• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on key technologies of 3D nano clustersensitive film based on SAW resonator

    2017-08-16 09:38:03QIJingWENYumeiLIPing
    關(guān)鍵詞:表面波毒氣納米線

    QI Jing, WEN Yumei, LI Ping

    (1.College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044,P.R.China;2.Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Communications,Chongqing, 400044,P.R. China)

    Research on key technologies of 3D nano clustersensitive film based on SAW resonator

    QI Jing1, 2, WEN Yumei1, LI Ping1

    (1.College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044,P.R.China;2.Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Communications,Chongqing, 400044,P.R. China)

    This research attempts to design a new type of surface acoustic wave (SAW) gas sensor that integrates both the three-dimensional nanostructure technology and the SAW technology and thereby makes use of their advantages in sensitivity and specific surface area, respectively. By taking advantage of the resonant surface acoustic wave(SAWR)’s high Q-factor and low insertion loss characteristic, this paper mainly focuses on the design of the SAW chip and modification of the nanowires structure. Finally,through pumping the Sarin and HD gas into the sample pool of the 3D nano-SAW gas sensor with Back-Propagation Network recognize algorithm, As shown by the experiment results, the overall distinguishable rate is more than 90%, and the 3D nano-SAW gas sensor is superior to traditional sensing devices concerning the sensitivity, identification accuracy, and response speed.

    surface acoustic wave (SAW); nanowires; gas sensor;BP-ANN

    1 Introduction

    The surface acoustic wave(SAW) sensor refers to a new type of transducer that can measure frequency’s change, and it includes some environmental parameters, such as temperature and pressure. The SAW gas sensor detects gas by measuring the amplitude and frequency shifts of SAW when the target gas moves over the surface of the gas-sensitive materials[1]. One-dimensional metals or transition metal oxides, such as ZnO, SnO2, TiO2, and In2O3, are most widely applied in SAW sensor design. Besides, the nanowires or nanotubes materials, which are extensively utilized in gas sensing and detecting devices, have captured the attention of multiple researchers. Additionally, the three-dimensional (3D) gas-sensitive nanowires have a high specific surface area. When they integrate with the highly sensitive and fast responding SAW devices, they can create a new type of SAW gas sensor which will overcome the limits of traditional two-dimensional (2D) membrane sensors[2-8].

    As ZnO has a faster reaction rate, and can react with gas at ambient temperature. Then, based on the method of preparing the ZnO nanowires, this paper researches the SAW technology, the aim of which is to create a new type of SAW gas sensor that can quickly detect gas at low concentration.

    This new type of gas sensor takes advantage of the 3D nanostructure technology as well as the SAW technology, and it can be acutely sensitive, highly integrated, small, lightweight, and inexpensive. With micro, integrated and digitalized features, the 3D nano-SAW gas sensor can not only detect gas rapidly and reliably but also operate at room temperature.

    2 Working principle

    In essence, the SAW gas sensor is a SAW device coated with a film of gas-sensitive material. When the target gas moves over the surface of the SAW sensor, the gas-sensitive material will selectively absorb the molecules of the target gas, which results in the changes in its mass per unit area[9]. This can affect the properties of SAW in two ways: firstly, it will not only reduce the amplitude of SAW but also exacerbate its insertion loss. Secondly, it will cause a change in the base frequency of SAW, which can be represented as Δfs. The correlation between them is

    (1)

    In the function,cmrefers to the parameters of SAW substrate; Δ(m/A) refers to the increase in mass per unit area in the sensitive material;f0refers to baseband signal frequency.

    When the SAW substrate is given, there is a linear relationship between the increase in mass per unit area of the sensitive material and the square of the SAW operational frequency. Therefore, to increase the Δfs, the sensitivity per unit area of the sensitive material and the operational frequency of the SAW sensor shall be increased. Sensitivity per unit area is closely related to both the sensitive material itself and the techniques, by which the SAW chip and the sensitive material can be combined[10]. Fig.1 shows the working principle of the SAW gas sensor.

    Fig.1 Working principle of the SAW gas sensor

    Fig.2 Two-dimensional sensitive membrane

    Fig.3 Three-dimensional nanowire clusters

    According to the comparison between the specific surface area of 2D sensitive membrane and 3D nanowires clusters, it can be seen that 2D sensitive membrane area is

    (2)

    The 3D sensitive membrane area can be expressed as follows:

    (3)

    (4)

    Ast=2 μm,h=5 μm,d=0.5 μm, ifs=1 mm2, thenS1=1.000 mm2,S2=8.85 mm2. The specific surface area of the 3D nano structure is more than 9 times larger than that of the traditional 2D structure. Correspondingly, the sensitivity per unit area of the 3D nano structure will be more than nine times as much as that of the 2D nano structure. All threshold values are held equal, and the increase in sensitivity will be translated into a faster response time.

    Fig.4 illustrates the 3D SAW gas sensor under discussion, which uses ZnO nanowires as the sensitive material[11].

    Fig.4 New type of 3D nano-SAW sensor

    3 Design of the SAW device

    In general, there are two types of SAW gas sensors, including delay surface acoustic wave(SAWD) and resonant surface acoustic wave(SAWR). SAWR is generally characterized with highQ-factor and low insertion loss. As a device affected by frequency, SAWR is not only easy to resonate but also has good frequency stability. The SAW gas sensor studied here refers to a SAW resonator.

    Through the Agilent’s Advanced design system platform simulation , selected parameters are as follows: IDT(inter digital transducer) number is 50, aperture width as 100λ, IDT period as 6.154 4 μm, other parameters keep default.

    For SAWR, the location of the resonator can significantly influence its sensitivity. Traditionally, signals are processed using a two-port SAW resonator, which, however, is not the optimal choice for a SAW gas sensor because the distance between these two IDTs is too small. Fig.5 illustrates how the varying distance between the IDTs affects the properties of the resonator. When the distance is 100 wavelengths, there is the maximum harmonic suppression.

    Fig.5 Impact of the distance between the IDTs on the properties of the resonator

    4 Formation and modification of three-dimensional nanowires

    There are different methods to grow the desired pattern of the 3D nanowires, such as hydrothermal synthesis, template synthesis, and electrochemical precipitation. The hydrothermal synthesis stands out with its low-cost and low-temperature characteristics as well as its ability to be repeated and mass produced in a non-vacuum environment. Using this method, nanowires can grow on a photolithographic substrate coated with photoresist (such as a SAW device). Its operating temperature is in the range of tens of degrees Celsius, which will not affect the IDTs on the SAW piezoelectric substrate. Furthermore, the method is easy-to-conduct and suitable for the mass production.

    Fig.6 and Fig.7 show the growth process of nanowires and the crystal layers using hydrothermal synthesis and template synthesis. Firstly, the SAW device will be spin-coated or sputtered with ZnO nano particles. As s result, it can be used as the seed layer for the growth of ZnO nanowires. To grow ZnO nanowires that are spaced in a particular way, the entire SAW device will be firstly filmed with PMMA (polymethyl methacrylate). Then, it will be etched by electron beams according to the particular distance and size. The SAW device, which has been coated with PMMA, has gone through the photolithographic process. Then, it will be dipped into a mixed liquor for 18 hours for hydrothermal synthesis[12-13].

    Fig.6 Growth process of ZnO nanowires on the SAW device

    Fig.7 ZnO crystal layer on the surface of the SAW device.

    From Fig.6 and Fig.7, it can be found that the structure and density of nanowires are not easy to control. However, these flaws can be overcome using template synthesis, by which the position and density of the nanowires will be controlled. Moreover, nanowires produced in this way usually stand more upright. The PMMA template, which has undergone the photolithographic process, will not be damaged in the low-temperature hydrothermal process. The pattern of the nanowires is of critical importance to their subsequent modification as well as the fabrication of the gas sensor.

    Fig.8 Modification effect of ZnO nanowires

    The formation and modification of the nanowires on the surface of the SAW device will lead to greater insertion loss as -29.30 dB , and a shift in its resonance frequencies as 300 MHz, through the Agilent vector analyzer experimental, the results are shown in Fig.9.

    Fig.9 Display of SAW property after the nanowires have been formed and modified

    5 Test results of 3D SAW gas sensor and the analysis

    Sarin and HD gas are pumped into the sample pool of the 3D nano-SAW gas sensor whose SAW resonators are coated with SE-30 (Silicone), PTFP (a hydrogen bond acidic polysiloxane), BSP3 (a hydrogen bond acidic polysiloxane) or PECH (a poly propylene oxide). Besides, the typical response of the SAW gas sensor to the mix of Sarin and HD gas can be captured in Fig.10.

    Fig.10 Responsive curves of the SAW sensor

    By using Back-Propagation Network algorithm[10,14], the parameters are listed as follows:

    ? the neural network transfer function: tansig

    ? training function: trainscg

    ? output function: purelin

    ? BP network structure: 4-20-20-2

    3.1.1 前列腺解剖 復習系統(tǒng)、局部解剖,結(jié)合實時超聲圖像,讓學生熟悉前列腺不同區(qū)帶及相鄰的精囊、尿道等結(jié)構(gòu),前列腺體積測量等。

    Then, 58 groups of experimental data were selected as the training sample data. The part of the data is displayed in Tab.1.

    Tab.1 Training data for quantitative analysis of mixed components

    The test results are shown in the Fig.11. and Fig.12. The ‘o’ indicates the value of the gas concentration in the calibration, and the ‘+’ indicates the predicted gas concentration.

    Fig.11 Results of mixed qualitative judgment by test data

    Fig.12 Test data errors of mixed gas qualitative judgment

    As shown by the test results, the 3D nano-SAW gas sensor has high targeting capacity and disturbance resistance. Besides, comprehensive recognition rate of training sample and test sample data,the overall distinguishable rate is more than 90%.

    6 Conclusions

    By integrating the nanostructure technology and the SAW technology, this paper attempts to design a new type of three-dimensional nano-SAW gas sensor by integrating the nanostructure technology and the SAW technology. The research has comprehensively have been discussed in detail: the design of SAW chipas well as the growth and modification of nanowires. Finally, by using back-propagation network algorithm to recognize the mixed gas with HD and Sarin, the experiment shows that SAW gas sensor can gain a high degree of detecting capacity and disturbance resistance.

    [1] FU Y Q, LUO J K, DU X Y, et al. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review[J]. Sensors & Actuators B Chemical, 2010, 143(2):606-619.

    [2] JEONG H Y, LEE D S, HONG K C, et al. Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films[J]. Applied Physics Letters, 2010, 96(21):213105-1-213105-3.

    [3] DU J, LIANG D, TANG H, et al. InAs nanowire transistors as gas sensor and the response mechanism[J]. Nano Letters, 2009, 9(12):4348-4351.

    [4] STRELCOV E, LILACH Y, KOLMAKOV A. Gas sensor based on metal-insulator transition in VO2 nanowire thermistor[J]. Nano Letters, 2009, 9(6):2322-2326.

    [5] GONG J, LI Y, CHAI X, et al. UV-Light-Activated ZnO Fibers for Organic Gas Sensing at Room Temperature[J]. Journal of Physical Chemistry C, 2009, 114(2):1293-1298.

    [6] KESKINEN H, TRICOLI A, MARJAMAKI M, et al. Size-selected agglomerates of SnO2 nanoparticles as gas sensors[J]. Journal of Applied Physics, 2009, 106(8):084316-1-084316-8.

    [7] ARNOLD S P, PROKES S M, PERKINS F K, et al. Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor[J]. Applied Physics Letters, 2009, 95(10):103102-1-103102-3.

    [8] WANG W, HU H, LIU X, Et al. Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating[J]. Sensors, 2016, 16(1):73.

    [9] JAKUBIK W, POWRONIK P, WROTNIAK J, et al. Theoretical analysis of acoustoelectrical sensitivity in SAW gas sensors with single and bi-layer structures[J]. Sensors & Actuators B Chemical, 2016, 236:1069-1074.

    [10] BEIGY H, MEYBODI M R. Adaptation of Parameters of BP Algorithm Using Learning Automata[C]// Neural Networks, 2000. Proceedings. Sixth Brazilian Symposium on. Rio de Janeiro, RJ, Brazil, Brazil: IEEE, 2000: 24-31.

    [11] MA J, MAO S, WANG L, et al. Surface Acoustic Wave (SAW) Ammonia Gas Sensor Based on the ZnO Nanorod Array[J]. Sensor Letters, 2016, 14(7): 673-677.

    [12] JIANG X, ZU Xihong, ZHANG Z, et al. Progress in Preparation and Application of Patterned ZnO Nanowire Arrays[J]. Materials Review, 2013(15):129-135.

    [13] GAUTAM C, TIWARY C S, MACHADO L, et al. Synthesis and Porous h-BN 3D Architectures for Effective Humidity and Gas Sensors[J]. Rsc Advances, 2016, 6(91): 87888-87895.

    [14] JIA L H, ZHANG X R. Analysis and Improvements of BP Algorithm[J]. Computer Technology & Development, 2006, 16(10): 101-103,107.

    Biographies:

    QI Jing(1983-) was born in Jiangxi Province, China. Electrical & Information Engineering from Chongqing University of Posts and Telecommunications in 2005, and the ME degree in Electrical & Information Engineering from Chongqing University in 2008. Now, he is working towards his PHD in School of Chongqing University. His research interests include sensors and instrumentation, energy harvesting circuit, short distance wireless communication, sensor search. E-mail: qijing@cqupt.edu.cn.

    WEN Yumei(1964-) was born in Chongqing, China. She received the BE degree in electrical engineering from Beijing Aeronautic and Astronautic University in 1984, the ME degree in electrical engineering from China Academy of Launch Vehicle Technology in 1987, and the PhD degree in instrumentation engineering from Chongqing University in 1997. She has been a professor at College of Optoelectronic Engineering in Chongqing University since 1998. Her research interests include sensors and instrumentation, signal processing, energy harvesting devices, and LED lighting.

    (編輯:魏琴芳)

    2016-10-23

    2017-05-09 通訊作者:漆 晶 qijing@cqupt.edu.cn

    基于聲表面波諧振器的三維納米團簇敏感薄膜關(guān)鍵技術(shù)研究

    漆 晶1,2,文玉梅1,李 平1

    (1.重慶大學 光電工程學院,重慶 400044; 2.重慶郵電大學 移動通信重點實驗室,重慶 400060)

    設(shè)計了一種新型基于聲表面波技術(shù)的氣體傳感器,理論分析了三維納米線結(jié)構(gòu)的比表面積大、靈敏度高等優(yōu)點,采用具備高Q值和低插損的諧振型聲表面波器件結(jié)構(gòu),制備了三維敏感膜結(jié)構(gòu)的聲表面波氣體傳感器。在此基礎(chǔ)上,為提高吸附效應(yīng),對三維納米線簇進行了修飾改進。通過將沙林氣和芥子氣注入放置了聲表面波的氣體傳感器密閉腔體內(nèi),經(jīng)過神經(jīng)網(wǎng)絡(luò)識別系統(tǒng)進行定性識別。實驗結(jié)果表明,基于修飾改進后的納米線簇敏感膜制備的聲表面波氣體傳感器對給定毒氣混合氣體的整理識別率大于90%,能夠滿足通用的毒氣定性檢測要求。并且三維納米聲表面波氣敏傳感器的靈敏度和響應(yīng)速度優(yōu)于傳統(tǒng)的傳感裝置,在識別系統(tǒng)加大樣本數(shù)據(jù)量時,能夠進一步提高識別精度。

    聲表面波;納米線簇;氣體傳感器;神經(jīng)網(wǎng)絡(luò)識別算法

    10.3979/j.issn.1673-825X.2017.04.011

    TN65; TM93 Document code:A

    1673-825X(2017)04-0494-06

    The Science and Technology Project Affiliated to the Education Department of Chongqing Municipality(KJ1500433)

    猜你喜歡
    表面波毒氣納米線
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    驚魂毒氣戰(zhàn)
    毒氣、偵探和筆記
    走開!毒氣君
    毒氣
    溫度梯度場對聲表面波器件影響研究
    電子制作(2018年23期)2018-12-26 01:01:20
    基于WSN的聲表面波微壓力傳感器的研究
    聲表面波技術(shù)的無線測溫系統(tǒng)分析與實驗
    電子測試(2018年9期)2018-06-26 06:46:16
    溫度對NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    免费观看性生交大片5| av在线app专区| 亚洲丝袜综合中文字幕| 免费观看在线日韩| 97超视频在线观看视频| 一级毛片我不卡| 狠狠精品人妻久久久久久综合| 小蜜桃在线观看免费完整版高清| 国产女主播在线喷水免费视频网站| 视频区图区小说| 精品少妇久久久久久888优播| 在线免费十八禁| 观看免费一级毛片| 波野结衣二区三区在线| 国产伦精品一区二区三区视频9| 舔av片在线| 午夜爱爱视频在线播放| 日韩欧美一区视频在线观看 | 国产淫语在线视频| 免费观看在线日韩| 国产av不卡久久| 亚洲综合精品二区| 国产成人a区在线观看| 国产精品.久久久| 国产一区二区三区av在线| 中国国产av一级| 黄色视频在线播放观看不卡| 少妇的逼水好多| 1000部很黄的大片| 精品久久国产蜜桃| av女优亚洲男人天堂| av在线老鸭窝| 久久热精品热| 国产精品爽爽va在线观看网站| 老司机影院成人| 丝袜喷水一区| 在线看a的网站| 97超视频在线观看视频| 午夜爱爱视频在线播放| 熟女av电影| 男人舔奶头视频| 一级a做视频免费观看| 亚洲最大成人手机在线| 欧美97在线视频| 午夜福利在线观看免费完整高清在| 亚洲伊人久久精品综合| 久久国内精品自在自线图片| 国产 一区 欧美 日韩| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡动漫免费视频 | 国内少妇人妻偷人精品xxx网站| 亚州av有码| 久久久久九九精品影院| 可以在线观看毛片的网站| 国内精品美女久久久久久| 一本色道久久久久久精品综合| 精品久久久精品久久久| 大又大粗又爽又黄少妇毛片口| 大话2 男鬼变身卡| 久久久久久久午夜电影| 美女高潮的动态| 91狼人影院| 久久久午夜欧美精品| 综合色av麻豆| 久热久热在线精品观看| 五月开心婷婷网| 99热国产这里只有精品6| 免费观看性生交大片5| 女的被弄到高潮叫床怎么办| 老司机影院毛片| 亚洲国产av新网站| 久久国内精品自在自线图片| 国产伦精品一区二区三区四那| 国产女主播在线喷水免费视频网站| 国产国拍精品亚洲av在线观看| 久久久色成人| 97超碰精品成人国产| 亚洲av国产av综合av卡| 国产视频首页在线观看| 嘟嘟电影网在线观看| 一个人看视频在线观看www免费| 国产午夜精品久久久久久一区二区三区| 观看美女的网站| av专区在线播放| 日日啪夜夜爽| 在线播放无遮挡| 精品熟女少妇av免费看| av免费观看日本| 国产男女内射视频| 国产免费一区二区三区四区乱码| 麻豆精品久久久久久蜜桃| 国产精品麻豆人妻色哟哟久久| 日韩,欧美,国产一区二区三区| 国内精品美女久久久久久| 日本wwww免费看| 99九九线精品视频在线观看视频| 五月天丁香电影| 国产91av在线免费观看| 精品一区二区三卡| 久久久久久久久久久免费av| av播播在线观看一区| 精品久久国产蜜桃| 亚洲欧美清纯卡通| 国产欧美日韩精品一区二区| 亚洲av国产av综合av卡| 久久韩国三级中文字幕| 国产日韩欧美在线精品| 2022亚洲国产成人精品| 在线观看免费高清a一片| 别揉我奶头 嗯啊视频| 你懂的网址亚洲精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久精品夜色国产| 免费大片黄手机在线观看| 在线观看一区二区三区| 日本欧美国产在线视频| 日韩成人伦理影院| 免费播放大片免费观看视频在线观看| 老司机影院成人| 看黄色毛片网站| 日本与韩国留学比较| 日本av手机在线免费观看| 嘟嘟电影网在线观看| 人人妻人人澡人人爽人人夜夜| 日日撸夜夜添| 亚洲国产精品成人久久小说| 人人妻人人爽人人添夜夜欢视频 | 欧美人与善性xxx| 亚洲欧美成人综合另类久久久| 亚洲国产最新在线播放| 免费看不卡的av| 欧美日韩在线观看h| 亚洲色图综合在线观看| 青春草视频在线免费观看| 亚洲精品日韩在线中文字幕| 一二三四中文在线观看免费高清| 99热这里只有是精品50| 欧美亚洲 丝袜 人妻 在线| 一区二区三区四区激情视频| 日日啪夜夜爽| 2022亚洲国产成人精品| 成人无遮挡网站| 午夜精品一区二区三区免费看| 中文字幕av成人在线电影| 一级二级三级毛片免费看| 晚上一个人看的免费电影| 在线a可以看的网站| 日韩三级伦理在线观看| 国产精品伦人一区二区| av在线蜜桃| 日韩强制内射视频| 欧美成人精品欧美一级黄| 夫妻性生交免费视频一级片| 激情 狠狠 欧美| 女的被弄到高潮叫床怎么办| 纵有疾风起免费观看全集完整版| 少妇裸体淫交视频免费看高清| 亚洲精品国产av蜜桃| 插逼视频在线观看| 久久影院123| 中文字幕亚洲精品专区| 亚洲欧美一区二区三区黑人 | 久久人人爽人人爽人人片va| 久久99热6这里只有精品| 亚洲欧美日韩东京热| 18禁裸乳无遮挡动漫免费视频 | 精品国产三级普通话版| 熟女人妻精品中文字幕| 人妻制服诱惑在线中文字幕| 高清av免费在线| 亚洲成人一二三区av| 在线a可以看的网站| 男女边吃奶边做爰视频| 久久精品国产亚洲av天美| 国产免费福利视频在线观看| 亚洲av电影在线观看一区二区三区 | 肉色欧美久久久久久久蜜桃 | 色5月婷婷丁香| 国产精品秋霞免费鲁丝片| 亚洲四区av| 熟女av电影| 草草在线视频免费看| 中文乱码字字幕精品一区二区三区| 免费av观看视频| 日韩不卡一区二区三区视频在线| 狂野欧美白嫩少妇大欣赏| 伦理电影大哥的女人| 国产精品人妻久久久影院| 国产中年淑女户外野战色| 九草在线视频观看| 97在线视频观看| 成年av动漫网址| 亚洲av日韩在线播放| 99九九线精品视频在线观看视频| 在线观看一区二区三区激情| 亚洲精品成人久久久久久| 午夜福利视频1000在线观看| 一个人看视频在线观看www免费| 亚洲精品乱久久久久久| 中文字幕制服av| 国产成人精品久久久久久| 超碰av人人做人人爽久久| 真实男女啪啪啪动态图| 五月伊人婷婷丁香| 99热全是精品| 夜夜看夜夜爽夜夜摸| 嫩草影院精品99| 国产91av在线免费观看| 亚洲精品,欧美精品| 欧美成人一区二区免费高清观看| av在线亚洲专区| 国产成人免费观看mmmm| 免费看日本二区| 亚洲第一区二区三区不卡| 深爱激情五月婷婷| 日韩视频在线欧美| 亚洲综合色惰| 亚洲国产成人一精品久久久| 国产乱人视频| 国产精品熟女久久久久浪| 伊人久久精品亚洲午夜| 男男h啪啪无遮挡| 中文字幕亚洲精品专区| 夫妻性生交免费视频一级片| 日韩制服骚丝袜av| 好男人视频免费观看在线| 久久久久久久久久久丰满| 日本免费在线观看一区| 18禁裸乳无遮挡动漫免费视频 | 亚洲第一区二区三区不卡| 国产亚洲91精品色在线| 丝袜脚勾引网站| 国产午夜精品一二区理论片| 午夜日本视频在线| 日韩强制内射视频| 日本黄色片子视频| 中国美白少妇内射xxxbb| 男人舔奶头视频| 亚洲av一区综合| 久久久久久久大尺度免费视频| 色5月婷婷丁香| 久久国产乱子免费精品| 免费观看性生交大片5| 成年av动漫网址| 女人久久www免费人成看片| 少妇被粗大猛烈的视频| 欧美日韩国产mv在线观看视频 | freevideosex欧美| 2021少妇久久久久久久久久久| 特级一级黄色大片| 国产一区二区亚洲精品在线观看| 国产成人精品一,二区| 国产极品天堂在线| 人妻少妇偷人精品九色| 亚洲第一区二区三区不卡| 亚洲色图综合在线观看| 中文资源天堂在线| freevideosex欧美| 91精品伊人久久大香线蕉| 大又大粗又爽又黄少妇毛片口| 日韩欧美 国产精品| 久久ye,这里只有精品| 九九爱精品视频在线观看| 国产有黄有色有爽视频| 国产一区二区在线观看日韩| 能在线免费看毛片的网站| 高清在线视频一区二区三区| 国内精品美女久久久久久| 亚洲色图综合在线观看| kizo精华| 欧美国产精品一级二级三级 | 嘟嘟电影网在线观看| 22中文网久久字幕| 一本一本综合久久| 熟女电影av网| 美女内射精品一级片tv| 成人免费观看视频高清| 18禁在线播放成人免费| 亚洲精品一二三| 免费不卡的大黄色大毛片视频在线观看| 91精品国产九色| 亚洲av国产av综合av卡| 狂野欧美白嫩少妇大欣赏| 天堂中文最新版在线下载 | 欧美日本视频| 麻豆国产97在线/欧美| 精品亚洲乱码少妇综合久久| 国产精品av视频在线免费观看| 国产精品国产三级国产专区5o| 三级国产精品欧美在线观看| 亚洲四区av| 国产男女超爽视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 中国美白少妇内射xxxbb| 一边亲一边摸免费视频| 日韩电影二区| 少妇的逼好多水| 尤物成人国产欧美一区二区三区| av国产免费在线观看| 少妇人妻精品综合一区二区| 成人毛片a级毛片在线播放| 国产免费一区二区三区四区乱码| 亚洲成色77777| 久久99热这里只频精品6学生| 欧美变态另类bdsm刘玥| 精品久久久久久久久av| 国产色婷婷99| 五月玫瑰六月丁香| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 人体艺术视频欧美日本| 亚洲伊人久久精品综合| 亚洲欧美成人综合另类久久久| 午夜福利视频1000在线观看| 天堂网av新在线| 国产黄色免费在线视频| 欧美日韩视频高清一区二区三区二| 又爽又黄无遮挡网站| 国产高清不卡午夜福利| 久久午夜福利片| 十八禁网站网址无遮挡 | 精品人妻视频免费看| 欧美xxxx性猛交bbbb| 国产成人精品久久久久久| 性色avwww在线观看| 亚洲成色77777| 亚洲欧美日韩卡通动漫| 国产一区二区三区综合在线观看 | 欧美 日韩 精品 国产| 久久久午夜欧美精品| 国产精品99久久99久久久不卡 | 免费看日本二区| 日韩av在线免费看完整版不卡| 久久久久网色| 国产av码专区亚洲av| 午夜福利视频精品| 白带黄色成豆腐渣| 午夜亚洲福利在线播放| 国产午夜精品一二区理论片| 国产一区二区亚洲精品在线观看| 成人午夜精彩视频在线观看| 国产男人的电影天堂91| 天堂网av新在线| 黑人高潮一二区| 别揉我奶头 嗯啊视频| 日韩精品有码人妻一区| 国产91av在线免费观看| 亚洲怡红院男人天堂| 中文字幕免费在线视频6| 日韩欧美精品v在线| 人妻系列 视频| 2022亚洲国产成人精品| 啦啦啦啦在线视频资源| 五月伊人婷婷丁香| 欧美高清性xxxxhd video| av国产免费在线观看| 久热久热在线精品观看| 又大又黄又爽视频免费| 九九爱精品视频在线观看| 国内揄拍国产精品人妻在线| 国产乱人偷精品视频| 亚洲欧美成人综合另类久久久| 99热这里只有精品一区| 少妇人妻 视频| 亚洲精品国产av蜜桃| 黄片wwwwww| 中文字幕制服av| 精品国产乱码久久久久久小说| 亚洲国产成人一精品久久久| 九九久久精品国产亚洲av麻豆| 成人亚洲精品av一区二区| 免费观看a级毛片全部| 热re99久久精品国产66热6| 黄片无遮挡物在线观看| 免费看av在线观看网站| 成人黄色视频免费在线看| 热re99久久精品国产66热6| 国产一区二区三区av在线| 婷婷色av中文字幕| 国产精品偷伦视频观看了| 视频中文字幕在线观看| 久久精品国产鲁丝片午夜精品| av网站免费在线观看视频| 69av精品久久久久久| 欧美一级a爱片免费观看看| 免费看a级黄色片| 国产免费视频播放在线视频| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄| 亚洲精品影视一区二区三区av| 91精品一卡2卡3卡4卡| av免费在线看不卡| 久久久久性生活片| 熟女电影av网| 舔av片在线| 国产色婷婷99| 国产精品av视频在线免费观看| a级毛色黄片| 日本-黄色视频高清免费观看| 精品少妇久久久久久888优播| 男人添女人高潮全过程视频| 成人国产麻豆网| 久久久久国产精品人妻一区二区| 看免费成人av毛片| 久久久久久国产a免费观看| 97在线人人人人妻| 欧美精品人与动牲交sv欧美| 亚洲国产精品成人综合色| 亚洲av中文字字幕乱码综合| 日韩制服骚丝袜av| 男人狂女人下面高潮的视频| 国内少妇人妻偷人精品xxx网站| 国产免费一区二区三区四区乱码| 国产伦理片在线播放av一区| 一区二区三区四区激情视频| 大陆偷拍与自拍| 亚洲四区av| 国产爱豆传媒在线观看| 欧美丝袜亚洲另类| 国产一区二区在线观看日韩| 国产日韩欧美亚洲二区| 中文精品一卡2卡3卡4更新| 男女无遮挡免费网站观看| 欧美国产精品一级二级三级 | 精品一区二区三卡| 在线观看国产h片| 人妻一区二区av| 亚洲aⅴ乱码一区二区在线播放| .国产精品久久| 大香蕉97超碰在线| freevideosex欧美| 国产欧美日韩一区二区三区在线 | 亚洲av中文字字幕乱码综合| 视频中文字幕在线观看| 在线a可以看的网站| 男人和女人高潮做爰伦理| 久久久亚洲精品成人影院| 国产中年淑女户外野战色| 深夜a级毛片| 中文字幕免费在线视频6| 国产成人免费观看mmmm| 久热这里只有精品99| 激情 狠狠 欧美| 久久久久国产网址| 禁无遮挡网站| 中文字幕av成人在线电影| 国产69精品久久久久777片| 男女下面进入的视频免费午夜| 精品亚洲乱码少妇综合久久| 日本猛色少妇xxxxx猛交久久| 中国美白少妇内射xxxbb| 国精品久久久久久国模美| 3wmmmm亚洲av在线观看| 国产久久久一区二区三区| 亚洲精品色激情综合| 亚洲丝袜综合中文字幕| 日韩成人av中文字幕在线观看| 亚洲色图av天堂| 日本欧美国产在线视频| 国产黄频视频在线观看| 成年av动漫网址| 亚洲精品色激情综合| 国产精品国产av在线观看| 欧美日韩视频高清一区二区三区二| 成人亚洲精品一区在线观看 | 青春草国产在线视频| 97人妻精品一区二区三区麻豆| 99久久人妻综合| 国产av不卡久久| 国产伦理片在线播放av一区| 久久午夜福利片| 两个人的视频大全免费| 黄色视频在线播放观看不卡| 美女主播在线视频| 国产成人精品一,二区| 亚洲最大成人av| 少妇高潮的动态图| 亚洲最大成人手机在线| 自拍偷自拍亚洲精品老妇| 亚洲精品国产av蜜桃| 国产成年人精品一区二区| 国产在线男女| 国产免费视频播放在线视频| 我的老师免费观看完整版| 99热全是精品| www.色视频.com| a级一级毛片免费在线观看| 69人妻影院| 欧美日韩一区二区视频在线观看视频在线 | 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站| 精品酒店卫生间| 久久久色成人| 少妇人妻一区二区三区视频| 中文字幕人妻熟人妻熟丝袜美| 一边亲一边摸免费视频| 国产成人freesex在线| 午夜老司机福利剧场| 男的添女的下面高潮视频| 蜜桃亚洲精品一区二区三区| 亚洲一级一片aⅴ在线观看| 人妻 亚洲 视频| 免费观看无遮挡的男女| 国产免费福利视频在线观看| 免费看av在线观看网站| 97超视频在线观看视频| 尾随美女入室| 18禁裸乳无遮挡免费网站照片| 男女边摸边吃奶| 亚洲国产成人一精品久久久| 97超视频在线观看视频| 国产成人一区二区在线| 午夜福利视频1000在线观看| 黄片无遮挡物在线观看| 日本一本二区三区精品| 视频中文字幕在线观看| 亚洲欧美一区二区三区黑人 | 三级国产精品片| 亚洲伊人久久精品综合| 国产精品人妻久久久久久| 亚洲国产精品成人综合色| 边亲边吃奶的免费视频| 中文字幕制服av| 亚洲内射少妇av| 黄色一级大片看看| 久久久久网色| 欧美bdsm另类| 日韩欧美一区视频在线观看 | 亚洲av一区综合| 欧美日韩一区二区视频在线观看视频在线 | 看黄色毛片网站| 精品久久久久久久末码| 日韩一本色道免费dvd| 亚洲不卡免费看| 国产男女内射视频| 三级经典国产精品| 99热6这里只有精品| 国产精品久久久久久精品电影| 国产精品人妻久久久久久| 国模一区二区三区四区视频| 欧美亚洲 丝袜 人妻 在线| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院精品99| 国产熟女欧美一区二区| 青春草国产在线视频| 日韩大片免费观看网站| 搞女人的毛片| 日本欧美国产在线视频| 精品久久久久久久久亚洲| 一级毛片aaaaaa免费看小| 亚洲色图综合在线观看| 亚洲av欧美aⅴ国产| 九九爱精品视频在线观看| a级毛片免费高清观看在线播放| 久久女婷五月综合色啪小说 | 日韩欧美 国产精品| 成年av动漫网址| av一本久久久久| .国产精品久久| 人妻系列 视频| 一本色道久久久久久精品综合| 国产精品99久久久久久久久| 大香蕉97超碰在线| eeuss影院久久| 久久久精品免费免费高清| 一区二区三区免费毛片| 日日啪夜夜撸| 男女那种视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲av欧美aⅴ国产| 99久久人妻综合| 欧美性感艳星| 1000部很黄的大片| 亚洲精品乱码久久久v下载方式| 久久精品综合一区二区三区| 最近中文字幕2019免费版| 女人被狂操c到高潮| 高清av免费在线| 波野结衣二区三区在线| 久久精品久久久久久久性| 亚洲国产欧美在线一区| 交换朋友夫妻互换小说| 欧美丝袜亚洲另类| 亚洲av成人精品一二三区| 真实男女啪啪啪动态图| 一级毛片电影观看| 精品酒店卫生间| 亚洲最大成人手机在线| 欧美亚洲 丝袜 人妻 在线| 国产爽快片一区二区三区| 国产精品人妻久久久影院| 国产精品不卡视频一区二区| 亚洲欧美日韩卡通动漫| 欧美xxⅹ黑人| 在线免费观看不下载黄p国产| 精品人妻视频免费看| videos熟女内射| 亚洲精品国产色婷婷电影| 白带黄色成豆腐渣| 中文乱码字字幕精品一区二区三区| 欧美日韩在线观看h| 老女人水多毛片| 国产高清国产精品国产三级 | 国产成人精品久久久久久| 久久99热6这里只有精品| 少妇人妻久久综合中文| 国产探花在线观看一区二区| 国产综合精华液| 肉色欧美久久久久久久蜜桃 | 深夜a级毛片| 国产色爽女视频免费观看| 中国国产av一级| 欧美最新免费一区二区三区| 乱系列少妇在线播放| 亚洲成人中文字幕在线播放|