• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and Evaluations of Its Cytotoxicity, Anti-microbial and Anti-hydroxyl Radical Activities of a New Co-crystal Compound (C6H6Cl2N2O2S)·(Phen)·H2O①

    2018-08-17 08:00:34HUANGLnZhenWANGNnCAIZhuoQIUXiuYing
    結(jié)構(gòu)化學 2018年7期

    HUANG Ln-Zhen WANG Y-Nn CAI Zhuo QIU Xiu-Ying

    ?

    Synthesis, Crystal Structure and Evaluations of Its Cytotoxicity, Anti-microbial and Anti-hydroxyl Radical Activities of a New Co-crystal Compound (C6H6Cl2N2O2S)·(Phen)·H2O①

    HUANG Lan-Zhena, bWANG Ya-NanaCAI ZhuocQIU Xiu-Yinga②

    (ab541004)c(530004)

    Co-crystal is a very potential kind of drug solid forms, and has a far-reaching influence on designing and preparing drugs. A new 1:1:1 co-crystal compound consisting of 4-amino-3,5-dichloro-benzenesulfonamide, 1,10-phenanthroline and water was synthesized, and its crystal structure was characterized by X-ray diffraction method. The compositions of the co-crystal are self-assembled into a three-dimensional network structure via intermolecular interactions including hydrogen bonds,-stacking, Cl×××Cl interactions and van der Waals’ forces. According to the evaluations of cytotoxicity assays, anti-microbial and anti-hydroxyl radicals, this co-crystal is a potential drug.

    4-amino-3,5-dichloro-benzenesulfonamide, co-crystal, cytotoxicity, anti-microbial, anti-hydroxyl radical;

    1 INTRODUCTION

    Weak intermolecular interactions such as hydro- gen bonds play an important role in molecule-based structural and functional chemistry and biology[1,2]. A co-crystal is a structurally homogeneous crys- talline material that contains two or more neutral building blocks which are present in definite stoichiometric amounts[3]and assembledtogether by weak intermolecular interactions, such as hydrogen bonds,-or C–H×××stacking, van der Waals forces,. The physical and chemical propertiesofco-crystal compoundaresuper tothose ofsingle com- ponents[4], so it plays avery important roleinthesolidchemistryand pharmaceuticalchemistry[5-24].

    In the context of pharmaceuticals, crystal engi- neering is an important process and intellectual pro- perty implications related to the control and repro- ducibility of composition and polymorphism[7]. Pharmaceutical co-crystal has become clear that a wide array of multiple component pharmaceutical phases can be rationally designed using crystal engi-neering, and the strategy afforded new intellectual property and enhanced properties for pharma- ceutical substances[4,7, 22]. Some co-crystal com- pounds formed by rac-ibuprofen, rac-flurbiprofen or aspirin with 4,4-bipyridine[22], and some pharma- ceutical molecules by forming novel compositions of ibuprofen, flurbiprofen, and aspirin have been reported[7]. Mino R. Caira[25]reported molecular complexes of sulfonamides and its 1:1 complex with acetylsalicylic acid.

    However, the co-crystal compounds are very inadequate and about more than two thousands are recorded in Cambridge Structural Database (CSD), far less than the number of other solid forms. Using active pharmaceutical ingredient (API) and cocrystal former (CCF) to form co-crystal compounds through hydrogen bonds or other non covalent bonds will improve the physical and chemical properties of drugs. This is a good idea in new drug design. In the structure of 4-amino-3,5-dichloro-benzenesulfona- mide, there are sulfamide, amino groups, and chlo- ride substituent, which can form weak intermole- cular interactions with CCF. The polypyridines were often designed in the new chemistry and biology compounds[26-29], exhibiting better biological activi- ties. We herein report the synthesis, crystal structure and evaluations of anticancer, antimicrobial and anti-hydroxyl radical activities of the new 1:1:1 co- crystal compound consisting of 4-amino-3,5-dichlo- ro-benzenesulfonamide, 1,10-phenanthroline and water molecules.

    2 EXPERIMENTAL

    2. 1 Procurement of the materials

    Solvents and chemicals obtained from commercial sources were of reagent grade and used without further purification. 4-amino-3,5-dichloro-benzene- sulfonamide can be synthesized according to the references[30, 31]. IR spectra were taken on a Pekin- Elmer spectrum One FT-IR spectrometer with KBr pallets in the range of 4000~400 cm-1. The elemental analyses for C, H, N and S were per- formed on a Perkin-Elmer 2400II elemental analyzer. The crystal structure was determined by a Bruker FRAMBO CCD area detector[32]. Cytotoxicity analysis was performed using the MTT (3-(4,5-di- methyl-2-thiazolyl)-2,5-diphenyl tetrazolium bro- mide) method, antimicrobial activities were obtained by the serial dilution method, and anti-hydroxyl radical activities were determined on the flow injection chemiluminescence (FI-CL) analysis system according to the reference[33]. Strains and cell lines were obtained from commercial sources.

    2. 2 Synthesis of the title co-crystal compound (1)

    A mixed solution containing salicylaldehyde (0.02442 g, 0.2 mmol) and 4-amino-3,5-dichloro- benzenesulfonamide (0.04822 g, 0.2 mmol) was stirred and refluxed at 55 ℃ for 1 h in ethanol, and a small amount of formic acid was added to the mixed solution as a catalyst for the synthesis of Schiff base. After 6 h reaction, 1,10-phenanthroline (0.0400 g, 0.22 mmol) and ammonium cerium (IV) sulfate tetrahydrate (0.2007 g, 0.3 mmol) in ethanol (10 mL, 95%) were also added to the aforemen- tioned solution. The mixture was stirred and refluxed at 55 ℃ for 12 h, and then was cooled to room temperature to afford the bright yellow precipitate which was removed by filtration. The filtrate was left at room temperature. Some yellow crystals were obtained after some days, giving yellow needle- shaped single crystals suitable for X-ray diffraction. For C18H16Cl2N4O3S anal. calcd. (%): C, 49.21; H, 3.67; N, 12.75; S, 7.29. Found (%): C, 49.22; H, 3.69; N, 12.74; S, 7.32. IR (KBr,, cm-1): 3489(s), 3386(s), 3305(s), 3024(m), 1678(m), 1613(s), 1554(m), 1494(m), 1460(m), 1409(m), 1332(s), 1261(m), 1219(m), 1162(s), 1128(m), 1051(w), 963(m), 868(m), 842(m), 756(s), 729(s), 626(m), 592(s).For O–H of water: 3489 cm-1; and for -NH2: 3386, 3305 and 1678 cm-1; and for C–H of benzene ring: 3024 cm-1; and for C=C and C=N of Phen: 1613, 1554, and 1494 cm-1; and for -SO2-: 1162, 1128, and 1051 cm-1; and for two C–Cl: 756 and 729 cm-1. Crystal reproducibility is very good, and the production rate is 63.4% (based on 4-amino-3,5- dichloro-benzenesulfonamide).

    2. 3 Structure determination and refinement

    A yellow single crystal with dimensions of 0.36mm × 0.20mm × 0.18mm was selected for the measurement. The data were collected on a Bruker FRAMBO CCD detector equipped with a graphite- monochromatized Moradiation (= 0.71073 ?) at 153(2) K using an-scan mode, and reduced with the Bruker SAINT. Absolute structure was determined with a Flack parameter= 0.00(1) (Abso- lute structure: Flack H.D. (1983), Acta Cryst. A39, 876~881). In the range of 3.01≤≤25.13° (–8≤≤8, –16≤≤17, –21≤≤21), a total of 13849 reflections were collected, of which 3447 were unique (int= 0.079) and 2402 were observed (> 2()). The structure was solved by direct methods using SHELXS-97(Sheldrick, 2008) and refined by full-matrix least-squares on2using the SHELXL- 97(Sheldrick, 2008)[34]program. The non-hydrogen atoms were assigned by anisotropic displacement parameters in the refinement. Hydrogen atoms cal- culated geometrically were included in the refine- ment by the riding method, with C–H = 0.9300 ? for aryl and N–H = 0.8999~0.9001 ? (iso(H) = 1.2eq(C),iso(H) = 1.2eq(N)), and O–H = 0.8474~0.8541 ? for water (iso(H) = 1.5eq(O)). The crystal of the complex belongs to the orthor- hombicsystem, space group212121, with= 7.4187(18),= 14.602(4),= 17.849(4) ?, C18H16Cl2N4O3S,M= 439.32,= 1933.5(8) ?3,= 2,D= 1.509 g/cm3,= 0.472 mm?1,(000) = 904. 3447 reflections were used in the succeeding refinement.The final cycle of refinement including 253 variable parameters was converged to(2> 2(2)) = 0.0636,(2) = 0.1461 (= 1/[2(F2) + (0.0759)2], where= (F2+ 2F2)/3),= 1.00, (Δ/)max= 0.001, (Δ)max= 0.319, (Δ)min= –0.351 e·??3, completeness to theta = 0.995.

    Hydrogen bonds are listed in Table 1. The mole- cular structure of 1 with atomic numbering scheme is illustrated in Fig. 1, and a 2-D sheet structure of 1 in thebplane is illustrated in Fig. 2(A), a 2-D sheet structure of 1 in theplane in Fig. 2(C), and thestacking interaction of 1 in Fig. 2(B).

    Table 1. Hydrogen Bonds for 1 (? and °)

    Symmetry codes: (i) ?+1/2, ?,?1/2; (ii),?1,; (iii),?1,?1; (iv)+1,,?1

    Fig. 1. Crystal structure of co-crystal compound. Displacement ellipsoids are drawn at the 50% probability level

    Fig. 2. (A) Crystal packing diagram of co-crystal compoundin theplane, and the distance between Cl(1) and Cl (2) is 3.500 ? (symmetry code:+ 1,– 1/2, –+ 3/2). (B)stacking interaction of co-crystal compound, and some hydrogen atoms are omitted for clarity. (C) Crystal packing diagram of co-crystal compoundin theplane. The two dimension net structures are formed by intermolecular hydrogen bonds,-stacking, Cl×××Cl interactions and van der

    Waals’ forces. The dotted lines in the figure are weak intermolecular interactions

    2. 4 In vitro cytotoxicity

    Cell culture: Cells were cultured in RPMI 1640 medium supplemented with 10% heat inactivated fetal bovine serum, 100 μg·mL-1penicillin and 100 μg· mL-1streptomycin. Cells were maintained at 37 ℃ in a 5% CO2incubator, and the media were changed every three days. MTT assay: Cell viability was determined by measuring the ability of cells to transform MTT to a purple formazan dye. We desig- ned compound sample grows (co-crystal compound, 4-amino-3,5-dichloro-benzenesulfonamide and Phen) and negative control group (physiological saline). Tumor cell lines (DLD-1, HepG2, MGC803, HeLa, HCT116) and normal cell line (HL-7702) were grown in a RPMI 1640 medium supplemented with 10% fetal calf serum, 100 μg·mL-1penicillin and 100 μg·mL-1streptomycin. They were incubated at 37 ℃ in a humidified incubator with 5% CO2and 95% air. Cells at the exponential growth stage were diluted to 3 × 104cells·mL-1with RPMI 1640, and then seeded in 96-well culture clusters (Costar) at a volume of 180 μL per cell, and incubated for 24 h at 37 ℃ in 5% CO2. Then the cells were treated at a volume of 20 μL per cell with various concentrations of complexes. The negative control group was set at the same time, and 5-fluorouracil is a positive control. After incubation of cells for up to 48 h, 20 μL of MTT (5 mg·mL-1) solution was added in each cell. After a further period of incubation (4 h at 37 ℃ in 5% CO2), each cell was added in 100 μL cell lysate (including 10% SDS (sodium dodecyl sulfate) – 5% isobutanol – 0.012 mL·L-1HCl (w/v/v)). After 12 h at 37 ℃,the values of OD were analyzed by a Microplate Reader at a wavelength of 490 nm. The percentage growth inhibitory rate of the treated cells was calculated by (OD negative control – OD compound sample)/OD negative control × 100%. The IC50values were determined by plotting the percentage viability versus the concentration on a logarithmic graph and reading off the con- centration at which 50% cells were viable relative to the control.

    2. 5 Anti-microbial activity

    The co-crystal compound was prepared into a series of concentrations of 10, 5, 2.5, 1.25 and 0.625 μmol·mL-1using sterilized distilled water. 1 mL of the solution was taken out from various concentra- tions of co-crystal compound, then added into the solution of hydrolysation casein agar of 9 mL at 50~55 ℃, with the final concentration to be 1.0, 0.5, 0.25, 0.125 and 0.0625 μmol·mL-1, respectively. These solutions were quickly spilled into the sterile flat, and then were coagulated. The control sample was set at the same time. Various experimental bacteria were diluted appropriately, and then seeded in the flat plates containing co-crystal compound and control sample with about 105CFU/point (colony-forming unit, the colony forming units CFU), and incubated at 37 ℃for 24 h. Finally, the minimum inhibitory concentration (MIC) values were observed and write-downed. Minimum concentration of the macroscopic observation to inhibit the growth of experimental fungus for the drug is MIC.

    2. 6 Anti-hydroxyl radical activity

    According to the literature[33], hydroxyl radical scavenging rate was tested by the FI-CL method. The mixed solution containing Fe2+ion, methylene blue, H2O2and water was the input analysis system through the corresponding line, and the resulting light signal was tested by photomultiplier tube and recorded chemical luminescence intensity as the value I0which is the negative control. Using Vit C solution instead of water in the aforementioned mixed solution and the same operating way, the value of chemical luminescence intensity is recorded as Is(Vit C) which is the positive control value. Using a sample solution rather than water in the aforementioned mixed solution and the same operating way, the value of chemical luminescence intensity is recorded as Is(sample). The D-value (I0– Is) is used as clear ·OH quantitative measure, and the hydroxyl radical scavenging rate, namely S, is calculated by the formula S = ((I0– Is)/I0) × 100%.

    3 RESULTS AND DISCUSSION

    X-ray crystallography reveals that 1 is a co- crystal compound consisting of one 4-amino-3,5- dichloro-benzenesulfonamide, one 1,10-phenanthro- line, and one crystal water molecule, namely (C6H6Cl2N2O2S)·(C12H8N2)·H2O, where C6H6Cl2N2O2S = 4-amino-3,5-dichloro-benzenesul- fonamide and C12H8N2= 1,10-phenanthroline (Fig. 1). In the structure of 1, all the bond lengths and bond angles fall in the normal ranges, and the co-crystal components are assembled together by weak intermolecular interactions containing hydrogen bonds,-stacking, Cl···Cl interactions, and van der Waals’ forces (Fig. 2(A, C)). As shown in Fig. 2(A), a two-dimensional structure is formed by hydrogen bonds (N(3)–H(3B)···O(1), N(4)–H(4A)···N(2), O(1W)–H(1WB)···O(1), and O(1W)–H(1WA)···N(2) (See: Table 1)) and Cl(1)···Cl(2) interactions in theplane, and-stacking is observed along theaxis to further form a three-dimensional structure. The distance between Cl(1) and Cl(2) is 3.500 ? (symmetry code:+ 1 ,– 1/2, –+ 3/2). The short Cl···Cl interaction with the distance of 3.500 ? is weaker than that of 4-amino-3,5-dichloro-benzene-sulfonamide with the distance to be 3.318 ?[31], whichshows that the co-crystal compound is slightly different from the monomer one. As shown in Fig. 2(B), X(1A) is the centre of benzene ring C(1)~C(6) of component 4-amino-3,5-dichloro- benzenesulfonamide, and X(1B) is the centre of benzene ring C(10)C(11)C(12)C(13)C(17)C(18) of component 1,10-phenanthroline (symmetry code:–1,–1,), and X(1C) is the centre of heterocyclic ring C(13)C(14)C(15)C(16)N(2)C(17) of com- ponent 1,10-phenanthroline (symmetry code:,–1,). The distance between X(1A) and X(1B) is 3.639 ?, and that between X(1A) and X(1C) is 3.571 ?, indicating-stacking between the benzene ring of 4-amino-3,5-dichloro-benzenesulfonamide and the benzene and heterocyclic rings of 1,10-phenan- throline, respectively. Moreover, in the 4-amino-3,5- dichloro-benzenesulfonamide molecule fragment S(1)–C(1)–C(2)–C(3)–Cl(1)–C(4)–N(3)–C(5)–Cl(2)–C(6)is planar (maximal deviation from the plane is –0.0583 ?, and mean deviation from the plane is –0.0302 ?; 7.052+ 3.939– 2.741= 0.2782). The intersection anglesare 54.3°, 106.6° and 90.7° between planes S(1)C(1)C(2)C(3)Cl(1)C(4)N(3)-C(5)Cl(2)C(6) and O(1)S(1)O(2), between amino-group planesH(4A)N(4)H(4B) and S(1)C(1)C(2)C(3)Cl(1)C(4)N(3)C(5)Cl(2)C(6), and between amino-group plane H(4A)N(4)H(4B) and plane O(1)S(1)O(2), respectively. This shows that amino-group is perpendicular to the plane O(1)S(1)O(2)anddeviates from the plane S(1)C(1)C(2)C(3)Cl(1)C(4)N(3)C(5)Cl(2)C(6). In the Phen molecule the fragment C(7)–C(16)–N(1)–C(17)–C(18)–N(2) is planar (maximal deviation from the plane is –0.0595 ?, and mean deviation from the plane is –0.0206 ?; 6.991+ 4.600– 2.012= 8.9639).

    The cytotoxic potentialities ofI are analyzed in vitro by MTT assay on five different cancer cell lines and one normal live cell line.As shown in Fig. 3, the cell survival inhibition rate increases with the increase of concentration in the range of 8~200 μM, indicating that 1 exhibits significant cytotoxicity in a dose dependent manner. At the concentration of 1000 μM, the cytotoxicity for normal cell line was greater than those of the examined cancer cell lines, indicating that 1 was unsuitable for the anti-tumor drug at such a high concentration. The IC50values are shown in Table 2. The value of IC50for the HCT116 (13.55 ± 1.09) μM is the smallest among the cell lines, and the value forMGC803 is (16.30 ± 2.14) μM, which means that the abilities of inhibition proliferation of 1 for HCT116 and MGC803 cell lines are stronger than those of other examined cell lines. The ability of inhibition proliferation of 1 for HepG2 (41.98 ± 2.83) μM is weaker than that of the normal liver cell line HL-7702 (32.83 ± 7.80) μM, which means that1 exhibitssome harmfulness for the normal liver cells when 1inhibitsthe proliferation of HepG2. Moreover, the inhibition effects for DLD-1 and HeLa are poorer, and the IC50values are more than 200 μM, showing an unremarkable inhibitory effect. In addition, 1 exhibits more significant cytotoxicity than 5-fluorouracil against the examined cell lines. It's worth noting that theabilities of inhibition proliferation of1 are stronger than those of its eutral building block 3,5-dichlorosalfanilamide and 1,10-phenanthroline, which fully embodies the superiority of the co-crystal drug in pharmaceutical chemistry, because co-crystal is a new compound formed by the weak intermolecular interactions, and its physical and chemical properties do not result from the addition of the properties of each building block, but superior to each building block.

    Table 2. IC50Values of the Tested Compounds towards Different Cell Lines

    IC50values are given in μM. The values are expressed as the mean ± standard deviation (triplicates). DLD-1: human knot rectal cancer cell line; HepG2: human hepatocellular liver carcinoma cell line; MGC803: human gastric cancer cell line; HeLa: human cervical carcinoma cell line; HCT116: human colon cancer cell line; HL-7702: human normal liver cell line. 5-Fluorouracil is a positive control

    Fig. 3. Cell inhibition rates assays of HCT116, MCG803, HepG2, DLD-1, HeLa, and HL-7702cell lines treated with various concentrations of 1 for 48h using a MTT method, respectively

    Antimicrobial activity experimental results showed that1 can inhibit the bacterial colony grow, and the MIC valuesare 0.25, 0.25 and 1.0 μmol.mL-1for staphylococcus aureus (S. aureus),escherichia coli (E. coli) and pseudomonas aeruginosa (P. aeruginosa), respectively (Table 3). The antimicrobial activities for S. aureus and E. coli are better than that of P. aeruginosa, showing that 1 has certain reference value in the microbial immunology field.

    Table 3. Co-crystal Compound Antibacterial Activities for S. aureus, E. coli and P. aeruginosa

    Concentration (i): co-crystal compound concentration;Concentration (ii): eventual co-crystal compoundconcentrationin agar. (-): bacterial colony don’t grow; (+): bacterial colony grow.

    Free radicals are related with aging, tumor, radiation damage, cytophagy,. The toxicity of hydroxyl radicals (·OH) is the strongest in biology active oxygen. It is of very practical significance to look for ·OH clearing agent and its applications in medicine, food, cosmetics, and so on. The ratios of the elimination of hydroxyl radicals were determi- ned by FI-CL method. It is well known that vitamin C is quite significant in resisting oxidation. Fixed the concentration of 10 ug·mL-1or 10 μmol·L-1, the clear ratio of 1 for hydroxyl radicals is 22.10% and 23.09% bigger than that of vitamin C, respectively (Table 4). At the concentration of 10 μmol·L-1, the clear ratio of 1 for hydroxyl radicals is four times that of vitamin C. 1 is a potential agent on the clearing hydroxyl radicals.

    Table 4. Action of Antihydroxyl Radical Activities of 1

    4 CONCLUSION

    In conclusion, we successfully synthesized a new co-crystal compound (C6H6Cl2N2O2S)·(Phen)·(H2O). It’s structure was characterized, and cytotoxicity test, anti-bacterial activities and the abilities of resisting hydroxyl radicals were studied. It selectively inhibits the proliferation of tumor cells, and the inhibition effects for the HCT116 and MGC803 cell lines are superior to that of HepG2 cell lines. It exhibits obvious antibacterial activities for S. aureus, E. coli, and P. aeruginosa. Moreover, its anti-hydroxyl radical activity is superior to vitamin C. The results show the superiority of co-crystal compound in the design of drug molecules. In fact, pharmaceutical co-crystal used by crystal engineering has a far-reaching influence not only at the interface of chemistry and biology, but also on the advances in drug design and development, and it will be a good mainstream in the new compound drug design.

    (1) Desiraju, G. R.; Steiner, T. The weak hydrogen bond in structural chemistry and biology. Oxford 1999.

    (2) Hibbert, F.; Emsley, J. Hydrogen bonding and chemical reactivity.1990, 26, 255–379.

    (3) Aaker?y, C. B.; Salmon, D. J.; Smitha, M. M.; Despera, J. Cyanooximes as effective and selective co-crystallizing agents.2009, 11, 439–443.

    (4) Good, D. J.; Rodríguez-Hornedo, N. Solubility advantage of pharmaceutical cocrystals.2009, 9, 2252–2264.

    (5) Gunnam, A.; Suresh, K.; Nangia, A. Salts and salt cocrystals of the antibacterial drug pefloxacin.2018, DOI: 10.1021/acs.cgd.7b01600.

    (6) Li, Y. X.; Chen, S. S.; Ren, F. D.; Jin, S. H. Theoretical insight into the influence of molecular ratio on the stability, mechanical property, solvent effect and cooperativity effect of HMX/DMI cocrystal.2017, 36, 562–574.

    (7) Bailey Walsh, R. D.; Bradner, M. W.; Fleischman, S.; Morales, L. A.; Moulton, B.; Rodríguez-Hornedo, N.; Zaworotko, M. J. Crystal engineering of the composition of pharmaceutical phases.2003, 2, 186–187.

    (8) Guo, T.; Huang, X. C.; Tang, W.; Wang, Z. J.; Liu, M.; Qiu, S. J. Crystal structure and thermal behavior of a novel cocrystal consisting of 3,3?-dinitrimino-5,5?-bis(1H-1,2,4-triazole), H2O and (CH3)2SO.2016, 35, 537–544.

    (9) Yin, H. S.; Yang, G. S.; Liu, C. B.; He, A. W.; Zhou, Y. B.; Zhang, Z. P.; Li, H. M. Crystal structures and antibacterial activities of 1,3-phenylenebis(oxy)diacetic acid dihydrate and 4,4?-bipyridine cocrystal.2015, 34, 650–658.

    (10) Xiao, Y.; Huang, P.; Liu, Y. Q. Microwave assisted synthesis, and structure of a co-crystal Nickel complex with 2-ethoxy-6-methyliminomethyl-phenol.2015, 607, 242–249.

    (11) Xiao, Y.; Liu, Y. Q.; Li, G.; Huang, P. Microwave-assisted synthesis, structure and properties of a co-crystal compound with 2-ethoxy-6-methyliminomethyl-phenol.2015, 27, 161–166.

    (12) Wheeler, K. A.; Grove, R. C.; Davis, R. E.; Kassel, W. S. Quasiracemic materials-rediscovering Pasteur’s quasiracemates.2008, 47, 78–81.

    (13) Stoler, E.; Warner, J. C. Non-covalent derivatives: cocrystals and eutectics.2015, 20, 14833–14848.

    (14) Cherukuvada, S.; Nangia, A. Eutectics as improved pharmaceutical materials: design, properties and characterization.. 2014, 50, 906–923.

    (15) Jennifer, S. J.; Muthiah, P. T. Design of co-crystals/salts of some nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds.2014, 8, 20.

    (16) Aitipamula, S.; Chow, P. S.; Tan, R. B. H. Crystal engineering of tegafur cocrystals: structural analysis and physicochemical properties.2014, 14, 6557–6559.

    (17) Joshi, M.; Choudhury, A. R. Salts of amoxapine with improved solubility for enhanced pharmaceutical applicability.2018, 3, 2406–2416

    (18) Thakuria, R.; Delori, A.; Jones, W.; Lipert, M. P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs.2013, 453, 101–125.

    (19) Ojha, N.; Prabhakar, B. Advances in solubility enhancement techniques.2013, 21, 351–358.

    (20) Cherukuvada, S.; Nangia, A. Fast dissolving eutectic compositions of two anti-tubercular drugs.2012, 14, 2579–2588.

    (21) Smith, A. J.; Kavuru, P.; Wojtas, L.; Zaworotko, M. J.; Shytle, R. D. Cocrystals of quercetin with improved solubility and oral bioavailability.2011, 8, 1867–1876.

    (22) Almarsson, O.; Zaworotko, M. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines?.. 2004, 17, 1889–1892.

    (23) Rehder, S.; Klukkert, M.; L?bmann, K. A. M.; Strachan, C. J.; Sakmann, A.; Gordon, K.; Rades, T.; Leopold, C. S. Investigation of the formation process of two piracetam cocrystals during grinding.2011, 3, 706–722.

    (24) Aaker?y, C. B.; Grommet, A. B.; Desper, J. Co-crystal screening of diclofenac.2011, 3, 601–614.

    (25) Caira, M. R. Molecular complexes of sulfonamides. 3. Structure of 5-methoxysulfadiazine (form II) and its 1:1 complex with acetylsalicylic acid.1994, 24, 695–701.

    (26) Qin, X. Y.; Wang, Y. N.; Yang, X. P.; Liang, J. J.; Liu, J. L.; Luo, Z. H. Synthesis, characterization, and anticancer activity of two mixed ligand copper(Ⅱ) complexes by regulating VEGF/VEGFR2signaling pathway.2017, 46, 16446–16454.

    (27) Qin, X. Y.; Yang, L. C.; Le, F. L.; Yu, Q. Q.; Sun, D. D.; Liu, Y. N.; Liu, J. Structures and anti-cancer properties of two binuclear copper complexes.2013, 42, 14681–14684.

    (28) Qin, X. Y.; Liu, Y. N.; Yu, Q. Q.; Yang, L. C.; Liu, Y.; Zhou, Y. H.; Liu J. Mixed-ligand mononuclear copper(II) complex: crystal structure and anticancer activity.2014, 9, 1665–1671.

    (29) (a) Qin, X. Y.; Yao, H. N.; Ou, W.; Zhang, S. H. Water chains in a novel copper(II) compound [Cu(C9H6O4)(C12H8N2)]·4H2O.2014, 44, 242–246; (b) Qin, X. Y.; Zeng, J. L.; Zhang, S. H.; Jiang, Y. M. Synthesis and crystal structure of Schiff base compound [Zn(C10H9NO5S)(C12H8N2)(H2O)] ·4.25H2O.2012, 42, 915–919.

    (30) Qiu, M. Y.; Lv, D. Preparation of 3,5-dichlorosulfanilamide.. (Chinese) 2005, 34, 115–116.

    (31) Qin, X. Y.; Liu, H. F.; Lin, J. X. 4-Amino-3,5-dichlorobenzenesulfonamide.2010, E66, o2838.

    (32) (a) Higashi, T. ABSCOR. Rigaku Corporation, Tokyo, Japan 1995. (b) Rigaku RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan 2004.

    (33) Cai, Z.; Jiang, C. Y.; Zhao, J.; Mo, L. J.; Zhang, X. Determination of eliminating ratio of fruits extracts for hydroxyl radicals using flow injection chemiluminescence.() 2010, 26, 219–222.

    (34) Sheldrick, G. M. A short history of SHELX.2008, 64, 112–122.

    26 February 2018;

    11 May 2018 (CCDC 884597)

    Guangxi Natural Science Foundation (No. 2016GXNSFAA380292), and National Natural Science Foundation of China (No. 21661011)

    . Dr, associate professor, female, 44 years old, majoring in coordination chemistry, biochemistry and molecular biology. E-mail: xyqin6688@163.com

    10.14102/j.cnki.0254-5861.2011-1985

    成人国语在线视频| 国产成人免费无遮挡视频| 成年av动漫网址| 免费高清在线观看视频在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲在久久综合| 欧美日韩一区二区视频在线观看视频在线| 国产精品 欧美亚洲| 99久久人妻综合| 国产国语露脸激情在线看| 国产日韩欧美视频二区| 欧美激情高清一区二区三区 | 国产精品无大码| 久久久久国产精品人妻一区二区| 成人亚洲欧美一区二区av| 啦啦啦在线免费观看视频4| 99re6热这里在线精品视频| 黑人欧美特级aaaaaa片| 最近的中文字幕免费完整| 亚洲第一区二区三区不卡| 一区二区av电影网| 一区二区三区四区激情视频| 亚洲国产精品999| 丰满乱子伦码专区| 少妇的逼水好多| 夫妻午夜视频| 日韩电影二区| 精品午夜福利在线看| 亚洲国产毛片av蜜桃av| 美女国产视频在线观看| av线在线观看网站| 搡女人真爽免费视频火全软件| 999久久久国产精品视频| 欧美日韩精品成人综合77777| 热re99久久精品国产66热6| 国产精品成人在线| 麻豆精品久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 午夜福利影视在线免费观看| 精品人妻熟女毛片av久久网站| 男女国产视频网站| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 久久亚洲国产成人精品v| 9色porny在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲内射少妇av| 精品人妻在线不人妻| 欧美少妇被猛烈插入视频| 国产精品国产av在线观看| 欧美精品av麻豆av| 久久av网站| 校园人妻丝袜中文字幕| 免费大片黄手机在线观看| 国产精品女同一区二区软件| 日本黄色日本黄色录像| 国产免费视频播放在线视频| 女人久久www免费人成看片| 免费观看无遮挡的男女| 久久久国产精品麻豆| 亚洲欧美一区二区三区久久| 人体艺术视频欧美日本| 日本欧美国产在线视频| av网站免费在线观看视频| 97精品久久久久久久久久精品| 免费高清在线观看视频在线观看| 成人二区视频| 两性夫妻黄色片| 热re99久久精品国产66热6| 久久国产精品大桥未久av| 日本午夜av视频| 日韩中文字幕视频在线看片| 亚洲久久久国产精品| 天堂8中文在线网| 在线观看美女被高潮喷水网站| 在线亚洲精品国产二区图片欧美| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久亚洲中文字幕| 国产高清国产精品国产三级| 久久久国产精品麻豆| 九色亚洲精品在线播放| 婷婷色综合大香蕉| 久久av网站| 美女高潮到喷水免费观看| 天天影视国产精品| 国产精品久久久久久久久免| 五月天丁香电影| 免费观看无遮挡的男女| 国产高清国产精品国产三级| 免费观看性生交大片5| 午夜福利在线观看免费完整高清在| 建设人人有责人人尽责人人享有的| 日本vs欧美在线观看视频| 国产成人午夜福利电影在线观看| 中文字幕av电影在线播放| 久久久久久久久久久久大奶| 国产欧美日韩一区二区三区在线| 2018国产大陆天天弄谢| 亚洲精品美女久久av网站| 久久久久网色| 又大又黄又爽视频免费| 日韩电影二区| 精品少妇内射三级| 日韩一本色道免费dvd| 日日啪夜夜爽| 国产日韩一区二区三区精品不卡| 欧美激情高清一区二区三区 | 人人妻人人添人人爽欧美一区卜| 尾随美女入室| 成年人午夜在线观看视频| 成人手机av| 亚洲少妇的诱惑av| 久久久久久久久免费视频了| 午夜福利在线免费观看网站| 韩国av在线不卡| 亚洲精品乱久久久久久| 国产欧美亚洲国产| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久小说| 午夜福利一区二区在线看| 日韩欧美精品免费久久| 男人操女人黄网站| 少妇被粗大的猛进出69影院| 国产精品久久久久久av不卡| 超色免费av| 国产又爽黄色视频| 国产成人免费无遮挡视频| 欧美日韩成人在线一区二区| 巨乳人妻的诱惑在线观看| 国产一区二区激情短视频 | 丰满迷人的少妇在线观看| 国产成人精品久久久久久| 九九爱精品视频在线观看| 久久影院123| 男女下面插进去视频免费观看| 亚洲少妇的诱惑av| 黄色毛片三级朝国网站| av在线观看视频网站免费| 久久狼人影院| 美国免费a级毛片| 新久久久久国产一级毛片| 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 亚洲四区av| 日韩一卡2卡3卡4卡2021年| 亚洲精品美女久久av网站| 99热全是精品| 免费av中文字幕在线| 男女免费视频国产| 亚洲精品一区蜜桃| 亚洲精品久久午夜乱码| 国产精品国产三级专区第一集| 久久婷婷青草| 久久国内精品自在自线图片| 久久久久精品久久久久真实原创| 欧美+日韩+精品| 黄网站色视频无遮挡免费观看| 一级毛片电影观看| 成人毛片60女人毛片免费| 在线观看人妻少妇| 欧美日韩国产mv在线观看视频| 欧美bdsm另类| 国产一区二区激情短视频 | 国产亚洲最大av| 国产女主播在线喷水免费视频网站| 久久久国产欧美日韩av| av电影中文网址| 精品久久久久久电影网| 色94色欧美一区二区| 久久久久久久大尺度免费视频| 日本欧美视频一区| 精品国产一区二区三区四区第35| 丝袜喷水一区| 亚洲国产毛片av蜜桃av| 国产精品久久久av美女十八| 午夜影院在线不卡| 日韩 亚洲 欧美在线| 搡老乐熟女国产| 亚洲熟女精品中文字幕| 国产一区二区三区综合在线观看| 在线亚洲精品国产二区图片欧美| 啦啦啦视频在线资源免费观看| 99热国产这里只有精品6| 人人妻人人澡人人爽人人夜夜| 国产乱人偷精品视频| 99九九在线精品视频| 国产精品秋霞免费鲁丝片| 2018国产大陆天天弄谢| 中国国产av一级| 在线观看美女被高潮喷水网站| 精品少妇久久久久久888优播| 久久青草综合色| 黄色毛片三级朝国网站| 久久精品国产综合久久久| 国产一区亚洲一区在线观看| 亚洲第一区二区三区不卡| 国产av一区二区精品久久| 性色av一级| 嫩草影院入口| 亚洲成国产人片在线观看| 最近最新中文字幕大全免费视频 | 亚洲欧美一区二区三区黑人 | 久久精品久久久久久噜噜老黄| 九草在线视频观看| 久久精品国产a三级三级三级| 夜夜骑夜夜射夜夜干| 大码成人一级视频| 国产黄色免费在线视频| 国产一区二区三区综合在线观看| www.自偷自拍.com| av电影中文网址| 男女高潮啪啪啪动态图| 欧美日韩视频精品一区| 免费大片黄手机在线观看| 晚上一个人看的免费电影| 国产精品女同一区二区软件| 亚洲美女视频黄频| 你懂的网址亚洲精品在线观看| 日韩欧美一区视频在线观看| 国产精品麻豆人妻色哟哟久久| 99久久精品国产国产毛片| 欧美国产精品一级二级三级| 国产一区二区三区av在线| 亚洲经典国产精华液单| 嫩草影院入口| 最新中文字幕久久久久| 中文字幕另类日韩欧美亚洲嫩草| 久久精品aⅴ一区二区三区四区 | 999久久久国产精品视频| 久久国内精品自在自线图片| 搡老乐熟女国产| 亚洲美女视频黄频| 欧美精品人与动牲交sv欧美| 精品少妇黑人巨大在线播放| av在线老鸭窝| 天堂俺去俺来也www色官网| 午夜福利视频精品| 亚洲内射少妇av| 看非洲黑人一级黄片| 日本-黄色视频高清免费观看| 免费看不卡的av| 乱人伦中国视频| 国产黄色视频一区二区在线观看| av在线播放精品| 大码成人一级视频| 男人操女人黄网站| 亚洲欧美精品自产自拍| 久久亚洲国产成人精品v| 女人高潮潮喷娇喘18禁视频| 狂野欧美激情性bbbbbb| 一区二区三区四区激情视频| 国产男人的电影天堂91| 国产熟女午夜一区二区三区| 国产成人精品久久二区二区91 | 亚洲精品久久午夜乱码| 777米奇影视久久| 日韩中字成人| 边亲边吃奶的免费视频| 亚洲中文av在线| 日韩精品免费视频一区二区三区| 999久久久国产精品视频| 欧美精品亚洲一区二区| 国产1区2区3区精品| 午夜久久久在线观看| 哪个播放器可以免费观看大片| 亚洲欧美精品自产自拍| 看免费成人av毛片| 午夜免费观看性视频| 不卡av一区二区三区| 一级毛片电影观看| 最近中文字幕2019免费版| 少妇的逼水好多| av在线老鸭窝| 成年av动漫网址| 国产亚洲一区二区精品| 中文乱码字字幕精品一区二区三区| 亚洲精品av麻豆狂野| 国产亚洲最大av| 成年女人毛片免费观看观看9 | 久久韩国三级中文字幕| 一级毛片电影观看| 一级黄片播放器| 久久久a久久爽久久v久久| 人妻一区二区av| 熟女电影av网| 国产一区二区三区av在线| xxx大片免费视频| 不卡av一区二区三区| 一区二区三区乱码不卡18| 午夜福利视频精品| 黄色怎么调成土黄色| av一本久久久久| 国产亚洲欧美精品永久| 一本色道久久久久久精品综合| 视频区图区小说| 日本色播在线视频| 在线观看免费日韩欧美大片| 老鸭窝网址在线观看| 满18在线观看网站| 乱人伦中国视频| 1024香蕉在线观看| 边亲边吃奶的免费视频| 国产成人av激情在线播放| 999精品在线视频| 久久久国产精品麻豆| 亚洲综合色惰| 亚洲欧美中文字幕日韩二区| 宅男免费午夜| 中文字幕人妻熟女乱码| 亚洲成人手机| 欧美变态另类bdsm刘玥| 一区在线观看完整版| 国产成人a∨麻豆精品| 亚洲图色成人| 纵有疾风起免费观看全集完整版| 美女xxoo啪啪120秒动态图| 女的被弄到高潮叫床怎么办| 熟女电影av网| 国产视频首页在线观看| av线在线观看网站| freevideosex欧美| av国产精品久久久久影院| 丝袜喷水一区| 亚洲av国产av综合av卡| 日日爽夜夜爽网站| 丝袜喷水一区| 在线观看免费日韩欧美大片| 亚洲国产最新在线播放| 亚洲,欧美精品.| 亚洲av成人精品一二三区| 成年人午夜在线观看视频| 亚洲,欧美精品.| 亚洲天堂av无毛| 久久久久网色| 美女高潮到喷水免费观看| 国产成人免费观看mmmm| 免费黄色在线免费观看| 亚洲国产精品999| 午夜av观看不卡| 日日爽夜夜爽网站| 亚洲三级黄色毛片| 日韩精品有码人妻一区| 亚洲精品日本国产第一区| 亚洲,欧美精品.| 伊人亚洲综合成人网| 中文字幕av电影在线播放| 欧美av亚洲av综合av国产av | 日韩av在线免费看完整版不卡| 久久韩国三级中文字幕| av视频免费观看在线观看| 成人国产麻豆网| 亚洲国产色片| 在线精品无人区一区二区三| 亚洲av.av天堂| 亚洲三区欧美一区| 午夜福利在线免费观看网站| 国产精品 欧美亚洲| 亚洲成人一二三区av| 免费观看av网站的网址| 中文字幕最新亚洲高清| 精品亚洲乱码少妇综合久久| 1024视频免费在线观看| 王馨瑶露胸无遮挡在线观看| 日韩欧美一区视频在线观看| 免费在线观看黄色视频的| 国产精品久久久久久精品电影小说| 成年人免费黄色播放视频| 欧美日韩亚洲国产一区二区在线观看 | 日韩一卡2卡3卡4卡2021年| 秋霞在线观看毛片| 国产有黄有色有爽视频| 丰满迷人的少妇在线观看| tube8黄色片| 男人操女人黄网站| 下体分泌物呈黄色| 美女大奶头黄色视频| 亚洲欧美中文字幕日韩二区| 1024视频免费在线观看| 激情视频va一区二区三区| 久久99蜜桃精品久久| 久久精品久久久久久久性| 视频在线观看一区二区三区| 国产亚洲一区二区精品| 哪个播放器可以免费观看大片| 老汉色∧v一级毛片| 亚洲熟女精品中文字幕| 自线自在国产av| 少妇人妻 视频| 亚洲av在线观看美女高潮| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 亚洲伊人久久精品综合| 国产日韩欧美在线精品| 欧美国产精品一级二级三级| 熟女av电影| 久久人人爽av亚洲精品天堂| 欧美激情极品国产一区二区三区| 亚洲国产欧美网| 国产av精品麻豆| 亚洲欧美清纯卡通| 午夜福利在线观看免费完整高清在| 在现免费观看毛片| 91午夜精品亚洲一区二区三区| 一级a爱视频在线免费观看| 日韩av不卡免费在线播放| 下体分泌物呈黄色| 久久99精品国语久久久| 性色av一级| 欧美人与性动交α欧美精品济南到 | 另类亚洲欧美激情| 精品第一国产精品| 亚洲精品美女久久av网站| 免费观看无遮挡的男女| 精品国产露脸久久av麻豆| 超碰成人久久| 男的添女的下面高潮视频| 少妇人妻精品综合一区二区| 免费人妻精品一区二区三区视频| 亚洲国产成人一精品久久久| 国产97色在线日韩免费| 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| 欧美老熟妇乱子伦牲交| 中文字幕av电影在线播放| 国产精品一区二区在线观看99| 国语对白做爰xxxⅹ性视频网站| 成年美女黄网站色视频大全免费| 国产黄色视频一区二区在线观看| 欧美精品一区二区免费开放| 国产深夜福利视频在线观看| 久久久久国产一级毛片高清牌| 在线观看免费视频网站a站| 伦理电影免费视频| 国产欧美亚洲国产| 美国免费a级毛片| 成人毛片60女人毛片免费| 一级a爱视频在线免费观看| 亚洲精品,欧美精品| 18禁动态无遮挡网站| 又大又黄又爽视频免费| 欧美精品高潮呻吟av久久| 国产精品三级大全| 91精品三级在线观看| 在线观看免费高清a一片| 国产熟女欧美一区二区| 美女国产高潮福利片在线看| 国产精品偷伦视频观看了| 中文字幕亚洲精品专区| 日韩大片免费观看网站| av视频免费观看在线观看| 一区二区三区激情视频| av免费观看日本| 日韩制服丝袜自拍偷拍| 亚洲成人av在线免费| 国产精品嫩草影院av在线观看| 日韩av不卡免费在线播放| 免费看av在线观看网站| 国产一区二区在线观看av| 国产成人精品一,二区| www.熟女人妻精品国产| 看免费成人av毛片| 欧美人与性动交α欧美软件| 1024视频免费在线观看| 纯流量卡能插随身wifi吗| 性少妇av在线| 亚洲精品久久成人aⅴ小说| 亚洲国产精品一区三区| 国产成人精品在线电影| 曰老女人黄片| 成人黄色视频免费在线看| 免费黄网站久久成人精品| 久久久久视频综合| 久久毛片免费看一区二区三区| 日本爱情动作片www.在线观看| 国产高清不卡午夜福利| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 日日啪夜夜爽| 久久久精品94久久精品| 久久久久精品人妻al黑| 春色校园在线视频观看| 汤姆久久久久久久影院中文字幕| 中文字幕亚洲精品专区| 亚洲国产欧美在线一区| 人人妻人人爽人人添夜夜欢视频| 久久午夜福利片| 边亲边吃奶的免费视频| 美女视频免费永久观看网站| 18禁裸乳无遮挡动漫免费视频| 国产av一区二区精品久久| 久久青草综合色| 精品国产乱码久久久久久男人| 国产精品免费视频内射| 久久久久精品久久久久真实原创| 精品国产一区二区三区四区第35| 人人澡人人妻人| 亚洲成人av在线免费| 国产精品99久久99久久久不卡 | 最近中文字幕高清免费大全6| 国产精品av久久久久免费| 9热在线视频观看99| 欧美日韩视频精品一区| 国产精品麻豆人妻色哟哟久久| 欧美精品av麻豆av| 亚洲av电影在线进入| 国产片特级美女逼逼视频| 青草久久国产| 午夜福利视频在线观看免费| 在线观看国产h片| 国产成人精品在线电影| 日韩 亚洲 欧美在线| 久久精品国产自在天天线| 久久久a久久爽久久v久久| 久久ye,这里只有精品| 国产免费现黄频在线看| 九色亚洲精品在线播放| 人人妻人人澡人人看| 久久精品熟女亚洲av麻豆精品| 日本av手机在线免费观看| 肉色欧美久久久久久久蜜桃| 三级国产精品片| 搡女人真爽免费视频火全软件| 在线观看免费视频网站a站| 亚洲 欧美一区二区三区| 久久人妻熟女aⅴ| 性色av一级| 色吧在线观看| 亚洲,欧美精品.| 一区二区三区乱码不卡18| 2022亚洲国产成人精品| 极品少妇高潮喷水抽搐| 中国国产av一级| 精品国产一区二区三区久久久樱花| 侵犯人妻中文字幕一二三四区| 亚洲av成人精品一二三区| 男人添女人高潮全过程视频| 啦啦啦在线免费观看视频4| 亚洲一码二码三码区别大吗| 美女视频免费永久观看网站| 欧美精品国产亚洲| 免费大片黄手机在线观看| 亚洲精品日本国产第一区| 欧美人与性动交α欧美精品济南到 | 免费高清在线观看日韩| 在线免费观看不下载黄p国产| 国产精品秋霞免费鲁丝片| 欧美变态另类bdsm刘玥| videossex国产| 18在线观看网站| 亚洲图色成人| 久久午夜综合久久蜜桃| 一级毛片黄色毛片免费观看视频| 热re99久久精品国产66热6| 各种免费的搞黄视频| 亚洲成av片中文字幕在线观看 | 国产白丝娇喘喷水9色精品| 777久久人妻少妇嫩草av网站| 日韩不卡一区二区三区视频在线| 赤兔流量卡办理| 久久精品国产综合久久久| 免费高清在线观看视频在线观看| 高清在线视频一区二区三区| 丰满迷人的少妇在线观看| av.在线天堂| 久热久热在线精品观看| 久久久国产一区二区| 伦理电影大哥的女人| 国产精品免费视频内射| av片东京热男人的天堂| 18禁国产床啪视频网站| 又黄又粗又硬又大视频| 日本色播在线视频| 国产精品香港三级国产av潘金莲 | 丰满迷人的少妇在线观看| 狠狠婷婷综合久久久久久88av| 999精品在线视频| 高清av免费在线| 国产一区二区激情短视频 | 日本午夜av视频| 亚洲精品久久成人aⅴ小说| 丝袜美足系列| 亚洲精品日韩在线中文字幕| 免费黄频网站在线观看国产| xxxhd国产人妻xxx| 欧美精品一区二区大全| 99久久人妻综合| 黑人欧美特级aaaaaa片| 高清黄色对白视频在线免费看| 国产爽快片一区二区三区| 国产精品欧美亚洲77777| 国产av精品麻豆| 999精品在线视频| 欧美中文综合在线视频| 午夜福利在线免费观看网站| 性色av一级| 一边亲一边摸免费视频| 性高湖久久久久久久久免费观看| 麻豆乱淫一区二区| 在线观看三级黄色| 国产免费现黄频在线看| 韩国高清视频一区二区三区| 午夜激情久久久久久久| 亚洲人成77777在线视频| 性色av一级| 国产男女内射视频| 大陆偷拍与自拍| 热re99久久精品国产66热6| 亚洲精品国产一区二区精华液| 亚洲人成77777在线视频| 另类精品久久| 国产精品三级大全| 丝袜美腿诱惑在线| 欧美 日韩 精品 国产| 亚洲精品国产色婷婷电影| 午夜福利在线观看免费完整高清在|