龐謙,李凌,胡廣,譚秀成,馬騰,趙東方,蘆飛凡,陳虹宇,熊鷹
1.西南石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,成都 610500 2.中石油碳酸鹽巖儲(chǔ)層重點(diǎn)實(shí)驗(yàn)室沉積與成藏分室 西南石油大學(xué),成都 610500
川北地區(qū)下寒武統(tǒng)筇竹寺組鈣質(zhì)結(jié)核特征及成因機(jī)制
龐謙1,2,李凌1,2,胡廣1,2,譚秀成1,2,馬騰1,2,趙東方1,2,蘆飛凡1,2,陳虹宇1,2,熊鷹1,2
1.西南石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,成都 610500 2.中石油碳酸鹽巖儲(chǔ)層重點(diǎn)實(shí)驗(yàn)室沉積與成藏分室 西南石油大學(xué),成都 610500
不同成因的鈣質(zhì)結(jié)核在研究沉積水體、早期成巖環(huán)境及泥頁(yè)巖的壓實(shí)程度方面具有重要意義。通過(guò)對(duì)川北地區(qū)旺蒼縣下寒武統(tǒng)筇竹寺組鈣質(zhì)結(jié)核拋光,發(fā)現(xiàn)結(jié)核內(nèi)部具有層理、暗色圈層和張裂縫構(gòu)造。結(jié)核和圍巖的層理關(guān)系和具有漂浮狀的微觀結(jié)構(gòu)特征表明,該地區(qū)結(jié)核是形成于壓實(shí)作用之前的成巖早期結(jié)核。對(duì)結(jié)核中Al、Ti、Ca、K、Na元素分析表明,結(jié)核的元素分布受到結(jié)核內(nèi)部裂縫的影響。結(jié)核內(nèi)部富含生物碎屑和其形成深度為數(shù)十米的特征,推測(cè)結(jié)核主要是在硫酸鹽還原帶生長(zhǎng)。結(jié)核具有暗色圈層之間層理不彎曲和元素移動(dòng)的特征,揭示了結(jié)核為透入性生長(zhǎng),在整個(gè)結(jié)核生長(zhǎng)階段就開(kāi)始大量同時(shí)結(jié)晶。Mg/Ca和Sr/Ca的比值說(shuō)明,結(jié)核內(nèi)部鈣質(zhì)成分為富鎂方解石—生物成因方解石。結(jié)核中富含鈣質(zhì)成分的原因可能是圍巖中的生物成因方解石大量向結(jié)核運(yùn)移所致。裂縫的形態(tài)特征表明,裂縫為張裂縫。對(duì)結(jié)核上部地層的沉積特征研究表明,張裂縫的成因很可能與筇竹寺頂部的濁積巖和滄浪鋪組底部的似瘤狀灰?guī)r快速搬運(yùn)沉積有關(guān)。
鈣質(zhì)結(jié)核;裂縫;筇竹寺組;成因機(jī)制;川北地區(qū)
結(jié)核是沉積巖中常見(jiàn)而又復(fù)雜的一類沉積構(gòu)造。根據(jù)結(jié)核的形成階段不同,可劃分為同生(如鮞粒)、成巖(例如鈣質(zhì)結(jié)核)和后生結(jié)核(主要為菱鐵礦結(jié)核)三個(gè)不同形成時(shí)期[1]。其中尤以處于成巖期鈣質(zhì)結(jié)核的研究最為廣泛[2],該類結(jié)核在揭示古生態(tài)學(xué)和古環(huán)境重建[3-4]、古生物地球化學(xué)演化過(guò)程[5]、記錄地震發(fā)生[6]、反映上覆地層快速沉積[7]以及成巖帶的識(shí)別[8-9]等方面極具重要的意義。
鈣質(zhì)結(jié)核形態(tài)多樣,具有橢圓狀、長(zhǎng)柱狀、透鏡狀、面包狀和盤狀等形狀[6,10-11],部分結(jié)核內(nèi)部產(chǎn)生龜裂狀裂紋或裂縫[7,12]。結(jié)核受到有機(jī)質(zhì)沉積速率和氧化速率的影響,孔隙流體成分發(fā)生改變,使得鈣質(zhì)發(fā)生膠結(jié),形成于沉積界面以下幾米至幾百米[13-16]。它們廣泛的分布于沖積體系[17]、湖泊環(huán)境[18]和海相環(huán)境[19-21]中。
關(guān)于早期成巖鈣質(zhì)結(jié)核的形成機(jī)理,一般有以下幾種:1)硫酸鹽還原細(xì)菌在富含有機(jī)質(zhì)的沉積物中消耗硫酸根而生成碳酸氫根導(dǎo)致鈣質(zhì)結(jié)核形成[9,22];2)甲烷滲漏作用也被認(rèn)為是鈣質(zhì)結(jié)核產(chǎn)生的誘因[11,19];3)干旱—半干旱環(huán)境下的蒸發(fā)作用[17];4)海水較深的外陸棚至盆地環(huán)境下的底流和洋流作用促使沉積中斷,沉積物早期膠結(jié)形成結(jié)核[23]。總體上結(jié)核生長(zhǎng)模式通常有同心圈層狀[24-25]和透入性[16,26-27]兩種。
結(jié)核中存在的裂縫,其成因長(zhǎng)期解釋為富水凝膠脫水干縮[24,28],形成的網(wǎng)狀裂縫稱為龜背石構(gòu)造,但對(duì)本區(qū)結(jié)核中存在的裂縫的形態(tài)特征分析,結(jié)核中的裂縫有其他成因。對(duì)鈣質(zhì)結(jié)核中是否存在透入性生長(zhǎng)的生長(zhǎng)模式,一直是討論的焦點(diǎn)[2,27]。雖然Fisheretal.[26]和Feistner[29]對(duì)菱鐵礦結(jié)核和硅質(zhì)結(jié)核中膠結(jié)物進(jìn)行了分析,認(rèn)為透入性生長(zhǎng)模式的存在,但未有證據(jù)表明該類生長(zhǎng)模式在鈣質(zhì)結(jié)核中存在[16,27]。另外,Goldbergetal.[30]和張先進(jìn)等[31]分別對(duì)貴州地區(qū)、峽東地區(qū)的下寒武統(tǒng)結(jié)核進(jìn)行了討論。其中,貴州地區(qū)結(jié)核形成于黑色頁(yè)巖之中,結(jié)核成分為重晶石—黃鐵礦結(jié)核,與本區(qū)結(jié)核成分差異大。張先進(jìn)等[31]對(duì)峽東地區(qū)結(jié)核的形成環(huán)境和成因機(jī)制進(jìn)行了探討,但未對(duì)結(jié)核的具體成因和生長(zhǎng)模式進(jìn)行分析。綜上認(rèn)為,本文有必要對(duì)川北地區(qū)下寒武統(tǒng)筇竹寺組結(jié)核的成因、生長(zhǎng)模式和裂縫成因做進(jìn)一步的分析和討論。
本研究首先對(duì)川北地區(qū)旺蒼縣唐家河剖面下寒武統(tǒng)筇竹寺組中結(jié)核進(jìn)行詳實(shí)地野外觀察后,選擇該地區(qū)兩類典型結(jié)構(gòu)的結(jié)核,通過(guò)結(jié)核光面、普通薄片分析了結(jié)核的結(jié)構(gòu)和構(gòu)造,并在此基礎(chǔ)上進(jìn)行主微量元素分析,旨在解開(kāi)旺蒼地區(qū)下寒武統(tǒng)筇竹寺組鈣質(zhì)結(jié)核的形成機(jī)制和裂縫的成因。
旺蒼縣位于上揚(yáng)子地臺(tái)北緣(圖1),晚震旦世開(kāi)始,該區(qū)處于被動(dòng)大陸邊緣,地殼升降運(yùn)動(dòng)頻繁,但沉積環(huán)境總體較為穩(wěn)定,震旦系與寒武系之間為平行不整合接觸[32]。早寒武世,整個(gè)揚(yáng)子臺(tái)地受揚(yáng)子海侵,沉積一套黑色頁(yè)巖和泥巖,廣泛超覆于震旦系之上[33-34]。下寒武統(tǒng)筇竹寺組是一套淺海相炭質(zhì)頁(yè)巖、鈣質(zhì)粉砂巖和粉砂質(zhì)灰?guī)r沉積物[35]。上覆地層為下寒武統(tǒng)滄浪鋪組,在其底部沉積臺(tái)緣斜坡相的似瘤狀灰?guī)r[36]。下伏地層為下寒武統(tǒng)寬川鋪組,其巖性為微晶白云巖,與上覆筇竹寺組為平行不整合接觸。
筇竹寺組在該區(qū)厚約100 m(圖2),巖性從下到上依次可分為下中上三段[35,37]。下段為滯留淺海相的黑色的炭質(zhì)頁(yè)巖、砂質(zhì)泥巖和泥質(zhì)砂巖;中段為正常淺海相頁(yè)巖、粉砂巖和粉砂質(zhì)灰?guī)r,偶夾灰?guī)r透鏡體;上部為正常淺?!毕碌湍軒П訝钅嗟[巖與黃灰色鈣質(zhì)粉砂巖互層。
唐家河剖面位于旺蒼縣鼓城鄉(xiāng)米倉(cāng)山風(fēng)景區(qū)內(nèi),該剖面震旦系和寒武系地層出露良好,巖性變化大,相變迅速,出露埃迪卡拉系燈影組和寒武系的寬川鋪組、筇竹寺組及滄浪鋪組。筇竹寺組與滄浪鋪組界限清晰,巖性從泥頁(yè)巖突變?yōu)榛規(guī)r。筇竹寺組在該剖面中出露(圖2e),下部為極薄層泥巖與鈣質(zhì)粉砂巖互層,向上漸變?yōu)闃O薄層的鈣質(zhì)粉砂巖夾少量泥質(zhì)粉砂巖。在筇竹寺組頂部發(fā)育鮑馬序列C段沉積(圖2a)。
本文所研究的結(jié)核產(chǎn)自于該剖面筇竹寺組極薄層泥質(zhì)粉砂巖地層中,結(jié)核呈平臥的長(zhǎng)柱狀和橢球狀,均呈順層分布。賦存結(jié)核的巖層,發(fā)育丘狀交錯(cuò)層理和水平層理(圖2c,d、圖3)。結(jié)核繼承發(fā)育圍巖中的水平層理(圖2d)和丘狀交錯(cuò)層理(圖2c、圖3),且結(jié)核內(nèi)部的層理無(wú)明顯變形特征。結(jié)核CT2A內(nèi)部清晰可見(jiàn)丘狀交錯(cuò)層理,丘徑約20 cm,丘高15 cm,發(fā)育十幾個(gè)極細(xì)紋層,上部?jī)A斜層系組與下部層系組相切割,且下部層系具有向上微凸的特征,其內(nèi)部具有兩個(gè)深灰色的暗色圈層(圖3)。兩塊結(jié)核內(nèi)部均具有裂縫(寬約0.5 cm),呈鋸齒狀,充填方解石,切割結(jié)核中的暗色圈層。裂縫寬度從中心至邊緣逐漸變窄,但未穿過(guò)結(jié)核。結(jié)核與圍巖的邊界清晰,位于結(jié)核中部處的圍巖層理被結(jié)核截?cái)?,向上圍巖層理彎曲且層厚逐漸變薄,上部圍巖層理向上微凸,下部圍巖層理具有向下凹的特征(圖2c,d,e)。
圖1 四川盆地北部地區(qū)地質(zhì)背景(據(jù)沈騁等[36])Fig.1 Geologic setting of the northern area in Sichuan basin (after Shen et al.[36])
圖2 結(jié)核賦存層位圖a.鮑馬序列c段,濁積巖;b.似瘤狀灰?guī)r,L`似瘤狀礫屑灰?guī)r,R為異地碳酸鹽巖巖塊;c.結(jié)核CT2A;d.結(jié)核CT3A;e.結(jié)核宏觀賦存層位狀態(tài)Fig.1 Stratigraphical setting of the conservation of concretions
圖3 結(jié)核CT2A光面及內(nèi)部結(jié)構(gòu)演化圖P1表示結(jié)核形成之前的丘狀交錯(cuò)層理;P2代表在原始沉積的基礎(chǔ)上結(jié)核形成的暗色圈層結(jié)構(gòu);P3表示結(jié)核形成之后產(chǎn)生的裂縫。Fig.3 Cross section of concretion CT2A and evolution of internal structure
對(duì)結(jié)核和圍巖分別磨制普通薄片,具有以下特征:結(jié)核中膠結(jié)物為方解石,含量近60%,由晶形較好的亮晶方解石和泥晶方解石組成;碎屑成分為次棱角—棱角狀石英、黏土礦物和以黏土礦物構(gòu)成的次圓狀砂屑,石英和砂屑均呈漂浮狀分布(圖4b,e);其次,含有球形藻和暗色有機(jī)質(zhì)團(tuán)塊(圖4a,e,f)。圍巖中主要含棱角狀—次棱角狀石英和黏土礦物,方解石膠結(jié)物含量少,約5%(圖4c,d)。圍巖富石英和黏土礦物而貧方解石膠結(jié)物,巖性為粉砂質(zhì)泥巖和粉砂巖,結(jié)核富含方解石膠結(jié)物,含較少的石英和黏土礦物。
為獲得鈣結(jié)核的成因,對(duì)圍巖和結(jié)核等間距地進(jìn)行微鉆取樣(圖5),共獲得10件粉末樣。采用電感耦合等離子體發(fā)射光譜儀(ICP-OES)和電感偶合等離子體質(zhì)譜儀(ICP-MS)對(duì)結(jié)核主微量元素進(jìn)行分析,結(jié)果見(jiàn)表1。
結(jié)核CT2A中Al2O3含量在35 812.20~42 268.80 μg/g之間。其中,CaO含量最為豐富,介于316 433.00~345 117.00 μg/g之間,K2O和Na2O含量分別在5 811.54~6 943.75 μg/g和11 381.50~13 101.60 μg/g之間;微量元素Ti含量介于1 297.80~1 549.80 μg/g之間;Sr/Ca質(zhì)量比分布在0.001 5~0.003 2之間,Mg/Ca質(zhì)量比介于0.021 3~0.022 8之間。CaO含量從結(jié)核的中心至邊緣逐漸減少,在圍巖處減少到36 529.50 μg/g,K2O和Na2O的百分含量變化具有從結(jié)核中心至邊緣逐漸增加的規(guī)律,Al2O3含量從結(jié)核的中心到邊緣逐漸增高,在結(jié)核的圍巖處達(dá)到最高。結(jié)核中的高CaO含量,與其富含亮晶鈣質(zhì)膠結(jié)具有明顯的對(duì)應(yīng)關(guān)系(圖5)。
結(jié)核CT3A的Al2O3含量在45 759.60~63 363.60 μg/g之間;CaO含量最高,介于283 395.00~311 640.00 μg/g之間;K2O和Na2O的含量分別在8 359.05~12 978.00 μg/g和12 881.00~16 445.00 μg/g之間。微量元素Ti含量介于1 768.80~2 719.20 μg/g之間。Sr/Ca比和Mg/Ca比分別在0.001 8~0.002 9和0.028 5~0.040 9之間。與結(jié)核CT2A相比,結(jié)核CT3A從中心至邊緣,CaO、Al2O3、K2O、Na2O和Ti含量在裂縫處呈“V”字形特征(圖5)。
5.1 結(jié)核形成的相對(duì)時(shí)間
識(shí)別結(jié)核形成的相對(duì)時(shí)間,不僅對(duì)直觀認(rèn)識(shí)泥頁(yè)巖的壓實(shí)程度具有重要意義[38],而且對(duì)結(jié)核的成因機(jī)制認(rèn)識(shí)具有重要作用[39]。成巖早期形成的結(jié)核能夠保存很多原始沉積時(shí)的微觀特征,這些特征能夠間接說(shuō)明結(jié)核的形成相對(duì)時(shí)間[40-42]。并且,結(jié)核和圍巖中層理間的關(guān)系也能表明結(jié)核形成的相對(duì)時(shí)間,Sellés-Martínez[39]對(duì)結(jié)核與圍巖中均存在層理的情況,總結(jié)出以下三種關(guān)系:結(jié)核內(nèi)部層理和圍巖層理均發(fā)生彎曲(圖6a),這表明在結(jié)核外部邊緣,圍巖的壓實(shí)作用與結(jié)核生長(zhǎng)同時(shí)發(fā)生;結(jié)核內(nèi)部層理平直不彎曲,圍巖層理彎曲且層厚發(fā)生改變(圖6b),說(shuō)明結(jié)核生長(zhǎng)時(shí)間早,形成于圍巖壓實(shí)作用之前;結(jié)核中的層理與圍巖中的層理均不彎曲(圖6c),反映結(jié)核形成于圍巖完全壓實(shí)之后。
圖4 結(jié)核和圍巖的顯微鏡下特征a,b.結(jié)核CT2A和CT3A內(nèi)部的普通顯微鏡下照片(單偏光);c,d.分別為結(jié)核CT3A和CT2A的圍巖顯微鏡下照片(單偏光);e,f.分別為結(jié)核內(nèi)部微觀結(jié)構(gòu)圖(結(jié)核CT2A);spr.亮晶方解石膠結(jié)物,org.有機(jī)質(zhì),st.砂屑,qz.石英碎屑,mspr.微亮晶方解石膠結(jié)物,sa.球形藻。Fig.4 Microscopic characteristics of the concretions and the surrounding rock
圖5 兩塊結(jié)核的常微量元素從中心至邊緣變化特征Fig.5 The variation of two concretions of major and trace element from center to edge
表1 結(jié)核和圍巖的元素含量(μg/g)及比值(wt.%)
在該區(qū),結(jié)核中清晰可見(jiàn)未發(fā)生明顯變形和位移的水平層理和丘狀交錯(cuò)層理,但圍巖上下的層理均發(fā)生彎曲變形(圖2c,d),這與圖6b的模式相一致。同時(shí),在顯微鏡下可見(jiàn)漂浮狀的粉泥屑、石英碎屑和生物碎片(圖4a,b),而在圍巖中未見(jiàn)這些結(jié)構(gòu)特征。另外,結(jié)核中的Al/Ca比值在0.09~0.1之間,圍巖中的Al/Ca比值在2.5~3.4之間。其中Al元素主要賦存于黏土礦物中,Ca元素主要存在于碳酸鹽巖之中,這兩種元素含量的比值進(jìn)一步表明,結(jié)核與圍巖的物質(zhì)成分差異大,這種差異是由于結(jié)核中鈣質(zhì)膠結(jié)物含量多,結(jié)核未經(jīng)歷壓實(shí)作用而導(dǎo)致的。綜上,低Al/Ca比值、保存完好的微細(xì)結(jié)構(gòu)和結(jié)核層理平直而圍巖彎曲的特點(diǎn)均表明結(jié)核形成于成巖早期。
圖6 結(jié)核形成的相對(duì)時(shí)間與層理之間的關(guān)系(據(jù)Sellés-Martínez[39]修改)a.結(jié)核形成與壓實(shí)作用同時(shí)發(fā)生;b.結(jié)核形成于壓實(shí)作用之前;c.結(jié)核形成于圍巖完全壓實(shí)之后Fig.6 The relationship of the concretions of forming relative time and bedding(from Sellés-Martínez[39])
由于不同的成巖階段具有與之大致對(duì)應(yīng)的埋藏深度,例如早成巖期的埋藏深度一般較淺[15],因此結(jié)核的形成深度同樣可以定性闡明結(jié)核的形成相對(duì)時(shí)間。關(guān)于結(jié)核的形成深度,前人也做了大量的研究,Baldwinetal.[43]建立起孔隙度與頁(yè)巖的壓實(shí)模型:D(km)=6.02(1-φ)6.35;其中D是結(jié)核形成的深度,φ是地層的孔隙度。一般在結(jié)核形成深度實(shí)際估算時(shí),可用結(jié)核中的膠結(jié)物含量來(lái)代替孔隙度值[13,38]。從鏡下觀察,發(fā)現(xiàn)該區(qū)結(jié)核中鈣質(zhì)膠結(jié)物的含量約為55%,代入上述公式,可知推斷該區(qū)結(jié)核其形成深度約為38 m。
5.2 結(jié)核的成因
對(duì)結(jié)核成因分析,有助于認(rèn)識(shí)泥頁(yè)巖的成巖環(huán)境[15]??傮w而言,早期成巖結(jié)核的成因包括硫酸鹽還原細(xì)菌降解有機(jī)質(zhì)成因、甲烷泄露成因、蒸發(fā)作用和海洋底流作用。其不同成因的結(jié)核,在形態(tài)、結(jié)構(gòu)構(gòu)造和地球化學(xué)特征上具有明顯的差異。
成巖早期結(jié)核通常形成于沉積界面以下幾米—幾百米內(nèi)[15,47]。對(duì)現(xiàn)代沉積物研究表明[48-49],在沉積物內(nèi)存在以下幾個(gè)成巖帶:有氧帶、Fe、Mn和硝酸鹽還原帶、硫酸鹽細(xì)菌還原帶和甲烷氣生成帶(圖7)。其中,硫酸鹽還原帶和甲烷氣生成帶均具有還原有機(jī)質(zhì)生成碳酸氫根的能力,硫酸鹽還原帶被認(rèn)為是結(jié)核的主要生成區(qū)帶[16]。川北地區(qū)筇竹寺組廣泛發(fā)育水平層理,位于浪基面之下,該環(huán)境下有利于有機(jī)質(zhì)的產(chǎn)生和保存,并且前人對(duì)該區(qū)開(kāi)展烴源巖評(píng)價(jià)研究[37,50],有機(jī)碳含量在0.21%~4.78%之間,這些都說(shuō)明沉積物中有充足的有機(jī)質(zhì),具有硫酸鹽細(xì)菌還原有機(jī)質(zhì)的物質(zhì)基礎(chǔ)。另外,在結(jié)核中可見(jiàn)保存較好的硅質(zhì)生物碎屑(圖4f),埋藏于此的生物具有提供豐富的有機(jī)質(zhì)的優(yōu)勢(shì),從而促使硫酸鹽還原階段降解更多的有機(jī)質(zhì)而產(chǎn)生碳酸氫根,這也很有可能是結(jié)核能夠形成和隨機(jī)分布的主要控制因素。
通過(guò)薄片觀察和主量元素分析,結(jié)核內(nèi)部具有比圍巖高很多的鈣質(zhì)含量,認(rèn)識(shí)和區(qū)分結(jié)核和圍巖中的鈣質(zhì)來(lái)源有利于認(rèn)識(shí)結(jié)核的成因。Sr/Ca和Mg/Ca質(zhì)量比能夠用來(lái)區(qū)分自生文石、高鎂方解石、生物成因方解石和陸源成分[4,51]。Mg/Ca和Sr/Ca比表明,結(jié)核中鈣質(zhì)成分為高鎂質(zhì)和生物成因方解石,而圍巖是陸源碎屑和高鎂方解石的混合(圖8)。結(jié)核和圍巖在成分上的差異可能是圍巖中生物成因的碳酸鹽巖組分差異性溶解和運(yùn)移所致。硫酸鹽還原細(xì)菌氧化沉積物中的有機(jī)質(zhì)和還原硫酸根離子,并且導(dǎo)致堿性環(huán)境和碳酸氫根的產(chǎn)生[16],這可能是生物成因方解石在結(jié)核中沉淀的原因。同時(shí),在圍巖中未發(fā)現(xiàn)任何生物碎屑(圖4c,d),這可能也從側(cè)面說(shuō)明結(jié)核中的生物成因方解石來(lái)源于圍巖中鈣質(zhì)生屑的溶解。
圖7 開(kāi)闊海富有機(jī)質(zhì)沉積物理想演化剖面(據(jù)Mozley等[15],Claypool[48];Roberts等[49];修改)Fig.7 Ideal evolution profiles of organic-rich open sea(modified from Mozley et al.[15];Claypool[48];Roberts et al.[49])
圖8 兩塊結(jié)核及其圍巖的Mg/Ca和Sr/Ca比關(guān)系圖(據(jù)Bayon等[51];修改)Fig.8 cross-pot of Mg/Ca and Sr/Ca of two concretions and the surrounding rocks(modified from Bayon et al.[51])
5.3 結(jié)核生長(zhǎng)模式
成巖結(jié)核的生長(zhǎng)模式總結(jié)起來(lái)具有兩種,即同心圈層生長(zhǎng)和透入性生長(zhǎng)[27]。結(jié)核內(nèi)部常具有同心圈層結(jié)構(gòu)和因壓實(shí)作用從中心至邊緣Ca2+逐漸減少、Al2O3逐漸增加的趨勢(shì),這些特征通常用同心圈層生長(zhǎng)模式解釋[13,24]。但Mozley[2]認(rèn)為,這些特征也可以用更加復(fù)雜的生長(zhǎng)模式來(lái)解釋。菱鐵礦結(jié)核和硅質(zhì)結(jié)核中的膠結(jié)物有規(guī)律的變化特征能夠直接證明結(jié)核以透入性生長(zhǎng)模式生長(zhǎng)[26,29]。但在方解石結(jié)核中沒(méi)有證據(jù)反應(yīng)該類模式[27]。
從結(jié)核CT2A中的元素分布規(guī)律和具有暗色圈層狀結(jié)構(gòu)來(lái)看,似乎符合同心圈層狀生長(zhǎng)模式,但結(jié)核中裂縫的存在,使得結(jié)核中的元素分布規(guī)律變得復(fù)雜。該區(qū)結(jié)核中裂縫與暗色圈層之間的切割關(guān)系表明,裂縫形成于暗色圈層之后,即在結(jié)核的形態(tài)形成之后(圖3)。裂縫被方解石充填和未穿出結(jié)核的特征,說(shuō)明裂縫中膠結(jié)物成分的來(lái)源只可能來(lái)自結(jié)核內(nèi)部。結(jié)核CT2A中的裂縫位于結(jié)核中部,其元素變化特征可能是由逐步壓實(shí)作用而導(dǎo)致,但從結(jié)核CT3A裂縫兩邊的Al、Ti、Na、K、Ca元素含量分布呈“V字形”特點(diǎn)可以看出,裂縫的存在對(duì)結(jié)核內(nèi)部的元素分布存在影響,這說(shuō)明結(jié)核CT2A從中心至邊緣漸變的分布規(guī)律很有可能不是受地層逐漸壓實(shí)而產(chǎn)生的,而是在裂縫形成之后,結(jié)核內(nèi)形成低壓區(qū)域,使得結(jié)核內(nèi)部的元素發(fā)生運(yùn)移分配。同時(shí),對(duì)結(jié)核CT3A中的裂縫兩側(cè)Al2O3和CaO含量分析發(fā)現(xiàn)(圖5),靠近結(jié)核中心兩個(gè)采樣點(diǎn)的Al2O3含量明顯比邊緣高,而CaO則相反,這同樣說(shuō)明兩塊結(jié)核內(nèi)的元素從中心至邊緣沒(méi)有明顯的分布規(guī)律。另外,宏觀上原始沉積的紋層,在結(jié)核中的暗色圈層與暗色圈層之間的層理沒(méi)有發(fā)生變形,這也能從側(cè)面說(shuō)明結(jié)核未經(jīng)歷逐漸壓實(shí)過(guò)程,間接地表明暗色圈層不是從內(nèi)到外逐步形成。因此,同心圈層生長(zhǎng)模式不成立,而是在結(jié)核內(nèi)大量鈣質(zhì)同時(shí)膠結(jié),并逐步充填孔隙的透入性生長(zhǎng)過(guò)程。
5.4 裂縫成因
結(jié)核內(nèi)部通常發(fā)育一期或多期的裂縫,形狀常為同心狀、放射狀、網(wǎng)狀、近垂直的透鏡狀[4,6,24,52-53],通常分布于結(jié)核中部,裂縫內(nèi)常充填方解石和重晶石。裂縫通常能反映地層的流體壓力[7],其膠結(jié)物用于分析成巖時(shí)的流體特征、溫度及上覆地層沉積速率[4]。
對(duì)于結(jié)核中出現(xiàn)裂縫,目前有以下四種解釋:結(jié)核內(nèi)部脫水產(chǎn)生裂縫[24];壓實(shí)作用和孔隙水的異常高壓產(chǎn)生構(gòu)造張裂縫[7];細(xì)菌降解有機(jī)物產(chǎn)生的氣體聚集導(dǎo)致[14];結(jié)核膠結(jié)過(guò)程同時(shí)期地震所致[6]。
一些非裂縫型結(jié)核(如峽東地區(qū)結(jié)核)和裂縫型結(jié)核具有相似的形態(tài)和地化特征,但不是所有的結(jié)核都具有裂縫,這說(shuō)明裂縫需要在特定的條件下才能形成。Astin[7]和Scotchman[54]認(rèn)為張裂縫形成于高上覆應(yīng)力而低水平方向應(yīng)力條件下,并且在快速埋藏階段易形成裂縫,所需要的沉積物埋深十米至幾百米不等。Houslow[53]進(jìn)一步研究認(rèn)為當(dāng)結(jié)核內(nèi)部的孔隙流壓大于圍巖時(shí)結(jié)核才能形成裂縫,同時(shí)認(rèn)為在小于10 m的埋深下就能形成裂縫。
該區(qū)裂縫呈單個(gè)近垂直透鏡狀(圖3),裂縫寬度從中心至邊緣逐漸變窄至結(jié)核外緣消失,這與超孔隙壓力梯度從中心至邊緣依次減弱相對(duì)應(yīng),并且呈現(xiàn)明顯的鋸齒狀,為典型的張裂縫特征。邊緣三個(gè)方向的主應(yīng)力值大小關(guān)系為σ1>σ2>σ3(圖9),使得結(jié)核呈橢球狀。該地區(qū)在早寒武世期間沒(méi)有發(fā)生構(gòu)造抬升運(yùn)動(dòng),說(shuō)明結(jié)核只可能受到來(lái)自上覆地層的持續(xù)壓力和孔隙流體壓力。
圖9 結(jié)核中裂縫在橫剖面和縱剖面中的特征及裂縫形成時(shí)的應(yīng)力特征Fig.9 The fracture and stress characteristics in cross-section and longitudinal section
在結(jié)核形成時(shí)期,結(jié)核中富含鈣質(zhì)膠結(jié)物,而圍巖中鈣質(zhì)含量少,導(dǎo)致圍巖滲透率高而結(jié)核滲透率小,結(jié)核在受到上覆快速埋藏沉積條件下,易在各向形成超壓。通過(guò)對(duì)結(jié)核上覆地層沉積特征分析,發(fā)現(xiàn)有兩次事件具有快速沉積的特點(diǎn),能使結(jié)核中孔隙流壓和結(jié)核上部壓力增加:一處是位于筇竹寺組頂部,快速沉積厚度達(dá)8 m的濁積巖;另一處是位于滄浪鋪組底部的似瘤狀灰?guī)r沉積,該處在沉積時(shí)位于臺(tái)地邊緣斜坡,沉積后的灰?guī)r受到重力驅(qū)動(dòng)產(chǎn)生大規(guī)模的搬運(yùn)和再沉積作用[36]。這兩次快速沉積使得該地層局部區(qū)域在垂向上形成超壓,從而形成近垂直的裂縫。
(1) 結(jié)合圍巖與結(jié)核的層理關(guān)系、微觀特征和Al/Ca比表明,川北地區(qū)筇竹寺組地層中的結(jié)核形成于壓實(shí)作用之前,為成巖早期結(jié)核。
(2) 通過(guò)對(duì)結(jié)核成因探討表明,結(jié)核的生長(zhǎng)過(guò)程最主要是在硫酸鹽細(xì)菌還原帶,即沉積物中的有機(jī)質(zhì)和硫酸根在硫酸鹽還原細(xì)菌的作用下,使得鈣質(zhì)大量沉淀,結(jié)核開(kāi)始生長(zhǎng)。同時(shí),結(jié)核中暗色圈層之間的層理沒(méi)有發(fā)生彎曲變形,結(jié)核形成之后內(nèi)部元素具有移動(dòng)的特點(diǎn),說(shuō)明該地區(qū)結(jié)核不是以同心圈層模式生長(zhǎng),而是以透入性的方式生長(zhǎng)。
(3) 對(duì)結(jié)核形態(tài)和力學(xué)特征認(rèn)識(shí),表明裂縫為張裂縫,其成因可能是受到上覆地兩期快速事件性沉積作用而導(dǎo)致的。
致謝 感謝審稿專家提出的寶貴意見(jiàn);感謝沈騁博士在野外工作中給予的指導(dǎo);感謝楊義豪、林園洪和趙旭在野外工作中的幫助。
References)
[1] Pantin H M. Rate of formation of a diagenetic calcareous concretion[J]. Journal of Sedimentary Research, 1958, 28(3): 366-371.
[2] Mozley P S. The internal structure of carbonate concretions in mudrocks: a critical evaluation of the conventional concentric model of concretion growth[J]. Sedimentary Geology, 1996, 103(1/2): 85-91.
[3] 梁斌,王全偉,闞澤忠. 四川盆地中侏羅統(tǒng)沙溪廟組鈣質(zhì)結(jié)核的碳、氧同位素特征[J]. 礦物巖石,2007,27(2):54-58. [Liang Bin, Wang Quanwei, Kan Zezhong. Carbon and oxygen isotopic compositions of carbonate nodule in the Shaximiao Formation of the Middle Jurassic, Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2007, 27(2): 54-58.]
[4] Alessandretti L, Warren L V, Machado R, et al. Septarian carbonate concretions in the Permian Rio do Rasto Formation: birth, growth and implications for the early diagenetic history of southwestern Gondwana succession[J]. Sedimentary Geology, 2015, 326: 1-15.
[5] Gaines R R, Vorhies J S. Growth mechanisms and geochemistry of carbonate concretions from the Cambrian Wheeler Formation (Utah, USA)[J]. Sedimentology, 2016, 63(3): 662-698.
[6] Pratt B R. Septarian concretions: internal cracking caused by synsedimentary earthquakes[J]. Sedimentology, 2001, 48(1): 189-213.
[7] Astin T R. Septarian crack formation in carbonate concretions from shales and mudstones[J]. Clay Minerals, 1986, 21(4): 617-631.
[8] Raiswell R. The microbiological formation of carbonate concretions in the Upper Lias of NE England[J]. Chemical Geology, 1976, 18(3): 227-244.
[9] Gautier D L, Claypool G E. Interpretation of methanic diagenesis in ancient sediments by analogy with processes in modern diagenetic environments: Part 1. Concepts and principles[M]//McDonald D A, Surdam R C. Clastic Diagenesis. Tulsa, Okla: AAPG, 1984, 37: 111-123.
[10] Seilacher A. Concretion morphologies reflecting diagenetic and epigenetic pathways[J]. Sedimentary Geology, 2001, 143(1/2): 41-57.
[11] Liang Huimin, Chen Xi, Wang Chengshan, et al. Methane-derived authigenic carbonates of mid-Cretaceous age in southern Tibet: types of carbonate concretions, carbon sources, and formation processes[J]. Journal of Asian Earth Sciences, 2016, 115: 153-169.
[12] De Craen M, Swennen R, Keppens E. Petrography and geochemistry of septarian carbonate concretions from the Boom Clay Formation (Oligocene, Belgium)[J]. Geologie en Mijnbouw, 1998, 77(1): 63-76.
[13] Curtis C D, Coleman M L, Love L G. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions[J]. Geochimica et Cosmochimica Acta, 1986, 50(10): 2321-2334.
[14] Irwin H, Curtis C, Coleman M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments[J]. Nature, 1977, 269(5625): 209-213.
[15] Mozley P S, Burns S J. Oxygen and carbon isotopic composition of marine carbonate concretions: an overview[J]. Journal of Sedimentary Research, 1993, 63(1): 73-83.
[16] Dong Jin, Zhang Shihong, Jiang Ganqing, et al. Early diagenetic growth of carbonate concretions in the upper Doushantuo Formation in South China and their significance for the assessment of hydrocarbon source rock[J]. Science in China Series D: Earth Sciences, 2008, 51(9): 1330-1339.
[17] 樓章華,趙霞飛. 倉(cāng)房溝群沖積體系中鈣質(zhì)結(jié)核的成因[J]. 石油實(shí)驗(yàn)地質(zhì),1993,15(1):81-85.[Lou Zhanghua, Zhao Xiafei. The origin of calcareous cores in the alluvial system of the Cangfanggou Group[J]. Experimental Petroleum Geology, 1993, 15(1): 81-85.]
[18] 劉萬(wàn)洙,王璞珺. 松遼盆地嫩江組白云巖結(jié)核的成因及其環(huán)境意義[J]. 巖相古地理,1997,17(1):22-26. [Liu Wanzhu, Wang Pujun. Genesis and environmental significance of the dolomite concretions from the Nenjiang Formation in the Songliao Basin, northeastern China[J]. Sedimentary Facies and Palaeogeography, 1997, 17(1): 22-26.]
[19] 歐莉華,伊海生,夏國(guó)清,等. 內(nèi)蒙古東北部林西組碳酸鹽巖結(jié)核的成因及油氣地質(zhì)意義[J]. 成都理工大學(xué)學(xué)報(bào):自然科學(xué)版,2013,40(4):438-444. [Ou Lihua, Yi Haisheng, Xia Guoqing, et al. Origin and petroleum geological significance of carbonate rock concretes in Linxi Formation, northeast of Inner Mongolia, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2013, 40(4): 438-444.]
[20] 孫慶峰. 新疆柯坪中奧陶統(tǒng)結(jié)核狀灰?guī)r的沉積環(huán)境及成因[J]. 巖石礦物學(xué)雜志,2006,25(2):137-147.[Sun Qingfeng. The sedimentary environment and genesis of Middle Ordovician nodular limestones in Keping, Xinjiang[J]. Acta Petrologica et Mineralogica, 2006, 25(2): 137-147.]
[21] Hendry J P, Pearson M J, Trewin N H, et al. Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis[J]. Sedimentology, 2006, 53(3): 537-565.
[22] Dong Jin, Zhang Shihong, Jiang Ganqing, et al. Greigite from carbonate concretions of the Ediacaran Doushantuo Formation in South China and its environmental implications[J]. Precambrian Research, 2013, 225: 77-85.
[23] 金若谷. 一種深水沉積標(biāo)志—“瘤狀結(jié)核”及其成因[J]. 沉積學(xué)報(bào),1989,7(2):51-61. [Jin Ruogu. A deep water sedimentary criteria—“Knotty Nodule” and origin[J]. Acta Sedimentologica Sinica, 1989, 7(2): 51-61.]
[24] Raiswell R. The growth of Cambrian and Liassic concretions[J]. Sedimentology, 1971, 17(3/4): 147-171.
[25] Savrda C E, Bottjer D J. Limestone concretion growth documented by trace-fossil relations[J]. Geology, 1988, 16(10): 908-911.
[26] Fisher Q J, Raiswell R, Marshall J D. Siderite concretions from nonmarine shales (Westphalian A) of the Pennines, England; controls on their growth and composition[J]. Journal of Sedimentary Research, 1998, 68(5): 1034-1045.
[27] Raiswell R, Fisher Q J. Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition[J]. Journal of the Geological Society, 2000, 157(1): 239-251.
[28] 朱筱敏. 沉積巖石學(xué)[M]. 北京:石油工業(yè)出版社,2008:97-98. [Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 97-98.]
[29] Feistner K W A. Petrographic examination and re-interpretation of concretionary carbonate horizons from the Kimmeridge Clay, Dorset[J]. Journal of the Geological Society, 1989, 146(2): 345-350.
[30] Goldberg T, Mazumdar A, Strauss H, et al. Insights from stable S and O isotopes into biogeochemical processes and genesis of Lower Cambrian barite-pyrite concretions of South China[J]. Organic Geochemistry, 2006, 37(10): 1278-1288.
[31] 張先進(jìn),彭松柏,李華亮,等. 峽東地區(qū)的“三峽奇石”——沉積結(jié)核[J]. 地質(zhì)論評(píng),2013,59(4):627-636. [Zhang Xianjin, Peng Songbai, Li Hualiang, et al. “Three Gorges Landscape Stone”: the sedimentary concretion in eastern Three Gorges area[J]. Geological Review, 2013, 59(4): 627-636.]
[32] 魏顯貴,杜思清,何政偉,等. 米倉(cāng)山地區(qū)構(gòu)造演化[J]. 礦物巖石,1997,17(S):107-113. [Wei Xiangui, Du Siqing, He Zhengwei, et al. The tectonic evolution of Micangshan area[J]. Journal of Mineralogy and Petrology, 1997, 17(S): 107-113.]
[33] Steiner M. The facies development and fossil distribution of the Yangtze Platform (South China) in the Neoproterozoic/earliest Cambrian[J]. Freiberger Forschungshefte C, 2001, 492: 1-26.
[34] 袁慶東,李本亮,劉海濤,等. 川西北地區(qū)構(gòu)造演化階段及巖相古地理[J]. 大慶石油學(xué)院學(xué)報(bào),2010,34(6):42-52. [Yuan Qingdong, Li Benliang, Liu Haitao, et al. The tectonics evolution and lithofacies palaeogeography in the northwest of the Sichuan Basin[J]. Journal of Daqing Petroleum Institute, 2010, 34(6): 42-52.]
[35] 劉仿韓,蘇春乾,楊友運(yùn),等. 米倉(cāng)山南坡寒武系沉積相分析[J]. 長(zhǎng)安大學(xué)學(xué)報(bào):地球科學(xué)版,1987,9(4):1-12. [Liu Fanghan, Su Chunqian, Yang Youyun, et al. Sedimentary facies analysis of Cambrian in the south of Micang Mountain[J]. Journal of Chang'an University: Earth Science Edition, 1987, 9(4): 1-12.]
[36] 沈騁,譚秀成,李凌,等. 川北早寒武世碳酸鹽巖臺(tái)緣斜坡沉積特征及變形構(gòu)造形成機(jī)制探討[J]. 古地理學(xué)報(bào),2015,17(3):321-334. [Shen Cheng, Tan Xiucheng, Li Ling, et al. Sedimentary characters of carbonate platform marginal slope of the Early Cambrian in northern Sichuan Basin and perspective of deformation structures[J]. Journal of Palaeogeography, 215, 17(3): 321-334.]
[37] 黃耀綜. 米倉(cāng)山隆起下古生界烴源巖特征[D]. 成都:成都理工大學(xué),2010. [Huang Yaozong. Characteristics of Lower Paleozoic source rocks in Micangshan uplift area, Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2010.]
[38] Oertel G, D CURTIS C. Clay-ironstone concretion preserving fabrics due to progressive compaction[J]. Geological Society of America Bulletin, 1972, 83(9): 2597-2606.
[39] Sellés-Martínez J. Concretion morphology, classification and genesis[J]. Earth-Science Reviews, 1996, 41(3/4): 177-210.
[40] Duck R W. S.E.M. Study of clastic fabrics preserved in calcareous concretions from the late-Devensian Errol Beds, Tayside[J]. Scottish Journal of Geology, 1990, 26(1): 33-39.
[41] Maples C G. Enhanced paleoecological and paleoenvironmental interpretations result from analysis of early diagenetic concretions in Pennsylvanian shales[J]. Palaios, 1986, 1(5): 512-516.
[42] Orr P J, Briggs D E G, Siveter D J, et al. Three-dimensional preservation of a non-biomineralized arthropod in concretions in Silurian volcaniclastic rocks from Herefordshire, England[J]. Journal of the Geological Society, 2000, 157(1): 173-186.
[43] Baldwin B, Butler C O. Compaction curves[J]. AAPG Bulletin, 1985, 69(4): 622-626.
[44] 陳忠,顏文,陳木宏,等. 南海北部大陸坡冷泉碳酸鹽結(jié)核的發(fā)現(xiàn):海底天然氣滲漏活動(dòng)的新證據(jù)[J]. 科學(xué)通報(bào),2006,51(9):1065-1072. [Chen Zhong, Yan Wen, Chen Muhong, et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea[J]. Chinese Science Bulletin, 2006, 51(9): 1065-1072.]
[45] Nyman S L, Nelson C S, Campbell K A. Miocene tubular concretions in East Coast Basin, New Zealand: analogue for the subsurface plumbing of cold seeps[J]. Marine Geology, 2010, 272(1/2/3/4): 319-336.
[46] Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177(1/2): 129-150.
[47] Bojanowski M J, Barczuk A, Wetzel A. Deep-burial alteration of early-diagenetic carbonate concretions formed in Palaeozoic deep-marine greywackes and mudstones (Bardo Unit, Sudetes Mountains, Poland)[J]. Sedimentology, 2014, 61(5): 1211-1239.
[48] Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments[C]//Kaplan I R. Natural Gases in Marine Sediments. New York: Plenum Press, 1974: 99-139.
[49] Roberts A P, Weaver R. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4)[J]. Earth and Planetary Science Letters, 2005, 231(3/4): 263-277.
[50] 王順玉,戴鴻鳴,王海清,等. 大巴山、米倉(cāng)山南緣烴源巖特征研究[J]. 天然氣地球科學(xué),2000,11(4/5):4-16. [Wang Shunyu, Dai Hongming, Wang Haiqing, et al. Source rock feature of the south of the Dabashan and Mi-cangshan[J]. Natural Gas Geoscience, 2000, 11(4/5): 4-16.]
[51] Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments[J]. Marine Geology, 2007, 241(1/2/3/4): 93-109.
[52] Duck R W. Subaqueous shrinkage cracks and early sediment fabrics preserved in Pleistocene calcareous concretions[J]. Journal of the Geological Society, 1995, 152(1): 151-156.
[53] Hounslow M W. Significance of localized pore pressures to the genesis of septarian concretions[J]. Sedimentology, 1997, 44(6): 1133-1147.
[54] Scotchman I C. The geochemistry of concretions from the Kimmeridge Clay Formation of southern and eastern England[J]. Sedimentology, 1991, 38(1): 79-106.
Characteristics and Genetic Mechanism of Calcareous Concretions in the Early Cambrian Qiongzhusi Formation of Northern Sichuan Basin
PANG Qian1,2, LI Ling1,2, HU Guang1,2, TAN XiuCheng1,2, MA Teng1,2, ZHAO DongFang1,2,LU FeiFan1,2, CHEN HongYu1,2, XIONG Ying1,2
1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China 2. The Sedimentary and Accumulation Department of Key Laboratory of Carbonate Reservoirs, PetroChina, Southwest Petroleum University, Chengdu 610500, China
Calcareous concretions of different genesis have a great significance in the study of early diagenetic environment, the sedimentary water body and shale of compacted degree. By polishing, the calcareous concretion shows the interior textures including bedding, dark circles structure and tension cracks during the lower Cambrian Qiongzhusi stage in Wangcang, north of Sichuan Basin. The relationship of concretions and surrounding rock of bedding and the preservation of sedimentological micro-features in the concretion matrix point to an early diagenetic concretions and forming before compaction. Not obvious systematic geochemical variations including Al, Ti, Ca, K, Na from concretion center to edge suggests that the element distribution of concretions are affected by cracks. The rich bioclastic and forming about tens meters under the sediment-water interface suggest the concretions may primarily grow during sulfate-reduction. The two characteristics which the beddings are not deformed among the concentric circles and the move of elements reveal that the concretions are pervasive growth which the calcium crystallites of the concretions nucleated at virtually the same time across the entire concretion. The ratios of Mg/Ca and Sr/Ca indicate that the internal calcium components of concretions is magnesium-rich calcite and biogenic calcite. The large migration of calcium in the biogenic calcite of the surrounding rock lead to the rich calcium component in the concretions. Fracture morphology shows the crack is tension cracks. The rapid transportation and deposition of turbidite at the top of Qiongzhusi Formation and analogous-nodular limestone at the bottom of Canglangpu Formation may be the cause of tension cracks.
calcareous concretions; crack; Qiongzhusi Formation; genetic mechanism; northern Sichuan Basin
1000-0550(2017)04-0681-10
10.14027/j.cnki.cjxb.2017.04.003
2016-07-11; 收修改稿日期: 2016-10-24
中國(guó)石油科技創(chuàng)新基金項(xiàng)目計(jì)劃(2016D-5007-0102);國(guó)家科技重大專項(xiàng)(2016ZX05004002-001)[Foundation: Science and Technology Innovation Foundation of CNPC, No.2016D-5007-0102; National Science and Technology Major Project of the Ministry of Science and Technology of China, No.2016ZX05004002-001]
龐謙,男,1993年出生,碩士研究生,儲(chǔ)層地質(zhì)學(xué),E-mail: 709964864@qq.com
李凌,女,副教授,E-mail: lilinglily73@163.com
P534.41
A