• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drawing behavior of melt-spun poly(vinyl alcohol) fibers

    2017-08-30 20:45:34LiLiChenNingLiuQing
    合成纖維工業(yè) 2017年4期
    關(guān)鍵詞:圣泉腈綸原液

    Li Li, Chen Ning, Liu Qing

    (State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065)

    Drawing behavior of melt-spun poly(vinyl alcohol) fibers

    Li Li, Chen Ning*, Liu Qing

    (State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065)

    Poly(vinyl alcohol)(PVA) was plasticized by deionized water and was melt-spun into PVA fiber. The stress-strain curves of the melt-spun PVA fibers with 35% and 5% water by mass fraction at different drawing temperatures were measured as well as the activation energy. The results showed that the effect of drawing temperature on the apparent extensional viscosity of melt-spun PVA fibers containing 35% water by mass fraction could be divided into three zones: 30-100 ℃, 100-190 ℃ and 190-210 ℃, i.e. there were three different activation mechanisms and the fiber could be drawn at least through three steps; the stretching of the filaments was largely affected by the water content in the system; the motion ability of PVA molecular chains decreased and the apparent extensional viscosity of the melt-spun fibers increased with the reduction of the water content in system; the apparent extersional viscosity of the melt-spun PVA fiber with 5% water by mass fraction changed differently within two different temperature ranges, indicating two different activation mechanisms, so the as-spun fibers could be drawn through two steps.

    poly(vinyl alcohol) fiber; melt-spinning; extensional viscosity; activation energy

    Poly(vinyl alcohol) (PVA) fiber is widely used in many important high-tech areas owing to its excellent comprehensive properties, such as good mechanical properties, superior thermal properties and weather durability, excellent acid, alkaline and organic solvents resistance, etc. However, the melting point and decomposition temperature of PVA are so close that the melt spinning of PVA becomes very difficult due to the multi-hydroxyl structure. So far, PVA fiber has been produced by solution spinning[1], which is associated with low strength and modulus, high manufacturing cost caused by a large amount of energy consumption, long dissolving and drying time and recycle of coagulating bath.

    Generally, the key point to realize the melt spinning of PVA is to obtain thermal processing window, i.e. decreasing the melting point of PVA and increasing its decomposition temperature, which can be performed by addition of plasticisers[2-3], chemical modification[4]and blending[5]. Among them, the plasticized melt spinning is simple, highly efficient and environmental friendly, which is the development direction of PVA melt spinning.

    The author successfully realized the melt spinning of PVA according to the intermolecular complexation and plasticization.And the PVA as-spun fibers with uniform structure, circular cross-section and controllable diameter were obtained. Water, the key plasticizer for the melt spinning of PVA, exists in melt-spun PVA fibers in three different states[7], i.e., free water, freezable bound water and non-freezing water, which provides as-spun PVA fiber with good drawability at room temperature. However, excessive water would evaporate during the hot-drawing process of as-spun PVA fiber, resultting in the formation of internal defects. As a result, the drawability of PVA fibers was reduced. In this paper, the drawing behavior of melt-spun PVA fibers under different drawing temperature were studied; the apparent extensional viscosity as well as the activation energy were calculated, and the effect of water content on drawing behavior and drawing mechanism were analyzed, which provides theoretical basis for the preparation of PVA fibers at high draw ratio.

    1 Experimental

    1.1 Materials

    PVA-1799F with an alcoholysis degree of 99.9% was commercially provided from Sichuan Vinylon Works,SINOPEC. The PVA raw materials were washed with deionized water until a pH value of 7 and dried at 80 ℃ to constant weight as the experimental sample in a vacuum oven.

    1.2 Preparation of melt-spun PVA fibers

    A modified PVA was obtained by adding pre-dried PVA into quantitative deionized water and then letting the solutions completely seep into PVA at 80 ℃ in a sealed vessel. Finally, the modified PVA was melt-spun in a melt spinning apparatus, which consisted of a single screw extruder with the diameter of 25 mm and length-diameter ratio of 25, a prefilter, a spin pump, spinnerets and a conventional take-up device. The capillary diameter of the spinnerets was 0.15 mm. The temperature of extruder and spin head was 120-150 ℃. The draw ratio was 1.5-2.0. The as-spun PVA fibers with 5% water by mass fraction were obtained by drying the melt-spun PVA fibers with 35% water by mass fraction at 200 ℃ for 3 min in an air-circulating oven.

    1.3 Measurement of drawing behavior of melt-spun PVA fiber

    The stress-strain curves of melt-spun PVA fibers were measured by a universal testing machine RGL-10(Shenzhen Reger Instrument Co., Ltd., China) at drawing temperature 30-220 ℃. The apparent extensional viscosity(ηε) was calculated by the following equations[8-9].

    ηε=σε/ε

    (1)

    σε=F/At

    (2)

    ε=V/λtL0

    (3)

    Where,Atis cross-sectional area of PVA fiber at timet;Fis axial tensile force;Vis drawing speed;L0is initial length of melt-spun PVA fiber;λtis draw ratio at timet.

    2 Results and discussion

    2.1 Drawing behavior of melt-spun PVA fiber with 35% water by mass fraction

    As shown in Fig.1, the drawability of melt-spun PVA fiber was sensitive to the drawing temperature. With the drawing temperature increasing, the hydrogen bonds interactions among PVA molecules were weakened, the motion ability of PVA molecule chain was enhanced, the tensile stress was decreased, and the stretch degree of PVA chains along the drawing direction and the elongation at break of the melt-spun PVA fiber were increased. However, the extremely high temperature made the water molecules move faster in melt-spun PVA fibers, which weakened the hydrogen bonds interaction between PVA and water. As a result, the water in melt-spun PVA fibers changed from bound water to free water and evaporated rapidly, causing internal defects to form in PVA fibers and the draw ratio to decrease. The transition temperature was 170-180 ℃.

    Fig.1 Stress-strain curves of melt-spun PVA fibers with 35% water by mass fraction drawn at different temperature1—30 ℃;2—60 ℃;3—80 ℃;4—110 ℃;5—120 ℃;6—140 ℃;7—170 ℃;8—180 ℃;9—200 ℃;10—220 ℃

    From Fig.2, it can be found thatηεkept rising with the draw ratio(λ) increasing, but the rise slowed down when the drawing temperature increased. The main reason is that the increase ofλmade PVA molecule chains orient, the molecular distance decrease, free water evaporate and the motion ability of PVA molecules weaken. Furthermore, the orientation of PVA molecule chains made hydrogen bond rebuilt and restricted the stretchability of PVA fibers. As a result,ηεof melt-spun PVA fibers increased with the increase ofλ.

    Fig.2 Relationship between ηε and λ of melt-spun PVA fibers with 35% water by mass fraction drawn at different temperature■—80 ℃;●—100 ℃;▲—120 ℃;▼—140 ℃;◆—160 ℃;?—180 ℃;?—200 ℃;○—210 ℃

    The high drawing temperature weakened the hydrogen bonds interactions among PVA molecules and promoted the movement of PVA chain, which improved the stretchability of melt-spun PVA fibers. Soηεdecreased with the increase of drawing temperature, which indicated that the drawing temperature played an important role in the drawing process of melt-spun PVA fiber and the tensile stress could be profoundly decreased by increasing temperature.

    The relation betweenηεand drawing temperature (T) can be described by Eyring-Frenkel equation. From a graphic representation (Fig.3) of the experimental data of lnηεagainst 1/T, the extensional activation energy (Ea) can be determined by the slope of the linear plot. The values ofEaare listed in Tab.1. From Fig.3 and Tab.1, it can be seen thatηεof PVA fibers decreased with the increase of drawing temperature. The relationship between lnηεand 1/Texhibited three-segment straight line with inflection point temperature of 100 ℃ and 190 ℃. The correspondingEawas divided into three regions, i.e. 11.5-12.5 kJ/mol in the lower-temperature region of 30-100 ℃,12.9-24.7 kJ/mol in the middle-temperature region of 100-190 ℃, and 69.5-141.0 kJ/mol in the higher-temperature region of 190-210 ℃ .

    Fig.3 Relationship between ηε and 1/T of melt-spun PVA fibers at different λ ■—4;●—5;▲—6;▼—7;◆—8;?—9;?—10

    λEa/(kJ·mol-1)30-100℃100-190℃190-210℃411.512.969.5512.014.871.2612.317.881.1713.120.393.0812.521.1109.5919.8125.41024.7141.0

    In lower-temperature region, the melt-spun PVA fibers contained more water,which offered the plasticization and lubrication effect in the fiber,and was not sensitive to temperature during the drawing process. So it can be speculated that there mainly happened the shrink of free volumes and distortion of amorphous region in PVA fiber, resulting in lowEa.

    In middle-temperature region, free water totally evaporated.The freezable bound water and drawing temperature exerted synergistic effect on the drawability of PVA fibers, which made the large deformation of PVA fiber and the increase ofEa.

    In higher-temperature region, freezable bound water evaporated completely. The deformation of melt-spun PVA fibers was mainly affected by drawing temperature. The chain-folded lamellae was melted in a certain extent. The drawing temperature was close to the melt point of PVA fibers. The structure of PVA fibers changed distinctly and became more sensitive to drawing temperature, causingEato increase. In addition, PVA is a typical polar polymer, so the molecular chains would gradually get close to each other to make more chances for self-hydrogen bonds to rebuilt while increasing the draw ratio.Eawould increase with the increase of draw ratio because hydrogen bonds are sensitive to temperature. The change tendency ofEawith temperature indicated three different activation mechanisms and the fiber could be drawn at least by three steps.

    2.2 Drawing behavior of melt-spun PVA fibers with 5% water by mass fraction

    According to the comparison between Fig.1 and Fig.4, it can be found that the plasticization effect of water on PVA fibers was weakened, the self-hydrogen bonds of PVA were partly rebuilt, the motion ability of PVA chains was decreased and the tensile stress was increased when the water content decreased. In addition, the drawing behavior of PVA fibers changed and the yield phenomenon was clearly observed in the stress-strain curves of PVA fibers with 5% water by mass fraction. As compared with that of the melt-spun PVA fiber with 35% water by mass fraction, the draw ratio of the melt-spun PVA fibers with 5% water by mass fraction was lower in the drawing temperature below 100 ℃, but higher in the drawing temperature above 140 ℃.

    Fig.4 Stress-strain curves of melt-spun PVA fibers with 5% water by mass fraction drawn at different temperature 1—30 ℃;2—60 ℃;3—80 ℃;4—100 ℃;5—110 ℃;6—120 ℃;7—130 ℃;8—140 ℃;9—180 ℃;10—190 ℃;11—200 ℃;12—210 ℃

    The main reason is that the motion ability of PVA molecular chains was mainly affected by water at lower temperature below 100 ℃, therefore, the higher water content in PVA fibers, the greater damage to PVA self-hydrogen bond, the more singnificant plasticization effect, the better drawability of PVA fibers, and the higher draw ratio of PVA fibers. What′s more, water evaporated constantly with the increase of temperature, making the fibers generate bubbles and defects and fracture finally. But the melt-spun PVA fiber with lower water content was effectively constrained by water, making water hardly evaporate. So it had few defects resulting from water evaporation, better high-temperature drawablity and higher draw ratio as well, as compared with the fiber with 35% water by mass fraction.

    The effect of water on self-hydrogen bonds of PVA was weakened, the self-hydrogen bonds were partly rebuilt and the structure of PVA fiber became denser as the water content in melt-spun PVA fibers was decreased. So the motion ability of PVA molecular chains was depressed andηεwas increased. The change tendency ofηεwith the draw ratio and temperature was similar to that of fiber with 35% water by mass fraction.

    The experimental data of lnηεagainst 1/Twere showed in Fig.5, which exhibited two-segment straight line with inflection point temperature being about 200 ℃ which was higher than that of fiber with 35% water by mass fraction.

    Fig.5 Relationship between ηε and 1/T of melt-spun PVA fibers with 5% water by mass fraction at different λ■—4;●—5;▲—6;▼—7;◆—8;?—9;?—10;○—11

    As shown in Tab.2,the correspondingEaof PVA fibers with 5% water by mass fraction showed two regions,i.e.24.6-33.2 kJ/mol at 30-200 ℃,higher than that of PVA fiber with 35% water by mass fraction in the lower temperature and middle temperature regions,and 111.3-140.6 kJ/mol at 200-220 ℃,also higher than that of PVA fiber with 35% water by mass fraction in higher temperature region. Therefore, there existed two different activation mechanisms,so at least two steps should be adopted during drawing process.The increase ofEaand the change of activation mechanisms of melt-spun PVA fiber with 5% water by mass fraction was due to self-hydrogen bonds rebuilding and dense structure of PVA fibers caused by the decrease of water content.

    Tab.2 Ea of melt-spun PVA fibers with 5% water by mass fraction drawn in different temperature regions

    3 Conclusions

    a. The effect of temperature onηεof melt-spun PVA fiber with 35% water by mass fraction can be divided into three regions, lower-temperature region of 30-100 ℃, middle-temperature region of 100-190 ℃ and higher-temperature region of 190-210 ℃, which indicated that there were three different activation mechanisms and the fiber could be drawn at least with three steps.

    b. When the water content of melt-spun PVA fibers was 5% by mass fraction, water could hardly evaporate during hot drawing, the self-hydrogen bonds of PVA were partly rebuilt, the structure of PVA became dense, the motion ability of PVA molecular chains decreased andηεincreased in two regions, i.e. lower-temperature region of 30-200 ℃ and higher-temperature region of 200-220 ℃. The activation mechanisms were different in these two regions.

    c. The lower water content was beneficial to the oriented stretch of PVA molecules and stabilization of oriented structure. The water content of the system should be rationally decreased during drawing process to acquire the better stretchability at high temperatures and more outstanding mechanical properties of the melt-spun fibers.

    [1] Zhao Huan. Poly(vinyl alcohol) fibers[M]. Beijing: Chemical Industry Press, 2014:7-8.

    [2] Bai Hongjun, Yang Zhongkai, Tang Chuanjiang, et al. Rheological behavior of plasticized poly(vinyl alcohol) melt[J]. Chin Syn Fiber Ind, 2015,38(2):43-47.

    [3] Lin C A, Ku T. Shear and elongational flow properties of thermoplastic polyvinyl alcohol melts with different plasticizer contents and degrees of polymerization[J]. J Mater Proc Tech, 2008, 200: 331-338.

    [4] Hiroshi N, Nobuo D, Takeaki M. Preparation and thermal properties of thermoplastic poly(vinyl alcohol) complexes with boronic acids[J]. J Polym Sci, Part A: Polym Chem, 1998,36(17):3045-3050.

    [5] Ku T H, Lin C A. Elongational flow properties of thermoplastic polyvinyl alcohol/polypropylene from the melt spinning method[J]. Text Res J, 2014,84(9):932-940.

    [6] Wang Qi, Li Li, Chen Ning. Thermal processing of poly(Vinyl alcohol) [J]. Polym Mater Sci Eng, 2014,30(2):192-197.

    [7] Wang Ning, Zhao Lipeng, Zhang Chuhong,et al. Water states and thermal processability of boric acid modified poly (vinyl alcohol) [J]. J Appl Polym Sci,2016,133(13):43246-43252.

    [8] Pan Lijun, Hu Zuming, Liu Zhaofeng. A study of elongational rheological behavior of UHME-PE gel fiber[J]. J Chin Text Univ, 1993,19(6): 67-72.

    [9] Smook J, Pennings A. The effect of temperature and deformation rate on the hot-drawing behavior of porous high-molecular-weight polyethylene fibers[J]. J Appl Polym Sci, 1982, 27(6): 2209-2228.

    ?國內(nèi)外動態(tài)?

    80 kt/a 高性能再生聚酯纖維項(xiàng)目落戶宜賓

    2017年7月12日,由浙江億興達(dá)紡織有限公司、紹興新綸機(jī)械制造有限公司、佛山中泰光進(jìn)出口公司共同出資建設(shè)的80 kt/a 高性能再生聚酯纖維及紡紗織布產(chǎn)業(yè)化項(xiàng)目正式落戶宜賓屏山縣工業(yè)園區(qū)。據(jù)了解,該項(xiàng)目總投資5.2億元,用地約100畝,分二期建設(shè),其中,一期項(xiàng)目選址石盤產(chǎn)業(yè)園區(qū),用地約45畝,預(yù)計(jì)總投資2億元;二期項(xiàng)目擬選址王場產(chǎn)業(yè)園區(qū),用地約55畝,預(yù)計(jì)總投資3.2億元。該項(xiàng)目全部建成并投產(chǎn)后將形成 80 kt/a 高性能再生聚酯纖維及紡紗織布生產(chǎn)能力,實(shí)現(xiàn)年產(chǎn)值10億元、利稅1.5億元,新增就業(yè)300人以上。目前,該項(xiàng)目正在開展廠房設(shè)計(jì)等前期工作。

    (通訊員 楊 朝)

    圣泉集團(tuán)首創(chuàng)石墨烯功能纖維

    2017年6月3日,濟(jì)南圣泉集團(tuán)股份有限公司“生物質(zhì)石墨烯宏量制備及石墨烯在功能纖維中的產(chǎn)業(yè)化應(yīng)用”成果鑒定發(fā)布,該項(xiàng)目是中國紡織工業(yè)聯(lián)合會科技指導(dǎo)性項(xiàng)目,由圣泉集團(tuán)承擔(dān),并由工信部、中國化學(xué)纖維工業(yè)聯(lián)合會、中國石化聯(lián)合會共同鑒定完成。

    由中國工程院院士孫晉良等權(quán)威專家組成的鑒定委員會一致認(rèn)為:該成果發(fā)明了天然生物質(zhì)纖維素制備生物質(zhì)石墨烯的“基團(tuán)配位組裝析碳法”,在國際上首次實(shí)現(xiàn)了生物質(zhì)石墨烯材料的宏量制備;研發(fā)出具有遠(yuǎn)紅外、抗菌抑菌、抗靜電、防紫外等多功能的石墨烯改性纖維,開發(fā)其在服飾、家紡、軍工、輕工、醫(yī)療、精細(xì)化工等領(lǐng)域的應(yīng)用;該成果對提高紡織工業(yè)科技創(chuàng)新能力、紡織行業(yè)技術(shù)升級和高附加值產(chǎn)品開發(fā)具有深遠(yuǎn)意義;在國際上首次實(shí)現(xiàn)了生物質(zhì)石墨烯宏量制備及石墨烯在功能纖維中的產(chǎn)業(yè)化應(yīng)用,達(dá)到了國際領(lǐng)先水平,屬國際首創(chuàng)。

    圣泉集團(tuán)此次成功突破生物質(zhì)石墨烯宏量制備及石墨烯在功能纖維中的產(chǎn)業(yè)化應(yīng)用,開發(fā)了具有低溫遠(yuǎn)紅外、防紫外線、改善微循環(huán)、抗菌抑菌、抗靜電、增溫保溫等功能性紡織品,高性能化、多功能化、智能化的紡織纖維材料體系初現(xiàn)。此外,圣泉集團(tuán)正研發(fā)和儲備石墨烯在軍民融合領(lǐng)域、醫(yī)療用品、防腐涂料、電池材料、增強(qiáng)材料等領(lǐng)域的技術(shù)。

    (通訊員 錢伯章)

    齊魯石化制成石墨烯腈綸

    2017年7月,齊魯石化腈綸廠與山東濟(jì)南圣泉集團(tuán)合作,成功完成石墨烯腈綸試樣的制備工作。經(jīng)國家紡織制品質(zhì)量監(jiān)督檢驗(yàn)中心對使用該原料制作成織物的試樣進(jìn)行檢測,產(chǎn)品的抗靜電性、抗菌抑菌性、遠(yuǎn)紅外性能及耐水洗色牢度等指標(biāo)全部達(dá)到并超過國家標(biāo)準(zhǔn)。該廠與濟(jì)南圣泉集團(tuán)協(xié)商,確定了放大實(shí)驗(yàn)設(shè)備的技術(shù)需求和具體參數(shù),開始了石墨烯實(shí)驗(yàn)設(shè)備采購程序。該項(xiàng)目是提升腈綸產(chǎn)品附加值的有效途徑。

    (通訊員 鄭寧來)

    上海石化原液著色腈綸銷量增長

    2017年1~6月,上海石化腈綸部原液著色腈綸的銷量同比增長49%。原液著色腈綸是該部自行開發(fā)的新產(chǎn)品,填補(bǔ)了國內(nèi)空白,豐富了國內(nèi)腈綸的品種,使腈綸生產(chǎn)技術(shù)水平得到了提升,逐步為國內(nèi)客戶所接受。該部原液著色腈綸銷售量的擴(kuò)大,得益于品種的增加。2015年,該部還只能生產(chǎn)單一的黑色纖維,而現(xiàn)在,已有十多種顏色的腈綸進(jìn)入正常生產(chǎn)序列,另外還有二十多種顏色的腈綸產(chǎn)品進(jìn)入技術(shù)儲備序列。顏色增多,客戶選擇的余地也大了。另外,該部生產(chǎn)的原液著色腈綸原來僅用來做戶外產(chǎn)品,現(xiàn)在則已進(jìn)入了服用領(lǐng)域。

    (通訊員 錢伯章)

    聚乙烯醇熔紡初生纖維的拉伸行為研究

    李莉 陳寧 劉慶

    (1.四川大學(xué) 高分子材料工程國家重點(diǎn)實(shí)驗(yàn)室,高分子研究所,四川 成都 610065)

    采用去離子水溶脹聚乙烯醇(PVA),通過熔融紡絲法制備PVA纖維。研究了水質(zhì)量分?jǐn)?shù)35%和5%的PVA熔紡初生纖維在不同拉伸溫度下的應(yīng)力-應(yīng)變曲線,以及其拉伸活化機(jī)制。結(jié)果表明:拉伸溫度對水質(zhì)量分?jǐn)?shù)35%的PVA熔紡初生纖維表觀拉伸黏度的影響分為3個(gè)區(qū),即30~100 ℃,100~190 ℃,190~210 ℃,纖維在熱拉伸時(shí)存在3個(gè)不同機(jī)制的活化過程,至少可采用三級拉伸;初生纖維拉伸受體系中水含量的影響,水含量減少,PVA分子鏈運(yùn)動能力降低,表觀拉伸黏度增大,水質(zhì)量分?jǐn)?shù)5%的PVA熔紡初生纖維的表觀拉伸黏度隨溫度變化呈現(xiàn)兩個(gè)區(qū),活化機(jī)制改變,可采用兩步拉伸。

    聚乙烯醇纖維 熔融紡絲 拉伸黏度 活化能

    date:04-05-2017; revised date: 20- 06- 2017.

    National Natural Science Foundation of China(51433006) and Independent Project of State Key Laboratory of Polymer Materials Engineering of China(sklpme2014-3-15)

    TQ342+.41 Document code:A Article ID: 1001- 0041(2017)04- 0040- 05

    Biography: Li Li(1977-), female,Ph. D,is engaged in the structure and properties of polymers. E-mail:powerlily@scu.edu.cn.

    * Corresponding author: ningchen@scu.edu.cn.

    猜你喜歡
    圣泉腈綸原液
    羊毛/腈綸/棉纖維混紡產(chǎn)品定量化學(xué)分析方法探討
    Improvement of the spreading effect of atmospheric pressure microplasma jet treatment through shielding-gas-controlled focusing
    過武陵山區(qū)
    應(yīng)用前景廣闊的原液著色纖維
    2020春夏原液著色纖維色彩流行趨勢
    大慶石化公司腈綸廠成功生產(chǎn)超高收縮腈綸
    圣泉英賽德歐洲有限公司正式開工建設(shè)
    超細(xì)、原液著色聚酰亞胺纖維實(shí)現(xiàn)量產(chǎn)
    高品質(zhì)原液著色纖維項(xiàng)目“年審”
    腈綸打包機(jī)油缸頂蓋螺栓斷裂原因
    免费看不卡的av| 大香蕉久久网| 精品国产乱码久久久久久男人| 汤姆久久久久久久影院中文字幕| 国产亚洲欧美精品永久| 午夜91福利影院| 日韩中文字幕欧美一区二区 | 在线观看免费午夜福利视频| 黄色怎么调成土黄色| 水蜜桃什么品种好| 搡老岳熟女国产| 老司机影院毛片| 免费人妻精品一区二区三区视频| 免费久久久久久久精品成人欧美视频| 97人妻天天添夜夜摸| 精品亚洲成国产av| 国产精品九九99| 国产色视频综合| 亚洲国产中文字幕在线视频| 免费在线观看视频国产中文字幕亚洲 | av天堂久久9| 黄色视频在线播放观看不卡| 精品人妻在线不人妻| 久久人妻福利社区极品人妻图片 | av在线老鸭窝| 精品国产一区二区三区久久久樱花| 婷婷色综合大香蕉| 亚洲av电影在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 国产日韩欧美亚洲二区| 五月开心婷婷网| 久久性视频一级片| 9色porny在线观看| 精品国产超薄肉色丝袜足j| 久热这里只有精品99| 中文字幕人妻丝袜制服| 精品福利观看| 青春草视频在线免费观看| 中文字幕人妻丝袜制服| 桃花免费在线播放| 久久精品亚洲熟妇少妇任你| 免费少妇av软件| 久久人妻福利社区极品人妻图片 | 午夜福利乱码中文字幕| 男女之事视频高清在线观看 | 国产精品免费视频内射| 欧美黑人精品巨大| 99国产综合亚洲精品| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频 | 久久久久网色| 80岁老熟妇乱子伦牲交| 精品福利永久在线观看| 久久久精品94久久精品| 日韩一区二区三区影片| 18禁国产床啪视频网站| 国产色视频综合| 丰满迷人的少妇在线观看| 99热全是精品| 十八禁网站网址无遮挡| 精品国产乱码久久久久久小说| 精品少妇久久久久久888优播| 日韩中文字幕欧美一区二区 | 99久久99久久久精品蜜桃| 国产爽快片一区二区三区| 十八禁网站网址无遮挡| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇猛男粗大的猛烈进出视频| 每晚都被弄得嗷嗷叫到高潮| 岛国毛片在线播放| 两人在一起打扑克的视频| 亚洲国产最新在线播放| 少妇精品久久久久久久| 99国产精品一区二区蜜桃av | 欧美老熟妇乱子伦牲交| 欧美日韩视频精品一区| 少妇猛男粗大的猛烈进出视频| 国产欧美日韩一区二区三区在线| 国产高清不卡午夜福利| 婷婷丁香在线五月| 国产片特级美女逼逼视频| 欧美97在线视频| 亚洲一码二码三码区别大吗| 国产男女内射视频| 侵犯人妻中文字幕一二三四区| 久久精品aⅴ一区二区三区四区| 大型av网站在线播放| 91麻豆av在线| 秋霞在线观看毛片| 日韩,欧美,国产一区二区三区| 后天国语完整版免费观看| 久久人人爽av亚洲精品天堂| 亚洲精品国产av蜜桃| 九草在线视频观看| 国产成人av教育| 精品高清国产在线一区| 亚洲专区中文字幕在线| 欧美日韩综合久久久久久| 亚洲伊人久久精品综合| av国产久精品久网站免费入址| 涩涩av久久男人的天堂| 男女之事视频高清在线观看 | 亚洲伊人色综图| 午夜福利在线免费观看网站| 七月丁香在线播放| 欧美精品亚洲一区二区| 国产成人一区二区在线| 国产极品粉嫩免费观看在线| 不卡av一区二区三区| 日本欧美视频一区| 免费人妻精品一区二区三区视频| 精品少妇内射三级| 91成人精品电影| 黄频高清免费视频| 国产视频首页在线观看| 亚洲欧美激情在线| 波野结衣二区三区在线| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲精品第一综合不卡| 伊人亚洲综合成人网| 久久久精品94久久精品| 久久久久久久国产电影| 国产免费福利视频在线观看| 亚洲国产精品一区三区| 国产爽快片一区二区三区| 99精国产麻豆久久婷婷| svipshipincom国产片| 久久人人爽人人片av| 欧美97在线视频| 国产成人一区二区在线| 国产男女超爽视频在线观看| 大香蕉久久成人网| 国产成人91sexporn| 欧美少妇被猛烈插入视频| 亚洲精品国产av成人精品| 欧美av亚洲av综合av国产av| 最新的欧美精品一区二区| 亚洲情色 制服丝袜| 国产精品一二三区在线看| 成年人免费黄色播放视频| 国产色视频综合| 丰满人妻熟妇乱又伦精品不卡| av在线播放精品| 99国产精品一区二区三区| 激情视频va一区二区三区| 女人被躁到高潮嗷嗷叫费观| 丝袜喷水一区| 精品一品国产午夜福利视频| 国产在线视频一区二区| 亚洲精品美女久久久久99蜜臀 | 超碰97精品在线观看| 老司机在亚洲福利影院| 中文字幕制服av| 老汉色∧v一级毛片| 亚洲av在线观看美女高潮| 国产欧美日韩一区二区三区在线| avwww免费| 你懂的网址亚洲精品在线观看| 国产黄色视频一区二区在线观看| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| netflix在线观看网站| 男人添女人高潮全过程视频| 视频在线观看一区二区三区| 黄色怎么调成土黄色| 亚洲精品一区蜜桃| 婷婷色麻豆天堂久久| xxxhd国产人妻xxx| 久久国产精品男人的天堂亚洲| 汤姆久久久久久久影院中文字幕| 婷婷丁香在线五月| 日韩免费高清中文字幕av| 国产高清视频在线播放一区 | 国产精品久久久久久人妻精品电影 | 日韩视频在线欧美| 捣出白浆h1v1| 日本av免费视频播放| 热re99久久国产66热| 亚洲成人免费av在线播放| 人成视频在线观看免费观看| 亚洲中文日韩欧美视频| 午夜福利乱码中文字幕| 国产国语露脸激情在线看| 免费日韩欧美在线观看| 亚洲国产日韩一区二区| 美女扒开内裤让男人捅视频| 亚洲av综合色区一区| 国产成人精品在线电影| 日本猛色少妇xxxxx猛交久久| 欧美日韩黄片免| 国产成人精品在线电影| av网站在线播放免费| 激情视频va一区二区三区| 亚洲av电影在线进入| 久久久国产一区二区| 一边摸一边做爽爽视频免费| 久久亚洲精品不卡| 日韩熟女老妇一区二区性免费视频| 日韩av不卡免费在线播放| 亚洲精品乱久久久久久| 99久久综合免费| 成年av动漫网址| 国产成人一区二区在线| 亚洲人成电影观看| 少妇人妻久久综合中文| 校园人妻丝袜中文字幕| 亚洲国产精品成人久久小说| 十八禁高潮呻吟视频| 大香蕉久久网| 美女主播在线视频| 成人18禁高潮啪啪吃奶动态图| 下体分泌物呈黄色| avwww免费| 天天操日日干夜夜撸| 可以免费在线观看a视频的电影网站| 好男人视频免费观看在线| 成人国产一区最新在线观看 | 9色porny在线观看| 午夜两性在线视频| 国产一卡二卡三卡精品| 欧美精品一区二区大全| 亚洲成人免费av在线播放| 亚洲国产精品999| 中国美女看黄片| av又黄又爽大尺度在线免费看| 国产成人精品久久二区二区免费| 91精品国产国语对白视频| 亚洲五月色婷婷综合| 18禁观看日本| 捣出白浆h1v1| 免费观看a级毛片全部| 黄色怎么调成土黄色| 老汉色∧v一级毛片| 99re6热这里在线精品视频| 十八禁人妻一区二区| 在线观看国产h片| 啦啦啦啦在线视频资源| 午夜福利,免费看| 91国产中文字幕| 国产人伦9x9x在线观看| 色婷婷久久久亚洲欧美| 性色av一级| 欧美日韩亚洲国产一区二区在线观看 | 国产在线观看jvid| 成人午夜精彩视频在线观看| 成年美女黄网站色视频大全免费| 啦啦啦在线观看免费高清www| 老司机亚洲免费影院| 国产淫语在线视频| 大型av网站在线播放| 男女边吃奶边做爰视频| 久热爱精品视频在线9| 久久亚洲精品不卡| 视频在线观看一区二区三区| 国产高清国产精品国产三级| 久热爱精品视频在线9| 国产又色又爽无遮挡免| 最新的欧美精品一区二区| 国产一区二区 视频在线| 超碰97精品在线观看| 精品人妻熟女毛片av久久网站| 在线av久久热| 亚洲 国产 在线| 十八禁人妻一区二区| 亚洲,一卡二卡三卡| 精品福利观看| 久久久久久亚洲精品国产蜜桃av| 成人影院久久| 亚洲中文字幕日韩| 亚洲,欧美精品.| 欧美精品人与动牲交sv欧美| 国产亚洲欧美精品永久| 中文乱码字字幕精品一区二区三区| 亚洲精品国产av蜜桃| 久久精品人人爽人人爽视色| 9色porny在线观看| 久久天堂一区二区三区四区| 午夜久久久在线观看| 97在线人人人人妻| 又大又黄又爽视频免费| 国产无遮挡羞羞视频在线观看| 男女免费视频国产| 亚洲精品国产av成人精品| 亚洲国产日韩一区二区| 精品一区在线观看国产| 国产精品香港三级国产av潘金莲 | 丝袜人妻中文字幕| 亚洲精品日本国产第一区| 黄色一级大片看看| 9色porny在线观看| 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 水蜜桃什么品种好| 欧美黑人精品巨大| 亚洲七黄色美女视频| 少妇的丰满在线观看| 久久精品国产综合久久久| 欧美+亚洲+日韩+国产| 国产三级黄色录像| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区| 午夜免费男女啪啪视频观看| 欧美日韩视频精品一区| 国产1区2区3区精品| 日本91视频免费播放| 欧美xxⅹ黑人| 狂野欧美激情性xxxx| 97人妻天天添夜夜摸| 久久亚洲国产成人精品v| 免费看十八禁软件| 色视频在线一区二区三区| 丝袜在线中文字幕| 99国产综合亚洲精品| 国产激情久久老熟女| 国产亚洲av高清不卡| 五月开心婷婷网| 女人精品久久久久毛片| 九色亚洲精品在线播放| 十八禁网站网址无遮挡| 女人精品久久久久毛片| 日韩 亚洲 欧美在线| 捣出白浆h1v1| 国产成人免费观看mmmm| 亚洲欧美精品综合一区二区三区| 国产在线视频一区二区| 国产成人一区二区三区免费视频网站 | 极品人妻少妇av视频| 久久精品国产综合久久久| www.999成人在线观看| 搡老乐熟女国产| 精品一品国产午夜福利视频| 国产男女内射视频| 久久亚洲精品不卡| 欧美另类一区| 两个人免费观看高清视频| 中文精品一卡2卡3卡4更新| 日本五十路高清| 视频区图区小说| 亚洲精品中文字幕在线视频| 超色免费av| 亚洲欧美一区二区三区国产| 国产福利在线免费观看视频| 美女国产高潮福利片在线看| 久久99一区二区三区| 一区二区三区乱码不卡18| 国产一区二区激情短视频 | 久久久久久免费高清国产稀缺| 中国美女看黄片| 水蜜桃什么品种好| 男女边摸边吃奶| 亚洲国产精品成人久久小说| 一级片免费观看大全| 亚洲一区中文字幕在线| 精品久久久久久久毛片微露脸 | 天天添夜夜摸| 久久久国产一区二区| 啦啦啦啦在线视频资源| 色94色欧美一区二区| av国产精品久久久久影院| 深夜精品福利| 校园人妻丝袜中文字幕| 看免费成人av毛片| 亚洲 欧美一区二区三区| 亚洲久久久国产精品| 亚洲情色 制服丝袜| 亚洲第一青青草原| 午夜免费鲁丝| 国产精品九九99| 国精品久久久久久国模美| 国产欧美日韩精品亚洲av| 我的亚洲天堂| 大香蕉久久网| 大片免费播放器 马上看| 视频区欧美日本亚洲| 午夜福利视频精品| 国产av精品麻豆| av国产久精品久网站免费入址| 美女高潮到喷水免费观看| 久久 成人 亚洲| 国产亚洲欧美在线一区二区| 亚洲,一卡二卡三卡| 19禁男女啪啪无遮挡网站| 亚洲 欧美一区二区三区| 成年人免费黄色播放视频| 啦啦啦中文免费视频观看日本| 久久久久精品人妻al黑| 美女福利国产在线| 国产精品av久久久久免费| 午夜91福利影院| 午夜福利在线免费观看网站| 中文字幕精品免费在线观看视频| 大型av网站在线播放| 手机成人av网站| 久久免费观看电影| 久久久精品区二区三区| 麻豆国产av国片精品| 国产高清视频在线播放一区 | 中文字幕av电影在线播放| 黄色一级大片看看| 咕卡用的链子| 国产福利在线免费观看视频| 一级黄色大片毛片| 国产精品一国产av| 久久久久久久大尺度免费视频| 欧美日韩福利视频一区二区| 日韩中文字幕欧美一区二区 | 9色porny在线观看| 国产深夜福利视频在线观看| 国产亚洲精品久久久久5区| 久久人人爽av亚洲精品天堂| 99久久人妻综合| 亚洲精品久久久久久婷婷小说| 欧美人与性动交α欧美软件| 国产伦理片在线播放av一区| 久久久久视频综合| 少妇粗大呻吟视频| 麻豆av在线久日| 国产精品熟女久久久久浪| 亚洲一码二码三码区别大吗| 秋霞在线观看毛片| 日本午夜av视频| 自线自在国产av| av片东京热男人的天堂| 亚洲国产看品久久| 成人18禁高潮啪啪吃奶动态图| 黄片小视频在线播放| 久久久久久久久免费视频了| 性高湖久久久久久久久免费观看| 国产高清videossex| 日本欧美视频一区| 别揉我奶头~嗯~啊~动态视频 | 国语对白做爰xxxⅹ性视频网站| 熟女av电影| 日韩大片免费观看网站| 国产成人欧美| 国产女主播在线喷水免费视频网站| 国产成人精品久久二区二区免费| 亚洲av美国av| svipshipincom国产片| 涩涩av久久男人的天堂| 精品熟女少妇八av免费久了| 一边摸一边做爽爽视频免费| 天天躁夜夜躁狠狠久久av| 欧美成人午夜精品| 久9热在线精品视频| 18禁观看日本| 国产精品人妻久久久影院| 精品视频人人做人人爽| 久久综合国产亚洲精品| 性高湖久久久久久久久免费观看| 国产精品久久久久成人av| 人成视频在线观看免费观看| 国产一区有黄有色的免费视频| 亚洲欧洲日产国产| 国产欧美日韩一区二区三区在线| 天堂中文最新版在线下载| 中文字幕av电影在线播放| 日本91视频免费播放| 大香蕉久久成人网| 亚洲,一卡二卡三卡| 国产精品国产av在线观看| 国产在线一区二区三区精| 黄片小视频在线播放| 国产精品一区二区在线不卡| 国产亚洲精品第一综合不卡| 欧美日韩福利视频一区二区| a 毛片基地| 久热这里只有精品99| 中文字幕人妻熟女乱码| 2021少妇久久久久久久久久久| 国产真人三级小视频在线观看| 国产成人影院久久av| 亚洲精品日本国产第一区| 婷婷色麻豆天堂久久| 欧美日韩亚洲高清精品| 桃花免费在线播放| 赤兔流量卡办理| xxxhd国产人妻xxx| 久久人妻福利社区极品人妻图片 | 国产精品久久久人人做人人爽| 成人影院久久| 大香蕉久久网| 在线 av 中文字幕| 久久99精品国语久久久| 亚洲图色成人| 熟女少妇亚洲综合色aaa.| 久久毛片免费看一区二区三区| 色视频在线一区二区三区| 黑丝袜美女国产一区| 欧美日韩av久久| 亚洲色图 男人天堂 中文字幕| 嫩草影视91久久| 成人三级做爰电影| 欧美人与善性xxx| 99久久综合免费| 欧美在线一区亚洲| 婷婷色av中文字幕| 两人在一起打扑克的视频| 在线观看免费视频网站a站| 国产日韩一区二区三区精品不卡| 午夜福利免费观看在线| a 毛片基地| 免费观看a级毛片全部| 亚洲成人免费av在线播放| 男女高潮啪啪啪动态图| www.av在线官网国产| 日本欧美国产在线视频| 欧美精品一区二区免费开放| 精品人妻1区二区| 欧美另类一区| 久久久国产精品麻豆| 不卡av一区二区三区| 国产精品偷伦视频观看了| 亚洲国产精品国产精品| 男女高潮啪啪啪动态图| 色94色欧美一区二区| 亚洲欧美中文字幕日韩二区| 别揉我奶头~嗯~啊~动态视频 | 性色av乱码一区二区三区2| 亚洲熟女毛片儿| 亚洲伊人久久精品综合| 久久久精品免费免费高清| 看免费av毛片| 国产免费福利视频在线观看| 亚洲精品在线美女| 国产精品亚洲av一区麻豆| tube8黄色片| 成人国产av品久久久| 欧美日韩成人在线一区二区| 又紧又爽又黄一区二区| 满18在线观看网站| www日本在线高清视频| 90打野战视频偷拍视频| 精品少妇内射三级| 精品久久久久久久毛片微露脸 | 欧美日韩亚洲国产一区二区在线观看 | 黄色a级毛片大全视频| 考比视频在线观看| 午夜激情久久久久久久| 天天影视国产精品| 视频区图区小说| 国产成人欧美| 国产色视频综合| 十分钟在线观看高清视频www| 亚洲中文日韩欧美视频| 国产伦人伦偷精品视频| 欧美人与性动交α欧美软件| 国产熟女欧美一区二区| 久久国产亚洲av麻豆专区| 90打野战视频偷拍视频| 日本av手机在线免费观看| 欧美激情极品国产一区二区三区| 高清不卡的av网站| 十八禁网站网址无遮挡| 中文字幕av电影在线播放| 国产在线免费精品| 国产免费视频播放在线视频| 看十八女毛片水多多多| 国产av国产精品国产| 亚洲中文av在线| 亚洲中文日韩欧美视频| 叶爱在线成人免费视频播放| 免费在线观看视频国产中文字幕亚洲 | 久久99一区二区三区| 国产免费视频播放在线视频| 看免费成人av毛片| 亚洲,一卡二卡三卡| 欧美老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂| 国产一区二区三区综合在线观看| 真人做人爱边吃奶动态| 亚洲九九香蕉| 老司机影院成人| 人成视频在线观看免费观看| 亚洲五月色婷婷综合| 亚洲色图 男人天堂 中文字幕| 999久久久国产精品视频| 黑人猛操日本美女一级片| videosex国产| 超碰成人久久| 国产精品 国内视频| 久久精品久久久久久久性| bbb黄色大片| 欧美+亚洲+日韩+国产| 国产97色在线日韩免费| 精品亚洲成国产av| 久久久国产一区二区| 久久天堂一区二区三区四区| av国产精品久久久久影院| 夫妻性生交免费视频一级片| 一本久久精品| 伊人亚洲综合成人网| 伊人久久大香线蕉亚洲五| av天堂久久9| 国产成人精品久久久久久| 亚洲专区中文字幕在线| 搡老乐熟女国产| 黄频高清免费视频| 悠悠久久av| e午夜精品久久久久久久| 欧美日韩精品网址| 国产淫语在线视频| 久久久国产一区二区| 国产主播在线观看一区二区 | 一边摸一边做爽爽视频免费| 日本av免费视频播放| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久电影网| 在线观看一区二区三区激情| 黑人猛操日本美女一级片| 男女床上黄色一级片免费看| 一区二区三区四区激情视频| 人体艺术视频欧美日本| 9热在线视频观看99| 免费人妻精品一区二区三区视频|