王 泳
(合肥師范學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,安徽 合肥 230061)
?
p-Kirchhoff系統(tǒng)周期解的存在性
王 泳
(合肥師范學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,安徽 合肥 230061)
使用變分法研究了p-Kirchhoff系統(tǒng)的周期邊值問(wèn)題.首先定義p-Kirchhoff系統(tǒng)的弱周期解;其次給出了一些引理;然后用變分法中的極小極大方法得到一個(gè)關(guān)于p-Kirchhoff系統(tǒng)弱周期解的存在性定理;最后討論了p-Kirchhoff系統(tǒng)的相關(guān)問(wèn)題.本文使用的主要方法是變分法中的環(huán)繞定理。
周期解;p-Kirchhoff系統(tǒng);臨界點(diǎn)理論;Sobolev不等式
在文獻(xiàn)[1-3]中,一些學(xué)者研究了p-Kirchhoff方程的Dirichlet問(wèn)題
解的存在性.p-Kirchhoff方程問(wèn)題來(lái)自于物理學(xué)中的梁振動(dòng)方程
它是彈性力學(xué)中的方程[1-3].在一些文獻(xiàn)中,研究了Kirchhoff方程的Dirichlet問(wèn)題
解的存在性[4].在Kirchhoff方程Dirichlet問(wèn)題的基礎(chǔ)上, 在一些文獻(xiàn)中討論了推廣方程,即p-Kirchhoff方程Dirichlet問(wèn)題[1-3].在文獻(xiàn)[5]中, 研究了p-Kirchhoff方程的Neumann問(wèn)題
解的存在性.對(duì)于p-Kirchhoff系統(tǒng)
的周期解的研究還不多.
本文討論p-Kirchhoff系統(tǒng)
(1)
其范數(shù)如下:
p-Kirchhoff系統(tǒng)也是p-laplace系統(tǒng)
的推廣;并且當(dāng)p-Kirchhoff系統(tǒng)(1)中α=1,β=0時(shí),p-Kirchhoff系統(tǒng)就是p-laplace系統(tǒng).對(duì)于p-laplace系統(tǒng),臨界點(diǎn)理論是研究p-laplace系統(tǒng)的重要方法[7-8].
關(guān)于p-laplace系統(tǒng)有如下結(jié)論:
定理1.2[8]如果F(t,x)滿(mǎn)足以下條件
(H1)F(t,x)滿(mǎn)足條件(A);
則p-laplace系統(tǒng)
有一個(gè)周期解.
應(yīng)用文獻(xiàn)[8]中的環(huán)繞方法可以得到p-Kirchhoff系統(tǒng)周期解的存在性.本文的結(jié)論是:
定理1.3 如果F(t,x)滿(mǎn)足以下條件
(V1)F(t,x)滿(mǎn)足條件(A);
(2)
成立;
(3)
成立;
(4)
則p-Kirchhoff系統(tǒng)(1)存在一個(gè)弱周期解.
引理2.2[9]如果F(t,x)滿(mǎn)足下列條件
(B1)F(t,x)滿(mǎn)足條件(A);
F(t,x)→+;
引理2.3[9]如果F(t,x)滿(mǎn)足以下條件
(D1)F(t,x)滿(mǎn)足條件(A);
則存在實(shí)值函數(shù)g1∈L1(E)和G∈C(RN,R),滿(mǎn)足
(I1)對(duì)于任意的x∈RN,y∈RN,
(5)
(6)
(I3)對(duì)于任意的x∈RN,
(7)
(I4)對(duì)于任意的x∈RN和幾乎所有的t∈E,
(8)
成立.
引理2.8 如果函數(shù)F(t,x)滿(mǎn)足定理1.3的條件,那么泛函
滿(mǎn)足(C)條件.
(9)
(10)
由上式可以得到存在一個(gè)常數(shù)C2,對(duì)于任意的n∈N都有,
(11)
從(9)和(11)可以得到對(duì)于任意的n∈N,
(J2)存在常數(shù)α1,在子空間V中存在0的鄰域D,φ|?D≤α1成立;
(J3)存在常數(shù)β1>α1,滿(mǎn)足φ|X≥β1;
那么泛函φ有一個(gè)臨界點(diǎn).
(12)
(13)
并且在空間RN中,當(dāng)‖u‖→時(shí),φ(u)→-.因此存在常數(shù)C6,α1=supu∈RN,‖u‖=C6φ(u)<β1.所以引理2.9中的條件(J2)和條件(J3)也成立.所以從引理2.8和引理2.9可以得到φ有一個(gè)臨界點(diǎn),即p-Kirchhoff系統(tǒng)(1)存在一個(gè)弱周期解.
在這篇文章中,運(yùn)用變分法的環(huán)繞定理證明了p-Kirchhoff系統(tǒng)在一定條件下存在弱周期解.對(duì)于p-Kirchhoff系統(tǒng)可以進(jìn)一步研究一些與周期解有關(guān)的問(wèn)題. 還可以進(jìn)一步討論p-Kirchhoff系統(tǒng)是否有多個(gè)周期解.同時(shí),可以進(jìn)一步研究p-Kirchhoff系統(tǒng)次調(diào)和解的存在性以及同宿軌的存在性.
[1] A. Hamydy, M. Massar, N. Tsouli. Existence of solutions for p-Kirchhoff type problems with critical exponent[J]. Electronic Journal of Differential Equations, 2011, 105: 1-8.
[2] Ravi P. Agarwal, Kanishka Perera, Zhitao Zhang. On some nonlocal eigenvalue problems[J]. Discrete And Continuous Dynamical Systems Series S, 2012, 5: 707-714.
[3] Anass Ourraoui. On an elliptic equation of p-Kirchhoff type with convection term[J]. Comptes Rendus Mathematique, 2016, 354: 253-256.
[4] Kanishka Perera, Zhitao Zhang. Nontrivial solutions of Kirchhoff-type problems via the Yang index[J]. Journal of Differential Equations, 2006, 221: 246-255.
[5] Francisco Julio S.A. Correa, R. Nascimento. On a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition[J]. Mathematical and Computer Modelling, 2009, 49: 598-604.
[6] J. Mawhin, M. Willem. Critical point theory and Hamiltonian systems [M]. Berlin: Springer-Verlag, 1989.
[7] H. Lu, D. O'regan, R. P. Agarwal. On the existence of multiple periodic solutions for the vector p-Laplacian via critical point theory[J]. Applications Of Mathematics, 2005, 6:555-568.
[8] Bo Xu, Chun-Lei Tang. Some existence results on periodic solutions of ordinary p-Laplacian systems[J]. J. Math. Anal. Appl.,2007, 333:1228-1236
[9] C. L. Tang, X. P. Wu. Periodic solutions of second order systems with out uniformly coercive potential[J]. J. Math. Anal. Appl., 2001, 259: 386-397.
[10] M. Struwe. Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems [M]. Berlin: Springer-Verlag, 2008.
[11] P. H. Rabinowitz. Minimax methods in critical point theory with applications to differential equations[M]. Rhode Island:American Mathematical Society, 1986.
Existence Results of Periodic Solutions of p-Kirchhoff Systems
WANG Yong
(SchoolofMathematicsandStatistics,HefeiNormalUniversity,Hefei230061,China)
The periodic boundary value problem of p-Kirchhoff systems is studied by variational method. First the weak periodic solution of the p-Kirchhoff system is defined. Secondly, some lemmas are given. Then the existence theorem of the weak periodic solutions of p-Kirchhoff system is obtained by the minimax method in the variational method. Finally, related issues of p-Kirchhoff systems are discussed. The main method used in this paper is the linking theorem in the variational method.
periodic solutions; p-Kirchhoff systems; critical point theory; Sobolev inequality
2017-01-10
王泳(1978-),男,江蘇揚(yáng)州人,博士,講師,從事非線性微分方程研究。
O175.14
A
1674-2273(2017)03-0001-05