoholysis reactions, and the condensation reaction can react in both acidic or alkaline cases.

    (a) TEOS 10%; (b) TEOS 12%; (c) TEOS 14%.

    The polycondensation reaction begins with H+or OH-reacting rapidly with the hydrolyzate to form a charged intermediate followed by an electrically neutral silicon group which slowly attacks the charged intermediate. As with the hydrolysis reaction, the rate of polycondensation reaction also depends on the steric effect and the transition state of the charged state, in alkali catalyzed reaction, due to the formation and nucleation of orthosilicic acid, and then grow to form monodispersed spherical colloidal microspheres.

    2.2 Effects of Solvent on Particle Size of Silica Microspheres

    Fig.2a shows the SEM micrographs of SiO2microspheres prepared by using ethanol as solvent. It can be seen from the figure that the silica microspheres are spherical and have high sphericity, uniform particle size distribution and good monodispersity. Fig.2b shown the SiO2microspheres morphology prepared with isopropanol as solvent. SEM photographs can clearly see that the preparation of silica is spherical, particle size distribution is also very uniform, but the sphericity is not as high as with ethanol as solvent. SEM photographs shown in the Fig.2c demonstrate that the use of ethylene glycol as solvent to prepare SiO2microspheres due to no spherical silica particles and agglomeration seriously. This may be due to the alkyl chain of isopropanol is longer than the alkyl chain of ethanol, the faster reaction rate in the isopropanol solvent. When ethylene glycol used as solvent, the viscosity is larger. The polarity is small due to the large surface tension. Which leads to large steric hindrance during hydrolysis, so it is easy to agglomerate during hydrolysis.

    (a) Ethanol; (b) Isopropanol; (c) Ethylene glycol.

    While ethanol is a kind of solvent that dissolves in water and dissolves in TEOS, it can be mixed with water and ammonia in any proportion. The reactants and water can be evenly mixed and can participate in the reaction better during the reaction. The prepared silica has better dispersibility and smoother surface.

    2.3 Ammonia concentration on the influence of silica microspheres

    Fig.3 is a scanning electron micrograph of silica microspheres prepared at different ammonia concentrations. Fig.3a shows that the particle size of the prepared SiO2microspheres is 142 nm when the ammonia concentration is 6%. Fig.3b shows the particle diameter of the prepared SiO2microsphere is 310 nm when the ammonia concentration become 9%. Fig.3c shows the particle size of the prepared SiO2microspheres is 384 nm when the ammonia concentration enhance up to 12%. Fig.3d shows the particle size of the prepared SiO2microspheres is 423 nm when the ammonia concentration increase up to 15%. SiO2microspheres particle size increases gradually with the increasing of ammonia concentration. In addition, ammonia is not only the catalyst for the hydrolysis of ethyl orthosilicate, but also the morphology regulator of SiO2microspheres, which can’t form SiO2microspheres without ammonia. The mechanism of the preparation of monodisperse silica colloidal particles by TEOS hydrolysis under the catalysis of aqueous ammonia shown as following[11]:

    Normally, a small amount of deionized water added into the TEOS and a reaction occurs, but the reaction rate is very slow and the gel is particularly prone to be formed. The addition of aqueous ammonia plays a catalytic role. there are has four-alkoxy -OR(-OC2H5) bonding around the silicon atom in the TEOS molecules has four-alkoxy -OR(-OC2H5) with it. In the presence of a basic catalyst (NH4OH), the OH-nucleophilic attack on the silicon nucleus causes the silicon nucleus to be negatively charged and causes the electron cloud to shift to the OR-group on the other side, so that the Si-O bond become weakened and broken, and hydrolysis occurs. Hydrolysis of monomer between Si-OH, the Si-OH group and the Si-R group undergo dehydration or dealcoholysis polymerization reaction. Forming Si-O-Si chain, Si-O-Si chain between the continuous cross-linking, synthesizing granular SiO2aggregates ultimately.

    (a) ammonia 6% 142 nm; (b) ammonia 9% 310 nm; (c) ammonia 12% 384 nm; (d) ammonia 15% 423 nm.

    In the presence of a basic catalyst (NH4OH), with the small radius, OH-ions attack negatively, which directly causes nucleon attack on the silicon nucleus and causes the silicon nucleus to be negatively charged and the electron cloud shifting to the other side of the OR-group, so that the Si-O bond of the group is weakened and cleaved out of the OR-to complete the hydrolysis reaction. Under the condition of alkali catalysis, TEOS hydrolysis belongs to the nucleophilic reaction mechanism of OH-ion attacking silicon nucleus directly, the intermediate process is little, and OH-ion radius is small, so the hydrolysis rate is faster. Silicon nucleus in the middle of the process obtains a negative charge, therefore if there are acceptor groups such as -OH or -OSi which are easy to attract electrons around the silicon nucleus, the induction can stabilize the negative charge and facilitate the hydrolysis of TEOS. In the alkaline catalysis system, the hydrolysis rate is higher than the polymerization rate, and the hydrolysis of TEOS is relatively complete. Therefore, it is considered that the polymerization is carried out in the multidimensional direction under the condition of complete hydrolysis, which forms a short chain cross linking structure. The internal polymerization of the intercalated structure strengthens the cross linking between short chains and forms unstable microcrystalline nuclei. The microcrystal nucleus has small volume and large diffusion coefficient, and the surface has many negative charges and is susceptible to background solution ionization species so that continue growing.Silicon nuclei in the middle process to obtain a negative charge, therefore, there exist acceptor groups such as-OH or-O-Si are easy to attract electrons around the silicon nucleus which is beneficial to the hydrolysis of TEOS due to its induction can stabilize the negative charge and is conducive.

    3 Conclusion

    In the process of silicon dioxide growth, TEOS concentration, the type of solvent, the concentration of ammonia have very important influence in the property of silica, such as particle size, morphology. Silica particle size will become larger with the increases amount of TEOS in the system. However, the TEOS concentration is too high will lead to less monodispersibility or double particle size distribution. The amount of TEOS addition should be controlled within 14%. The particle size distribution of silica microspheres was broadened with the more carbon chain alcohols. The morphology and particle size of SiO2prepared by using ethanol as solvent were superior. The particle size of the silica microspheres is larger as the ammonia concentration increasing. The diameter of silica microspheres will distribution under excessive ammonia, and the best pH value is about 9.

    [ 1 ]VEVEL O D,JEDE T A,LOBO R F,et al. Porous silica via colloidal crystallization[J]. Nature, 1997,389:447-448.

    [ 2 ]STEIN A. Sphere templating methods for periodic porous colloids[J]. Microporous and Mesoporous Mater, 2001,44:227.

    [ 3 ]NIELSEN K H,ORZOL D K,KOYNOV S, et al. Large area,low cost anti-reflective coating for solar glasses[J]. Sol Energy Mater Sol Cells, 2014,128:283-288.

    [ 4 ]YBLONOVITCH E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J]. Phys Rev Lett, 1987,58:2059-2062.

    [ 5 ]LIU Y,SHEN J,LI X G,et al. Effect of hydrophobicity on the vacuum-contamination resistance and laser damage threshold of sol-gel silica coating[J]. Chin J Inorg Chem, 2013,29:1339-1344.

    [ 6 ]MORI T,HASEGAWA K,HATANO T,et al. Surface-relief gratings with high spatial frequency fabricated using direct glass imprinting process[J]. Opt Lett, 2008,33:428-430.

    [ 7 ]HU Q F,LI G,WANG J H. The sediment method prepares the high strength white carbon black[J]. Non-metallic Mineral, 2000,23(6):23-24.

    [ 8 ]GAN L M,ZHANG K,CHEW C H. Preparation of silica nanoparticles from sodium orthosilicate in inverse microemulsions[J]. Colloids Surf A:Physicochemical and Engineering Aspects. 1996,110:199-200.

    [ 9 ]STBER W,FINK A. Controlled growth of monodisperse silica spheres in the micron size range[J]. Colloid & Interface Sci, 1968,26:626.

    [10]MATSOUKAS T,GULARI E. A growth model for silica particles from alkoxides[J]. Colloid lnterface Sci, 1989,132:13.

    [11]ASSINK R A,BRUEE D, KAY J. LDRD final report on gas separation by fullerene membranes[J]. Non-Crystal Solids, 1996(9):359-371.

    1673-5862(2017)03-0281-05

    基于改進(jìn)的St?ber法制備單分散二氧化硅微球及其形成機(jī)理探討

    丁艷波1, 王存旭1, 畢孝國1, 張 東1, 李昱材1, 宋世巍1, 王 健1, 王 剛1, 王 晗1, 劉麗瑩1, 徐 昭1, 趙子青2

    (1. 沈陽工程學(xué)院 新能源學(xué)院, 沈陽 110136; 2. 北京化工大學(xué) 生物工程學(xué)院, 北京 100029)

    使用改進(jìn)的St?ber法,在醇水混合物中,以氨水作催化劑,正硅酸乙酯(TEOS)作為硅源,通過溶膠-凝膠水解工藝制備單分散的二氧化硅微球。研究了正硅酸乙酯的濃度、溶劑類型、氨水濃度、二氧化硅微球粒徑和形貌的影響。采用掃描電子顯微鏡對(duì)所制備的二氧化硅微球進(jìn)行結(jié)構(gòu)和形貌的表征,結(jié)果表明正硅酸乙酯的濃度越大,二氧化硅微球的粒徑越大。氨水的濃度增加,二氧化硅微球的粒徑增大,單分散性較好。

    單分散性; 二氧化硅; 形成機(jī)理

    date: 2017-01-20.

    TQ016 Document code: A

    10.3969/ j.issn.1673-5862.2017.03.004

    Supported: Fund of Liaoning Provincial Education Department under Grant (L2014516,L2015377,L2015370, L201610) .

    Biography: DING Yanbo(1981-),female, was born in Wuhan of Hubei Province, lecturer of Shenyang Institute of Engineering,Doctor.

    猜你喜歡
    硅酸分散性二氧化硅
    三硅酸鎂的制備方法及應(yīng)用
    云南化工(2021年10期)2021-12-21 07:33:36
    攪拌對(duì)聚羧酸減水劑分散性的影響
    納米SiO2粉體在水泥液相中的分散性
    姜黃提取物二氧化硅固體分散體的制備與表征
    中成藥(2018年2期)2018-05-09 07:19:43
    CdO對(duì)硅酸三鈣形成的影響及其固溶效應(yīng)
    氨基官能化介孔二氧化硅的制備和表征
    sPS/PBA-aPS共混體系的相容性及分散性研究
    中國塑料(2016年4期)2016-06-27 06:33:40
    異丙腎上腺素在硅酸鉍離子交換薄層上的選擇性分離與測(cè)定
    色譜(2015年6期)2015-12-26 01:57:36
    齒科用二氧化硅纖維的制備與表征
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    侵犯人妻中文字幕一二三四区| 日韩一本色道免费dvd| 免费观看a级毛片全部| 精品国产乱码久久久久久小说| 成人国语在线视频| 中文字幕av电影在线播放| 天堂俺去俺来也www色官网| 天天影视国产精品| 天堂中文最新版在线下载| 成人黄色视频免费在线看| 夫妻午夜视频| 亚洲欧洲国产日韩| 久久久久久久精品精品| 日韩 亚洲 欧美在线| 久久久国产欧美日韩av| 制服丝袜香蕉在线| 亚洲一级一片aⅴ在线观看| 国产亚洲最大av| 国产 精品1| 精品国产一区二区三区四区第35| 精品少妇一区二区三区视频日本电影 | 侵犯人妻中文字幕一二三四区| 啦啦啦啦在线视频资源| 乱人伦中国视频| 久久精品国产亚洲av涩爱| av网站免费在线观看视频| 国产 一区精品| 成年女人在线观看亚洲视频| 免费观看av网站的网址| 久久久久视频综合| 在线观看国产h片| 在线 av 中文字幕| 一级黄片播放器| 国产一级毛片在线| 国产伦理片在线播放av一区| 亚洲经典国产精华液单| 最新的欧美精品一区二区| 91国产中文字幕| 亚洲综合色网址| 一区二区三区四区激情视频| 亚洲美女搞黄在线观看| 久久久久久久国产电影| 宅男免费午夜| 黄色配什么色好看| 日韩不卡一区二区三区视频在线| 美女福利国产在线| 超碰97精品在线观看| 1024香蕉在线观看| 2022亚洲国产成人精品| 亚洲精品国产色婷婷电影| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久男人| 亚洲国产av新网站| 色播在线永久视频| 在线 av 中文字幕| 免费黄频网站在线观看国产| 你懂的网址亚洲精品在线观看| 最近最新中文字幕免费大全7| 热re99久久国产66热| 久久精品夜色国产| 亚洲精品美女久久久久99蜜臀 | 久久久精品国产亚洲av高清涩受| 亚洲,欧美,日韩| 国产成人精品久久二区二区91 | 一区福利在线观看| 五月开心婷婷网| 18在线观看网站| 夫妻午夜视频| 国产成人aa在线观看| 日韩精品免费视频一区二区三区| 母亲3免费完整高清在线观看 | 国产精品久久久久久av不卡| 韩国av在线不卡| 国产又色又爽无遮挡免| 69精品国产乱码久久久| 亚洲欧洲日产国产| 欧美国产精品一级二级三级| 丰满饥渴人妻一区二区三| 韩国高清视频一区二区三区| 国产av一区二区精品久久| 99精国产麻豆久久婷婷| 日韩中文字幕视频在线看片| 男女高潮啪啪啪动态图| 王馨瑶露胸无遮挡在线观看| 飞空精品影院首页| 欧美最新免费一区二区三区| 最近最新中文字幕免费大全7| 国产精品久久久久久av不卡| 中文字幕亚洲精品专区| 国产一区二区三区综合在线观看| 99久久中文字幕三级久久日本| 婷婷色综合大香蕉| 丰满迷人的少妇在线观看| 青春草亚洲视频在线观看| 丰满迷人的少妇在线观看| 亚洲精品日本国产第一区| 秋霞伦理黄片| 90打野战视频偷拍视频| 一本色道久久久久久精品综合| 亚洲欧美清纯卡通| 国产在线一区二区三区精| 亚洲成av片中文字幕在线观看 | 啦啦啦视频在线资源免费观看| 女性被躁到高潮视频| 波多野结衣av一区二区av| 亚洲国产日韩一区二区| 中文字幕人妻熟女乱码| 毛片一级片免费看久久久久| 日日啪夜夜爽| 美女高潮到喷水免费观看| 国产精品一国产av| 日本av手机在线免费观看| 亚洲五月色婷婷综合| 国产免费又黄又爽又色| 欧美精品一区二区大全| 国产日韩一区二区三区精品不卡| 久久精品国产a三级三级三级| 欧美日韩综合久久久久久| 超色免费av| 成人手机av| 国产精品一区二区在线不卡| 飞空精品影院首页| 欧美最新免费一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 午夜老司机福利剧场| 精品99又大又爽又粗少妇毛片| 亚洲中文av在线| 色吧在线观看| 男男h啪啪无遮挡| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 毛片一级片免费看久久久久| 国产亚洲一区二区精品| 日韩,欧美,国产一区二区三区| 少妇被粗大猛烈的视频| 国产色婷婷99| 999久久久国产精品视频| 美女午夜性视频免费| 国产精品av久久久久免费| 男人操女人黄网站| 精品第一国产精品| 下体分泌物呈黄色| 久久久精品免费免费高清| 中文天堂在线官网| 看免费av毛片| 涩涩av久久男人的天堂| 一区二区三区精品91| 亚洲精品久久午夜乱码| 丝瓜视频免费看黄片| 在线天堂最新版资源| 国产激情久久老熟女| 韩国av在线不卡| 在线天堂中文资源库| 极品人妻少妇av视频| 老司机亚洲免费影院| 国产成人午夜福利电影在线观看| 成人国产麻豆网| 亚洲av免费高清在线观看| 1024香蕉在线观看| 成人国语在线视频| 黄色 视频免费看| 亚洲人成77777在线视频| 欧美精品国产亚洲| 免费看av在线观看网站| 国产白丝娇喘喷水9色精品| 精品久久蜜臀av无| 中文字幕亚洲精品专区| 免费女性裸体啪啪无遮挡网站| 久久久精品94久久精品| 十八禁高潮呻吟视频| 伊人亚洲综合成人网| 校园人妻丝袜中文字幕| 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 下体分泌物呈黄色| 亚洲人成77777在线视频| 久久久久国产一级毛片高清牌| 在线免费观看不下载黄p国产| 黄色一级大片看看| 国产亚洲最大av| 国产爽快片一区二区三区| 亚洲欧美精品自产自拍| 国产成人免费无遮挡视频| 国产又爽黄色视频| 免费播放大片免费观看视频在线观看| 久久久久网色| 亚洲欧美成人精品一区二区| 精品久久蜜臀av无| 亚洲av国产av综合av卡| 国产精品久久久久久av不卡| 一个人免费看片子| 青草久久国产| 人妻人人澡人人爽人人| 深夜精品福利| 国产一区二区在线观看av| www日本在线高清视频| 国产成人一区二区在线| 亚洲国产欧美在线一区| 18禁观看日本| 精品福利永久在线观看| 亚洲 欧美一区二区三区| 免费少妇av软件| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 欧美最新免费一区二区三区| 美女xxoo啪啪120秒动态图| 国产日韩欧美亚洲二区| 婷婷色综合大香蕉| 九色亚洲精品在线播放| 成人免费观看视频高清| 9色porny在线观看| av在线老鸭窝| 亚洲精品,欧美精品| 性色avwww在线观看| 少妇的逼水好多| 午夜福利网站1000一区二区三区| 啦啦啦在线免费观看视频4| 久久国产亚洲av麻豆专区| 久久久久久久国产电影| 国产高清不卡午夜福利| 美女国产视频在线观看| 高清欧美精品videossex| av线在线观看网站| 午夜福利,免费看| 亚洲激情五月婷婷啪啪| 免费久久久久久久精品成人欧美视频| 中文字幕精品免费在线观看视频| 久久久国产欧美日韩av| 美女高潮到喷水免费观看| 男人操女人黄网站| 国产综合精华液| 中文乱码字字幕精品一区二区三区| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 黄片无遮挡物在线观看| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| 欧美激情 高清一区二区三区| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 999精品在线视频| www.av在线官网国产| 久久精品国产自在天天线| 色视频在线一区二区三区| 啦啦啦啦在线视频资源| 日韩,欧美,国产一区二区三区| 欧美bdsm另类| 亚洲婷婷狠狠爱综合网| 亚洲美女搞黄在线观看| 久久久久久久久久人人人人人人| 亚洲av中文av极速乱| 精品一区在线观看国产| 国产精品熟女久久久久浪| 亚洲欧美色中文字幕在线| 精品国产露脸久久av麻豆| 菩萨蛮人人尽说江南好唐韦庄| 卡戴珊不雅视频在线播放| 999久久久国产精品视频| 成年人免费黄色播放视频| 日本wwww免费看| 中文字幕精品免费在线观看视频| 国产乱人偷精品视频| 在线精品无人区一区二区三| 亚洲av中文av极速乱| 黄片播放在线免费| 1024香蕉在线观看| 一级毛片电影观看| 亚洲精品久久成人aⅴ小说| 国产一区二区在线观看av| 另类精品久久| 成年美女黄网站色视频大全免费| 青春草亚洲视频在线观看| 亚洲少妇的诱惑av| 国产精品熟女久久久久浪| 18禁国产床啪视频网站| 97在线视频观看| 少妇精品久久久久久久| 极品人妻少妇av视频| 欧美亚洲日本最大视频资源| 亚洲人成电影观看| 欧美日韩av久久| 丝袜美腿诱惑在线| 午夜老司机福利剧场| 国产在线视频一区二区| 日韩成人av中文字幕在线观看| 国产深夜福利视频在线观看| 欧美日韩综合久久久久久| 中文字幕色久视频| www日本在线高清视频| 1024香蕉在线观看| 精品国产乱码久久久久久小说| 国产精品久久久久成人av| 美女中出高潮动态图| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 亚洲精品中文字幕在线视频| 国产精品av久久久久免费| 国产亚洲欧美精品永久| 久久精品夜色国产| 亚洲精品美女久久av网站| 最黄视频免费看| 性色avwww在线观看| h视频一区二区三区| 在线观看免费日韩欧美大片| 青青草视频在线视频观看| 日韩制服丝袜自拍偷拍| 1024视频免费在线观看| 国产成人a∨麻豆精品| 国产精品国产av在线观看| 欧美日韩视频精品一区| 午夜日韩欧美国产| 免费少妇av软件| 欧美亚洲 丝袜 人妻 在线| 咕卡用的链子| 天天影视国产精品| 国产黄色免费在线视频| 看免费av毛片| 十八禁高潮呻吟视频| 天天操日日干夜夜撸| 精品卡一卡二卡四卡免费| 国产欧美亚洲国产| 久久国产亚洲av麻豆专区| 十八禁网站网址无遮挡| 91在线精品国自产拍蜜月| 亚洲男人天堂网一区| 国产人伦9x9x在线观看 | 欧美日韩精品成人综合77777| 青春草国产在线视频| 日韩av不卡免费在线播放| 亚洲一区中文字幕在线| 男的添女的下面高潮视频| 免费日韩欧美在线观看| 永久网站在线| 又黄又粗又硬又大视频| 制服丝袜香蕉在线| a级毛片黄视频| 制服丝袜香蕉在线| av女优亚洲男人天堂| 男女免费视频国产| 国产老妇伦熟女老妇高清| 久久人妻熟女aⅴ| 美国免费a级毛片| 久久国产精品大桥未久av| 卡戴珊不雅视频在线播放| 免费大片黄手机在线观看| 精品少妇久久久久久888优播| 人妻一区二区av| 国产亚洲最大av| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 亚洲男人天堂网一区| 精品第一国产精品| 老汉色av国产亚洲站长工具| 国精品久久久久久国模美| 看免费成人av毛片| 亚洲成人手机| 老司机影院毛片| 久久午夜福利片| 欧美最新免费一区二区三区| 一本久久精品| 香蕉丝袜av| 咕卡用的链子| 国产熟女欧美一区二区| 免费日韩欧美在线观看| 久久久久久久久久久久大奶| 久久人人爽人人片av| 亚洲精品视频女| 一级a爱视频在线免费观看| 国产精品 国内视频| 国产黄色视频一区二区在线观看| a级毛片在线看网站| 咕卡用的链子| 国产毛片在线视频| 黄片播放在线免费| 欧美日本中文国产一区发布| 国产片内射在线| av在线app专区| 少妇人妻久久综合中文| 在线观看一区二区三区激情| 欧美中文综合在线视频| 久久亚洲国产成人精品v| av天堂久久9| 久久av网站| 色视频在线一区二区三区| 捣出白浆h1v1| 啦啦啦在线免费观看视频4| 女人久久www免费人成看片| av卡一久久| 午夜福利在线免费观看网站| 亚洲国产最新在线播放| 在线看a的网站| 亚洲一区中文字幕在线| 2022亚洲国产成人精品| 飞空精品影院首页| 日韩一卡2卡3卡4卡2021年| 91成人精品电影| 爱豆传媒免费全集在线观看| 成年女人在线观看亚洲视频| 丰满乱子伦码专区| 亚洲国产精品999| 日本av手机在线免费观看| 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 人人妻人人澡人人爽人人夜夜| 大片免费播放器 马上看| 精品国产露脸久久av麻豆| 99久国产av精品国产电影| 亚洲国产精品一区二区三区在线| 少妇 在线观看| 在线观看免费日韩欧美大片| 亚洲国产成人一精品久久久| 亚洲av.av天堂| 日本91视频免费播放| 久久久久视频综合| 久久毛片免费看一区二区三区| 丰满迷人的少妇在线观看| 国产探花极品一区二区| 久久午夜福利片| 免费女性裸体啪啪无遮挡网站| 国产片特级美女逼逼视频| 男女边摸边吃奶| 亚洲精品在线美女| 一区二区av电影网| 巨乳人妻的诱惑在线观看| 多毛熟女@视频| 亚洲国产精品999| 一区二区三区四区激情视频| 国产av码专区亚洲av| 成年人午夜在线观看视频| 电影成人av| 久久久精品区二区三区| 一区二区av电影网| 亚洲三级黄色毛片| 国产精品女同一区二区软件| 亚洲经典国产精华液单| 五月天丁香电影| 婷婷色麻豆天堂久久| 激情视频va一区二区三区| 精品国产乱码久久久久久小说| 十八禁高潮呻吟视频| 亚洲综合色网址| 人妻 亚洲 视频| 成人漫画全彩无遮挡| 国产在线免费精品| 最近手机中文字幕大全| 午夜日本视频在线| 久久久久久久国产电影| 女人精品久久久久毛片| 一区福利在线观看| 国产精品一区二区在线不卡| 性高湖久久久久久久久免费观看| 婷婷色综合www| a级毛片在线看网站| 亚洲成人一二三区av| 久久久久精品久久久久真实原创| 免费少妇av软件| 中文字幕最新亚洲高清| videosex国产| 女性被躁到高潮视频| 超色免费av| 久久人人97超碰香蕉20202| 中文字幕色久视频| 亚洲,欧美精品.| av在线播放精品| 日本免费在线观看一区| 一级黄片播放器| 欧美日韩精品成人综合77777| videos熟女内射| 男女边吃奶边做爰视频| 各种免费的搞黄视频| 日韩一区二区视频免费看| 我的亚洲天堂| 国产av码专区亚洲av| 亚洲欧美一区二区三区国产| av有码第一页| 中文字幕av电影在线播放| 久久久久久久久久人人人人人人| 9热在线视频观看99| 午夜av观看不卡| 极品少妇高潮喷水抽搐| av一本久久久久| 国产一区二区激情短视频 | 亚洲精品日韩在线中文字幕| 超碰97精品在线观看| 美女国产视频在线观看| 热99久久久久精品小说推荐| 热re99久久国产66热| 天天操日日干夜夜撸| 国产精品久久久久久精品古装| 亚洲av男天堂| 1024香蕉在线观看| 精品国产国语对白av| 电影成人av| 18禁动态无遮挡网站| 国产精品人妻久久久影院| 日本欧美视频一区| 777米奇影视久久| 巨乳人妻的诱惑在线观看| 日韩大片免费观看网站| 国产乱人偷精品视频| 最近最新中文字幕免费大全7| videos熟女内射| 性少妇av在线| 国产日韩欧美亚洲二区| 中国三级夫妇交换| 久久亚洲国产成人精品v| 精品卡一卡二卡四卡免费| a级毛片在线看网站| 999久久久国产精品视频| 啦啦啦在线观看免费高清www| 亚洲,欧美,日韩| 日韩免费高清中文字幕av| 最新的欧美精品一区二区| 99久久人妻综合| 丰满乱子伦码专区| videosex国产| 日韩 亚洲 欧美在线| 欧美日韩一级在线毛片| 美女午夜性视频免费| 久久久久久久久免费视频了| 免费观看在线日韩| 老汉色∧v一级毛片| 久久久久国产一级毛片高清牌| 欧美+日韩+精品| 99久久精品国产国产毛片| 中文欧美无线码| 波多野结衣av一区二区av| 国产日韩一区二区三区精品不卡| 国产白丝娇喘喷水9色精品| 水蜜桃什么品种好| 日韩精品有码人妻一区| 久久久精品免费免费高清| 国产成人a∨麻豆精品| 亚洲国产精品一区二区三区在线| 国产精品久久久久久久久免| 大片电影免费在线观看免费| 国产一区二区激情短视频 | av网站免费在线观看视频| 免费看av在线观看网站| 最近最新中文字幕免费大全7| 亚洲,欧美精品.| 婷婷色综合www| 日本av免费视频播放| 日本欧美视频一区| 精品少妇久久久久久888优播| 寂寞人妻少妇视频99o| 国产精品久久久久久精品古装| 一本—道久久a久久精品蜜桃钙片| 亚洲精品一二三| av国产久精品久网站免费入址| 汤姆久久久久久久影院中文字幕| 精品亚洲成国产av| 天美传媒精品一区二区| 免费女性裸体啪啪无遮挡网站| 韩国av在线不卡| 少妇被粗大猛烈的视频| 久久精品熟女亚洲av麻豆精品| 在线观看免费高清a一片| 日韩av在线免费看完整版不卡| 精品亚洲乱码少妇综合久久| 国产亚洲最大av| 亚洲人成77777在线视频| 亚洲三区欧美一区| 国产精品人妻久久久影院| 在线天堂中文资源库| 国产精品99久久99久久久不卡 | 久久韩国三级中文字幕| 日韩人妻精品一区2区三区| 久久精品国产鲁丝片午夜精品| 欧美精品av麻豆av| 熟女电影av网| 亚洲国产欧美日韩在线播放| 久久久国产一区二区| 亚洲中文av在线| 丝袜脚勾引网站| 搡女人真爽免费视频火全软件| 亚洲精华国产精华液的使用体验| 国产成人免费无遮挡视频| 久久免费观看电影| 丁香六月天网| 我的亚洲天堂| 欧美精品人与动牲交sv欧美| 国产欧美日韩一区二区三区在线| 91久久精品国产一区二区三区| 精品国产乱码久久久久久男人| 另类精品久久| www.精华液| 女性生殖器流出的白浆| 国产精品国产三级国产专区5o| 国产精品秋霞免费鲁丝片| 免费看不卡的av| 99九九在线精品视频| 欧美日韩成人在线一区二区| 在线观看人妻少妇| 精品第一国产精品| 边亲边吃奶的免费视频| 午夜精品国产一区二区电影| 一级毛片电影观看| 精品国产露脸久久av麻豆| 黄网站色视频无遮挡免费观看| 中文字幕色久视频| 免费大片黄手机在线观看| 秋霞在线观看毛片| 亚洲成国产人片在线观看| 亚洲中文av在线| 亚洲欧美日韩另类电影网站| 久久久久国产一级毛片高清牌| 国产白丝娇喘喷水9色精品| 欧美成人午夜精品| 国产成人精品婷婷| 久久精品人人爽人人爽视色| 国产乱来视频区| 精品久久蜜臀av无| 波野结衣二区三区在线|