• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    2017-08-07 02:29:56XianbinKongQiuyanTangXuyiChenYueTuShizhongSunZhongleiSun

    Xian-bin Kong, Qiu-yan Tang, Xu-yi Chen,, Yue Tu,, Shi-zhong Sun,, Zhong-lei Sun

    1 Department of Brain, Af filiated Hospital of China Logistics College of People’s Armed Police Forces, Tianjin, China

    2 Tianjin University of Traditional Chinese Medicine, Tianjin, China

    3 Tianjin Key Laboratory of Neurological Trauma Repair, Tianjin, China

    4 Jinzhou Medical University, Jinzhou, Liaoning Province, China

    REVIEW

    Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Xian-bin Kong1,2,#, Qiu-yan Tang3, Xu-yi Chen3,*, Yue Tu3,*, Shi-zhong Sun3,*, Zhong-lei Sun4,#

    1 Department of Brain, Af filiated Hospital of China Logistics College of People’s Armed Police Forces, Tianjin, China

    2 Tianjin University of Traditional Chinese Medicine, Tianjin, China

    3 Tianjin Key Laboratory of Neurological Trauma Repair, Tianjin, China

    4 Jinzhou Medical University, Jinzhou, Liaoning Province, China

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole.us, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol.e following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells aer injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

    nerve regeneration; spinal cord injury; polyethylene glycol; nerve tissue engineering; biomaterials; spinal nerve repair; biological drug; blood-spinal cord barrier; neural stem cells; carrier; cell culture; neural regeneration

    Introduction

    Polyethylene glycol (PEG) is a synthetic material with a wide range of clinical applications, as its functions can be modified by regulating the physical and chemical properties of it or its gra-related materials (Luo, 2004; Cui et al., 2015; Yang et al., 2015). For example, PEG has been approved by the U.S. Food and Drug Administration for use as a preservative additive prior to organ transplantation to limit cold ischemia/reperfusion injury (Pasut et al., 2016). PEG is also used to modify nanoparticles so that they cannot be recognized by the immune system. PEGylated copper oxide nanoparticles selectively reduce the activity of tumor cells and mitigate the inflammatory response (Giannousi et al., 2016). Another clinical use for PEG is to slow the removal of the nanoparticle pharmaceutical drug carrier. For example, the amount of time gold nanoparticles circulate throughout the blood and body is extended when they have been modified with PEG, promoting the accumulation of the nanoparticles at the tumor site (Huo et al., 2017).e application of PEG in SCI has been studied extensively. PEG has been shown to inhibit the inflammatory response, provide neuroprotection, suppress microenvironment changes in SCI, traverse the blood-brain barrier or blood-spinal cord barrier (Liu et al., 2008), and play important roles in cell therapy and tissue regeneration.

    Figure 1 Overview of the topics discussed herein.

    This review summarizes previous research findings examining the use of PEG in SCI (Figure 1) and provides new ideas and solutions for the particularly difficult problems associated with SCI repair. Although PEG is a potentially important material for the repair of SCI, we found some limitations in the use of PEG; thus, we also suggest future research directions for the development of improved PEG materials.

    Characteristics of PEG and Repair of Spinal Nerves

    PEG, as a biodegradable synthetic scaffold, shows good biocompatibility and low immunogenicity and it is nontoxic. PEG is soluble in both water and many organic solvents. PEG inhibits vacuole and scar formation and will not accumulate in the body (Potter et al., 2008; Krsko et al., 2009). PEG resists nerve fiber degeneration, reduces the inflammatory response, protects the nerve membrane, reduces cell death, protects mitochondria, accelerates improvement of electroneurographic signals, and can be used as a sealant for injured axon membranes (Luo et al., 2002, 2004; Laverty et al. 2004; Phillips et al., 2005; Burdick et al., 2006).

    As soft polymers, PEG hydrogels can be used as drug carriers whose size, structure, and property can be controlled to differentially affect biological propertiesin vivo. Electron beam lithography and ultraviolet optical lithography have been used to tightly control the size and shape of hydrogels, successfully generating PEG hydrogels with controllable size and nanostructure (Bae et al., 2010). Fourier transform infrared spectroscopy has been used to verify the formation of a cross-linking network between the polymer chains. A mesoporous silica templating method has also been used to adjust the molecular weight, particle size, and template of PEG hydrogel particles in biomolecular carriers (Cui et al., 2015), thereby reducing its phagocytosisin vivo.

    PEG has been shown to lessen the inflammatory response and effectively inhibit nerve fiber degeneration in the early stage of SCI. Luo et al. (2004) suggested that PEG applied in the acute phase of SCI inhibits the formation of vacuoles and scars, effectively inhibits nerve fiber degeneration, and creates a good microenvironment for the regeneration of nerve fibers.e role of PEG in blocking nerve fiber degeneration may be related to its ability to protect cell integrity, reduce antigen release, and mitigate the inflammatory response.

    PEG hydrogels can rapidly repair nerve conduction aer severe SCI, promote the myelination of axons, and improve sensory and motor functions.e implantation of PEG hydrogels into the cavity can provide an attachment or a new pathway for the continuous migration of astrocytes, which will migrate to the empty area, eliminate cell aggregation, and inhibit scar formation (Phillips et al., 2005; Burdick etal., 2006; Potter et al., 2008; Krsko et al., 2009). Estrada et al. (2014) implanted an immunologically inert PEG600 material into the scar area aer resection of a chronic SCI scar; their results showed that long-distance axonal regeneration at the scar area was conducive to the migration of beneficial cells (Schwann cells, endothelial cells, and astrocytes) and elongation (astrocytes), promoting neurological repair.

    PEG reduces cell apoptosis by protecting cell membranes and mitochondria and inhibits free radicals and prevents lipid peroxidation. PEG implanted at the injury site markedly reverses the injury-induced changes in cell membrane permeability (Luo et al., 2002, 2004). Shi et al. (1999) showed that PEG implantation at the site of the completely transected spinal cord in pigs promotes reconstruction of the spinal cord and is conducive to the recovery of spinal cord function. Luo et al. (2007) reported that aer SCI, PEG significantly reduces caspase-3 activity by repairing damaged cell membranes and decreases programmed cell death.e interaction of PEG with mitochondria enhances mitochondrial function, decreases the release of cytochrome c, and then inhibits cell apoptosis. Laverty et al. (2004) showed that the application of an aqueous solution of PEG in the subarachnoid space reduces the cavity and promotes the recovery of function in dogs, and its local application protects nerve membranes and accelerates improvement of electroneurographic signals.

    PEG Loaded with Biological Drugs

    Modified PEG Traverses Blood-Brain and Blood-Spinal Cord Barriers

    Transactivating-transduction protein (TAT) promotes absorption by human microvascular endothelial cells. TAT-modified PEG material can effectively traverse both the blood-brain barrier and the blood-spinal cord barrier (Liu et al., 2008). Liu et al. (2008) prepared the bioactive polymer TAT-PEG-b-cholesterol as a nanocarrier. Ciprofloxacin was successfully adsorbed on the nanocarrier. Scanning electron microscopy showed that the average diameter of the nanocarrier was less than 200 nm.ese TAT-modified nanoparticles are able to traverse the blood-brain barrier and enter the neuronal cytoplasm.

    Glutathione PEGylated liposomes were developed to safely enhance drug delivery to the brain.e results of Rip et al. (2014) support the versatility of glutathione-PEG liposomes for enhanced drug delivery to the brain. Wang et al. (2010) suggested that TAT-conjugated PEGylated magnetic polymeric liposomes (TAT-PEG-MPLs) could traverse the blood-spinal cord barrier in rats. They observed low magnetic resonance imaging signals in T2-weighted images and found that TAT-PEG-MPL nanoparticles had significantly accumulated around the injury site as well as inside neurons as determined by their histological analysis as well as by cryo-electron microscopy and flame atomic absorption spectrophotometry (Wang et al., 2010).

    Although fibroblast growth factor 2 (FGF2) has excellent potential for treatment of SCI because of its angiogenic and trophic effects, it is unable to penetrate spinal cord tissue when delivered locally (Reuss et al., 2003). However, conjugation to PEG is known to improve penetration of proteins into tissue by reducing clearance and providing immunogenic shielding. Kang et al. (2010) conjugated PEG to FGF2 to nearly double the concentration of FGF2 in the injured spinal cord, indicating that PEGylation of FGF2 enhances tissue penetration.

    PEG Polymer Hydrogels as Carriers for Stem Cells

    Hardy et al. (2015) showed that oxime cross-linked hydrogels formed by PEG and hyaluronic acid derivatives are conducive to bone marrow mesenchymal stem cell adhesion. Bhutani et al. (2010) chemically fused mouse embryonic stem cells with human fibroblasts under the induction of PEG, and successfully induced human fibroblasts into pluripotent stem cells. Mulyasasmita et al. (2014) developed protein-PEG hybrid hydrogels, called MITCH-PEG, which slowly release encapsulated vascular endothelial growth factor, and provide significant protection from cell damage. MITCH-PEG co-delivery of induced pluripotent stem cells and vascular endothelial growth factor was found to reduce inflammation and promote angiogenesis.

    Adjusting PEG for Cell Culture

    Gelatin- and PEG-based hydrogels provide a powerful cell culture platform for tissue engineering applications (Li et al., 2016; Truong et al., 2016). Truong et al. (2016) used a rapid cross-linking process to form hydrogels within minutes of mixing the polymer solutions under physiological conditions, showing that hydrogels can be used as injectable materials. Murine embryonic fibroblastic cells cultured in sogels demonstrate high cell viability.

    The addition of silica nanoparticles has been shown not only to improve the mechanical strength and cell adhesion properties of PEG hydrogels but also to control the degree of cell adhesion for use in biomedicine. Gaharwar et al. (2013) found that the addition of silica nanospheres noticeably inhibited the degree of hydration of the PEG hydrogels, which indicated surface interactions between the polymer chains and the silica nanospheres. No obvious change in hydrogel microstructure or average pore size was detected after the addition of the silica nanospheres. Nevertheless, addition of silica nanospheres markedly increased both the mechanical strength and toughness of the hydrogel networks.e biological properties of these nanocomposite hydrogels were assessed by seeding fibroblasts on the hydrogel surface.e addition of silica nanospheres enhanced cell adhesion, promoted cell spreading, and increased the metabolic activity of the cells (Gaharwar et al., 2013).

    Kim et al. (2016) believed that the concentration and molecular weight of the PEG cross-linkers could be varied to control the swelling/shrinking behavior and drug release properties as well as lower the critical solution temperature of poly(N-isopropylacrylamide)-PEG hydrogels.is strategy could be applied to various hydrogel systems to control their physical properties for biomedical applications. Akimoto et al. (2016) prepared a poly(N-isopropylacrylamide) hydrogel cross-linked by PEG for three-dimensional cell culture. By altering the temperature, the volume and the storage elastic modulus of the gel were changed. C2C12 cell adhesion was confirmed using RGDS pendants. Such PEG-cross-linked hydrogels are expected to be useful as new material for three-dimensional cell culture to control cell fate and to improve the biocompatibility of cells.

    PEG Limitations and Proposed Applications

    Rao et al. (2011) suggested that the ef ficacy of PEG alone is not ideal but that polylysine-modified PEG hydrogel promotes nerve cell adhesion, elevates biocompatibility and stability of neural tissue integration, and contributes to axon regeneration and remyelination.e use of PEG alone cannot completely mimic the three-dimensional porous structure of the spinal cord, and the biocompatibility is relatively insuf ficient. In addition, its position aer transplantationin vivois randomly relative to the structure of the spinal cord, allowing the upper and lower fiber bundles to grow in mismatched or even misplaced channels or pores.

    PEG-poly (-L-lactic acid) (PLLA) hydrogels provide biodegradable, porous structures with pore sizes that do not change during degradation. Chiu et al. (2013) found that the pore size was controlled by the particulate size, and they adjusted the polymer concentration, optimized the degradation time, and provided additional guidance for the optimization of material properties to generate three-dimensional, degradable, porous PEG hydrogels. Such coupled hydrogels mitigate the disadvantages of PEG alone.e optimized design of the three-dimensional, porous PEG polymer scaffold along with the biomimetic spinal cord scaffold created by three-dimensional printing technology provided a structural basis for the extension of nerve cell growth across the diseased spinal cord (Namba et al., 2009; Soman et al., 2012). However, because of the limitations imposed by mechanical properties and changes in the microenvironment aer SCI, three-dimensional bioprinting of biomimetic porous PEG scaffolds remains a tough challenge and a hot topic in tissue engineering.

    PEG has shown good safety and is approved by the U.S. Food and Drug Administration as a preservative additive and in modified nanoparticles for use before organ transplantation to reduce the inflammatory response and slow thein vivoclearance rate of nanoparticle drug carriers (Giannousi et al., 2016; Pasut et al., 2016; Huo et al., 2017). However, Romano et al. (2014) found that pegylated liposomal doxorubicin used for treating multiple myeloma wasassociated with some adverse events, including thrombocytopenia (9%), peripheral neuropathy (8%), and infections (8%). In addition, low-molecular-weight PEG accelerated the accumulation of platelet derived growth factor and reduced its activity, thereby reducing the differentiation of neural stem/progenitor cells into oligodendrocytes (Elliott Donaghue et al., 2015). Because of the wide use of PEG, the safety of PEG and PEG polymersin vivoneeds to be further improved.

    Although PEG has several shortcomings, it has been used as a component of new materials. Many of its properties may be transferred to these conjugates, giving the material new properties, such as hydrophilicity and flexibility. The end groups of PEG play decisive roles, as the various end groups offer different advantages. Functional groups, such as toluenesulfonate, amino, carboxyl and aldehyde, can be introduced into both ends of the PEG chain to further expand the useful applications of PEG.us, PEG has broad application prospects in organic synthesis, peptide synthesis, the slow or controlled release of drugs, targeted drug delivery, and stem cell transplantation.

    Conclusions

    Multiple disciplines are involved in the repair of SCI. Engineered materials, such as PEG, are important components of research in spinal cord tissue engineering. Research has shown that in addition to being stable, nontoxic, and biocompatible, PEG does not accumulate in the body, can be used as a sealant for injured axon membranes, inhibits the formation of vacuoles and scars, protects against nerve fiber degeneration, reduces inflammation, protects nerve membranes, decreases cell death, protects mitochondria, suppresses cell apoptosis, and improves electroneurographic signals. Such advantages of PEG offer promise for its use coupled with bioactive molecules and drugs as tissue-engineered scaffolds in the repair of the injured spinal cord.

    Author contributions:XBK conceived and prepared the paper. XBK and ZLS collected the data. XYC, YT and SZS provided critical revision of the paper. All authors approved the final version of the paper.

    Conflicts of interest:None declared.

    Open access statement:

    Contributor agreement:A statement of “Publishing Agreement” has been signed by an authorized author on behalf of all authors prior to publication.

    Plagiarism check:This paper has been checked twice with duplication-checking soware ienticate.

    Peer review:A double-blind and stringent peer review process has been performed to ensure the integrity, quality and significance of this paper.

    Open peer reviewer:Idiris Altun, KSü University Medical faculty of Turkey, Turkey.

    Adams M, Carlstedt T, Cavanagh J, Lemon RN, McKernan R, Priestley JV, Raisman G, Verhaagen J (2007) International spinal research trust research strategy. III: a discussion document. Spinal Cord 45:2-14.

    Akimoto AM, Hasuike E, Tada H, Nagase K, Okano T, Kanazawa H, Yoshida R (2016) Design of Tetra-arm PEG-crosslinked thermoresponsive hydrogel for 3d cell culture. Anal Sci 32:1203-1205.

    Bae M, Divan R, Suthar KJ, Mancini DC, Gemeinhart RA (2010) Fabrication of poly(ethylene glycol) hydrogel structures for pharmaceutical applications using electron beam and optical lithography. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 28:C6P24-6P29.

    Bakshi A, Fisher O, Dagci T, Himes BT, Fischer I, Lowman A (2004) Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis aer transplantation in spinal cord injury. J Neurosurg Spine 1:322-329.

    Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM (2010) Reprogramming towards pluripotency requires AID—dependent DNA demethylation. Nature 463:1042-1047.

    Burdick JA, Ward M, Liang E, Young MJ, Langer R (2006) Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials 27:452-459.

    Chiu YC, Kocag?z S, Larson JC, Brey EM (2013) Evaluation of physical and mechanical properties of porous poly (ethylene glycol)-co-(L-lactic acid) hydrogels during degradation. PLoS One 8:e60728.

    Cui J, De Rose R, Alt K, Alcantara S, Paterson BM, Liang K, Hu M, Richardson JJ, Yan Y, Jeffery CM, Price RI, Peter K, Hagemeyer CE, Donnelly PS, Kent SJ, Carusof(2015) Engineering poly (ethylene glycol) particles for improved biodistribution. ACS Nano 9:1571-1580.

    Elliott Donaghue I, Shoichet MS (2015) Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite. Acta Biomater 25:35-42.

    Estrada V, Brazda N, Schmitz C, Heller S, Blazyca H, Martini R, Müller HW (2014) Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation. Neurobiol Dis 67:165-179.

    Flynnj R, Graham BA, Galea MP, Callister RJ (2011)e role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 60:809-822.

    Gaharwar AK, Rivera C, Wu CJ, Chan BK, Schmidt G (2013) Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics. Mater Sci Eng C Mater Biol Appl 33:1800-1807.

    Giannousi K, Hatzivassiliou E, Mourdikoudis S (2016) Synthesis and biological evaluation of PEGylated CuO nanoparticles. J Inorg Biochem 164:82-90.

    Hardy JG, Lin P, Schmidt CE (2015) Biodegradable hydrogels composed of oxime crosslinkedpoly(ethylene glycol), hyaluronic acid and collagen: a tunable platform for sotissue engineering. J Biomater Sci Polym Ed 26:143-161.

    Huo S, Chen S, Gong N (2017) Ultrasmall gold nanoparticles behavior in vivo modulated by surface polyethylene glycol (PEG) grafting. Bioconjug Chem doi: 10.1021/acs.bioconjchem.6b00488.

    Huo S, Chen S, Gong N, Liu J, Li X, Zhao Y, Liang XJ (2016) Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo. Sci Rep 6:19077.

    Jiang G, Sun J, Dingf(2014) PEG-g-chitosan thermosensitive hydrogel for implant drug delivery: cytotoxicity, in vivo degradation and drug release. J Biomater Sci Polym Ed 25:241-256.

    Kang CE, Tator CH, Shoichet MS (2010) Poly (ethylene glycol) modif ication enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system. J Control Release 144:25-31.

    Kim S, Lee K, Cha C (2016) Refined control of thermoresponsive swelling/deswellin and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers. J Biomater Sci Polym Ed 27:1698-1711.

    Krsko P, McCann TE, Thach TT, Laabs TL, Geller HM, Libera MR (2009) Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly (ethylene glycol) hydrogels. Biomaterials 30:721-729.

    Kumar M, Coburn J, Kaplan DL, Mandal BB (2016) Immuno-informed 3d silk biomaterials for tailoring biological responses. ACS Appl Mater Interfaces 43:29310-29322.

    Laverty PH, Leskovar A, Breur GJ, Coates JR, Bergman RL, Widmer WR, Toombs JP, Shapiro S, Borgens RB (2004) A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI. J Neurotrauma 21:1767-1777.

    Lee S, Tong XM, Yangf(2016) Effects of the poly(ethylene glycol) hydrogelcrosslinking mechanism on protein release. Biomater Sci 4:405-411.

    Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY (2008) Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 29:1509-1517.

    Liu L, Venkatraman SS, Yang YY, Guo K, Lu J, He B, Moochhala S, Kanl(2008) Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Biopolymers 90:617-623.

    Luo J, Borgens R, Shi R (2002) Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production aer acute spinal cord injury. J Neuroehem 83:471-480.

    Luo J, BorgensR, Shi R (2004) Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury. J Neurotrauma 21:994-1007.

    Luo J, Shi R (2004) Diffusire oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol. Neurosci Lett 359:167-170.

    Luo J, Shi R (2007) Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury. Brain Res 1155:10-16.

    Li Y, Meng H, Liu Y, Narkar A, Lee BP (2016) Gelatin microgel incorporated poly (ethylene glycol)-based bioadhesive with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces 8:11980-11989.

    Lawrence PB, Price JL (2016) How PEGylation influences protein conformational stability. Curr Opin Chem Biol 34:88-94.

    Mehrotra S, Lynam D, Maloney R, Pawelec KM, Tuszynski MH, Lee I, Chan C, Sakamoto J (2010) Time controlled protein release from layer-by-layer assembled multilayer functionalized agarose hydrogels. Adv Funct Mater 20:247-258.

    Mulyasasmita W, Cai L, Dewi RE, Jha A, Ullmann SD, Luong RH, Huang NF, Heilshorn SC (2014) Avidity-controlled hydrogels for injectable co-delivery of induced pluripotent stem cell-derived endothelial cells and growth factors. J Control Release 191:71-81.

    Namba RM, Cole AA, Bjugstad KB, Mahoney MJ (2009) Development of porous PEG hydrogels that enable ef ficient, uniform cell-seeding and permit early neural process extension. Acta Biomater 5:1884-1897.

    Pasut G, Panisello A, Folch-Puy E, Lopez A, Castro-Benítez C, Calvo M, Carbonell T, García-Gil A, Adam R, Roselló-Catafau J (2016) Polyethylene glycols: an effective strategy for limiting liver ischemia reperfusion injury. World J Gastroenterol 22:6501-6508.

    Phillips JB, Bunting SC, Hall SM, Brown RA (2005) Neural tissue engineering: a self-organizing collagen guidance conduit. Tissue Eng 11:1611-1617.

    Potter W, Kalil RE, Kao WJ (2008) Biomimetic material systems for neural progenitor cell-based therapy. Front Biosci 13:806-821.

    Rao SS, Han N, Winter JO (2011) Polylysine-modified PEG-based hydrogels to enhance the neuro-electrode interface. J Biomater Sci Polym Ed 22:611-625.

    Rip J, Chen L, Hartman R, van den Heuvel A, Reijerkerk A, van Kregten J, van der Boom B, Appeldoorn C, de Boer M, Maussang D, de Lange EC, Gaillard PJ (2014) Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target 22:460-467.

    Reuss B, Dono R, Unsicker K (2003) Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and bloodbrain barrier permeability: evidence from mouse mutants. J Neurosci 23:6404-6412.

    Romano A, Chiarenza A, Conticello C, Cavalli M, Vetro C, Di Raimondo C, Cunsolo R,Palumbo GA, Di Raimondof(2014) Salvage therapy with pegylated liposomal doxorubicin, bortezomib, cyclophosphamide, and dexamethasone in relapsed/refractory myeloma patients. Eur J Haematol 93:207-213.

    Shi R, Borgens RB, Blight AR (1999) Functional reconnection of severed mammalian spinalcord axons with polyethylene glycol. J Neurotrauma 16:727-738.

    Soman P, Tobe BT, Lee JW, Winquist AA, Singec I, Vecchio KS, Snyder EY, Chen S (2012)ree-dimensional scaffolding to investigate neuronal derivatives of human embryonic stem cells. Biomed Microdevices 14:829-838.

    Truong VX, Hun ML, Li F, Chidgey AP, Forsythe JS (2016) In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells. Biomater Sci 4:1123-1131.

    Walmsley AR,Mir AK (2007) Targeting the Nogo-A euritis pathway to promote recovery following acute CNS injury. Curr Pharm Des 13:2470-2484.

    Wang H, Zhang S, Liao Z, Wang C, Liu Y, Feng S, Jiang X, Chang J (2010) PEGlated magnetic polymeric liposome anchored with TAT for delivery of drugs across the blood-spinal cord barrier. Biomaterials 31:6589-6596.

    Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM (2010) Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomedicine 5:1057-1065.

    Xu P, Gong WM, Li Y, Zhang T, Zhang K, Yin DZ, Jia TH (2008) Destructive pathological changes in the rat spinal cord due to chronic mechanical compression. Neurosurg Spine 8:279-285.

    Yang ZQ, He Y, Shi JD (2015) Polyethylene glycol effects on the performance of rifampicin-polylactic acid-glycolic acid polymer microspheres. Zhongguo Zuzhi Gongcheng Yanjiu 19:421-426.

    Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, Tian B, Yang H, He H (2014) PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release 183:77-86.

    Zhou XH, Wei DX, Ye HM, Zhang X, Meng X, Zhou Q (2016) Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release ef ficiency. Mater Sci Eng C Mater Biol Appl 67:326-335.

    Copyedited by Smith T, Raye W, Wang J, Li CH, Qiu Y, Song LP, Zhao M

    How to cite this article: Kong XB, Tang QY, Chen XY, Tu Y, Sun SZ, Sun ZL (2017) Polyethylene glycol as a promising synthetic material for repair of spinal cord injury. Neural Regen Res 12(6):1003-1008.

    Funding: This study was supported by a grant from National Key Science and Technology Research & Development Plan in China, No. 2016YFC1101500; the National Natural Science Foundation of China, No. 11672332.

    *Correspondence to:

    Xu-yi Chen, M.D. or Yue Tu, M.D. or Shi-zhong Sun, Chenxuyi1979@126.com or ytumail@vip.126.com or loveicu@126.com.

    orcid:

    0000-0002-6293-1340

    (Xu-yi Chen)

    0000-0003-2645-0168

    (Yue Tu)

    0000-0002-0430-8980

    (Shi-zhong Sun)

    10.4103/1673-5374.208597

    Accepted: 2017-04-05

    av天堂中文字幕网| 亚洲成人精品中文字幕电影| 久久人人爽人人爽人人片va| 一区二区三区乱码不卡18| 亚洲精品中文字幕在线视频 | 国产亚洲精品久久久com| 国产v大片淫在线免费观看| 免费看不卡的av| 熟女电影av网| 免费av毛片视频| 一区二区三区四区激情视频| 国产亚洲一区二区精品| 亚洲精华国产精华液的使用体验| 日产精品乱码卡一卡2卡三| 日韩av免费高清视频| 高清欧美精品videossex| 亚洲美女搞黄在线观看| 老司机影院毛片| 美女主播在线视频| 欧美一区二区亚洲| 欧美成人精品欧美一级黄| 欧美日本视频| 日日啪夜夜撸| 亚洲精品国产成人久久av| 好男人在线观看高清免费视频| av黄色大香蕉| 日本熟妇午夜| 亚洲美女视频黄频| 性插视频无遮挡在线免费观看| 晚上一个人看的免费电影| 人妻一区二区av| 午夜日本视频在线| 亚洲精品国产成人久久av| 黄色视频在线播放观看不卡| 免费少妇av软件| 在线a可以看的网站| 26uuu在线亚洲综合色| 国产美女午夜福利| 黄色欧美视频在线观看| 国产爱豆传媒在线观看| 91久久精品国产一区二区三区| 久久久久网色| tube8黄色片| 在线天堂最新版资源| 少妇人妻久久综合中文| 一区二区三区免费毛片| tube8黄色片| 你懂的网址亚洲精品在线观看| 国产精品av视频在线免费观看| 久久韩国三级中文字幕| 观看免费一级毛片| 日韩欧美 国产精品| 午夜激情久久久久久久| 亚洲精品成人av观看孕妇| 国产午夜精品一二区理论片| 国产女主播在线喷水免费视频网站| 国产黄频视频在线观看| 久久久久精品久久久久真实原创| 一边亲一边摸免费视频| 视频中文字幕在线观看| 亚洲国产精品成人久久小说| 国产一级毛片在线| 男人添女人高潮全过程视频| 亚洲丝袜综合中文字幕| 在线播放无遮挡| 欧美老熟妇乱子伦牲交| 在线观看人妻少妇| 国产淫语在线视频| 成人一区二区视频在线观看| 成人午夜精彩视频在线观看| 成人一区二区视频在线观看| 欧美 日韩 精品 国产| 亚洲人成网站在线播| 日本一本二区三区精品| 亚洲精华国产精华液的使用体验| 欧美高清成人免费视频www| 国产又色又爽无遮挡免| 小蜜桃在线观看免费完整版高清| 成人综合一区亚洲| 国产一区有黄有色的免费视频| 亚洲美女搞黄在线观看| 国产 一区 欧美 日韩| 美女被艹到高潮喷水动态| 高清视频免费观看一区二区| 国产欧美亚洲国产| av福利片在线观看| 九草在线视频观看| 高清视频免费观看一区二区| 久久久欧美国产精品| 中文资源天堂在线| 人人妻人人爽人人添夜夜欢视频 | 国产黄片美女视频| 边亲边吃奶的免费视频| 肉色欧美久久久久久久蜜桃 | 欧美xxxx黑人xx丫x性爽| 久久97久久精品| 免费观看性生交大片5| 最近手机中文字幕大全| 在现免费观看毛片| 人妻系列 视频| 久久精品久久久久久久性| 香蕉精品网在线| 亚洲成人一二三区av| 午夜精品国产一区二区电影 | 久久久久久久久久久免费av| 日本熟妇午夜| 伦精品一区二区三区| 99久久九九国产精品国产免费| 国产男女超爽视频在线观看| 国产免费一级a男人的天堂| 九九在线视频观看精品| 精品国产露脸久久av麻豆| 成人免费观看视频高清| 国产毛片a区久久久久| 国产免费一级a男人的天堂| 日本-黄色视频高清免费观看| 亚洲精品乱码久久久久久按摩| 免费播放大片免费观看视频在线观看| 国产 一区精品| 亚州av有码| 亚洲欧洲日产国产| 午夜亚洲福利在线播放| 啦啦啦中文免费视频观看日本| av卡一久久| 热99国产精品久久久久久7| 韩国av在线不卡| 国产69精品久久久久777片| 久久久久久久久久久丰满| 免费人成在线观看视频色| 91狼人影院| 插逼视频在线观看| 亚洲熟女精品中文字幕| 九九久久精品国产亚洲av麻豆| 男女边吃奶边做爰视频| 久久精品综合一区二区三区| 97在线视频观看| 精品少妇久久久久久888优播| 丰满少妇做爰视频| 国产精品一区www在线观看| 免费黄网站久久成人精品| 精品久久久噜噜| 熟女av电影| 色综合色国产| 插逼视频在线观看| 国产精品国产三级专区第一集| 久久99蜜桃精品久久| 久久久成人免费电影| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| 校园人妻丝袜中文字幕| 中国国产av一级| 99九九线精品视频在线观看视频| 午夜亚洲福利在线播放| 一区二区三区乱码不卡18| 韩国av在线不卡| 特大巨黑吊av在线直播| 欧美老熟妇乱子伦牲交| av.在线天堂| 国产极品天堂在线| 精品久久久久久久久亚洲| 久久久久久伊人网av| 中国国产av一级| 好男人在线观看高清免费视频| 少妇人妻精品综合一区二区| 男人和女人高潮做爰伦理| 亚洲不卡免费看| 日日摸夜夜添夜夜添av毛片| 九九在线视频观看精品| 亚洲自拍偷在线| 国产一区亚洲一区在线观看| 亚洲av一区综合| 一级黄片播放器| 免费黄频网站在线观看国产| 99久久九九国产精品国产免费| 国产午夜精品久久久久久一区二区三区| 九色成人免费人妻av| av女优亚洲男人天堂| 国产毛片在线视频| xxx大片免费视频| 性色av一级| 久久久久久久久久人人人人人人| 听说在线观看完整版免费高清| 久久精品国产亚洲av天美| 亚洲av欧美aⅴ国产| 天美传媒精品一区二区| 亚洲丝袜综合中文字幕| 日本wwww免费看| 国产精品一区www在线观看| 日韩,欧美,国产一区二区三区| 3wmmmm亚洲av在线观看| 视频中文字幕在线观看| 久久久久性生活片| 国产精品不卡视频一区二区| 亚洲欧美精品自产自拍| 国产精品秋霞免费鲁丝片| 综合色av麻豆| 免费观看的影片在线观看| 成年av动漫网址| 久热这里只有精品99| 在线天堂最新版资源| 日日啪夜夜撸| 国产精品三级大全| 99久久精品国产国产毛片| 高清在线视频一区二区三区| 亚洲在久久综合| 一区二区三区精品91| 毛片一级片免费看久久久久| 国产在线男女| 久久久久久久大尺度免费视频| 日本色播在线视频| 亚洲精品国产成人久久av| 99热6这里只有精品| 内射极品少妇av片p| 国内揄拍国产精品人妻在线| 免费观看的影片在线观看| 成人一区二区视频在线观看| 街头女战士在线观看网站| 六月丁香七月| 久久精品国产a三级三级三级| 久久久久久久久久成人| 国产黄频视频在线观看| 一级毛片 在线播放| 欧美成人一区二区免费高清观看| 久久久久久久久久久丰满| 精品久久久久久久人妻蜜臀av| 久久精品人妻少妇| 久久影院123| 亚洲人成网站在线播| 欧美日本视频| 精品久久久久久电影网| 97热精品久久久久久| 国产伦精品一区二区三区四那| 亚洲欧美日韩无卡精品| av在线播放精品| 中文字幕亚洲精品专区| 美女脱内裤让男人舔精品视频| 国产精品av视频在线免费观看| 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 2021天堂中文幕一二区在线观| 大码成人一级视频| 春色校园在线视频观看| 另类亚洲欧美激情| 日产精品乱码卡一卡2卡三| 一个人观看的视频www高清免费观看| 18禁动态无遮挡网站| 欧美日韩一区二区视频在线观看视频在线 | 国模一区二区三区四区视频| 免费少妇av软件| 欧美日韩一区二区视频在线观看视频在线 | 国产女主播在线喷水免费视频网站| eeuss影院久久| 亚洲,一卡二卡三卡| 久久精品久久久久久久性| 亚洲欧美成人精品一区二区| 91午夜精品亚洲一区二区三区| 一级毛片电影观看| 在线 av 中文字幕| 免费人成在线观看视频色| 国产永久视频网站| 久久久国产一区二区| 97精品久久久久久久久久精品| 中文字幕久久专区| www.色视频.com| 成人鲁丝片一二三区免费| 交换朋友夫妻互换小说| 日本一二三区视频观看| 久久女婷五月综合色啪小说 | 黄色欧美视频在线观看| 一区二区av电影网| 国产欧美日韩一区二区三区在线 | 美女视频免费永久观看网站| 国产亚洲5aaaaa淫片| 亚洲欧美清纯卡通| 亚洲色图av天堂| 我要看日韩黄色一级片| 欧美变态另类bdsm刘玥| 九色成人免费人妻av| av在线app专区| 黄片无遮挡物在线观看| 麻豆乱淫一区二区| 日本-黄色视频高清免费观看| 少妇猛男粗大的猛烈进出视频 | 国产av国产精品国产| 精品久久久久久久人妻蜜臀av| 最近最新中文字幕免费大全7| 亚洲国产成人一精品久久久| 免费观看a级毛片全部| 日韩 亚洲 欧美在线| 亚洲第一区二区三区不卡| 国产精品久久久久久av不卡| 亚洲国产日韩一区二区| 久久99热这里只频精品6学生| 另类亚洲欧美激情| 一级毛片电影观看| 午夜精品一区二区三区免费看| 亚洲伊人久久精品综合| 高清毛片免费看| 2021天堂中文幕一二区在线观| 国产人妻一区二区三区在| 你懂的网址亚洲精品在线观看| 男男h啪啪无遮挡| 亚洲性久久影院| 有码 亚洲区| 男女那种视频在线观看| 我的女老师完整版在线观看| 国产大屁股一区二区在线视频| 日韩精品有码人妻一区| 亚洲久久久久久中文字幕| 亚洲欧美精品专区久久| 久久精品久久久久久久性| 久久精品人妻少妇| 少妇 在线观看| 永久网站在线| 禁无遮挡网站| 一级毛片黄色毛片免费观看视频| videossex国产| 精品酒店卫生间| 久久久久久久精品精品| 免费看光身美女| 亚洲av电影在线观看一区二区三区 | 最新中文字幕久久久久| 免费黄网站久久成人精品| 欧美日韩视频精品一区| 超碰97精品在线观看| av网站免费在线观看视频| 日本一二三区视频观看| 天堂中文最新版在线下载 | 日韩,欧美,国产一区二区三区| 欧美性猛交╳xxx乱大交人| 午夜视频国产福利| 一级片'在线观看视频| 日本一本二区三区精品| 国产成年人精品一区二区| 涩涩av久久男人的天堂| 97超视频在线观看视频| 亚洲av成人精品一区久久| 亚洲av男天堂| 国产日韩欧美亚洲二区| 日日撸夜夜添| tube8黄色片| 一区二区av电影网| 高清在线视频一区二区三区| 99久久中文字幕三级久久日本| 别揉我奶头 嗯啊视频| 99热国产这里只有精品6| 国产精品伦人一区二区| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 亚洲精品日韩av片在线观看| 亚洲av不卡在线观看| 哪个播放器可以免费观看大片| 麻豆精品久久久久久蜜桃| 日韩一本色道免费dvd| 中文乱码字字幕精品一区二区三区| 午夜福利在线观看免费完整高清在| videossex国产| 亚洲av二区三区四区| 国产成人a∨麻豆精品| 白带黄色成豆腐渣| av国产久精品久网站免费入址| 波野结衣二区三区在线| 插阴视频在线观看视频| 日本黄大片高清| 国产精品熟女久久久久浪| 日本免费在线观看一区| 99久国产av精品国产电影| 夜夜看夜夜爽夜夜摸| 成人无遮挡网站| 欧美日韩综合久久久久久| 丰满少妇做爰视频| 亚洲欧美精品自产自拍| 国产精品一区www在线观看| 亚洲av欧美aⅴ国产| 久久久久精品性色| 国产黄色免费在线视频| 亚洲成人一二三区av| 少妇人妻一区二区三区视频| 中文字幕亚洲精品专区| 亚洲国产av新网站| 国产大屁股一区二区在线视频| av免费在线看不卡| 青春草视频在线免费观看| 18禁裸乳无遮挡动漫免费视频 | 久久久精品欧美日韩精品| 小蜜桃在线观看免费完整版高清| av在线天堂中文字幕| 国产伦在线观看视频一区| 成人漫画全彩无遮挡| 日日摸夜夜添夜夜添av毛片| 午夜亚洲福利在线播放| 亚洲色图av天堂| 王馨瑶露胸无遮挡在线观看| 插逼视频在线观看| 国产淫片久久久久久久久| 麻豆久久精品国产亚洲av| 下体分泌物呈黄色| 亚洲av国产av综合av卡| 亚洲精品456在线播放app| 精品人妻视频免费看| 晚上一个人看的免费电影| 男女下面进入的视频免费午夜| 午夜精品国产一区二区电影 | 男人狂女人下面高潮的视频| 又大又黄又爽视频免费| 97在线人人人人妻| 久久人人爽人人爽人人片va| kizo精华| 久久6这里有精品| 少妇高潮的动态图| 男插女下体视频免费在线播放| 肉色欧美久久久久久久蜜桃 | 精品人妻视频免费看| 中文字幕制服av| 日韩制服骚丝袜av| 国产色婷婷99| 激情 狠狠 欧美| 99热6这里只有精品| 国产精品国产三级专区第一集| 色视频www国产| 亚洲精品成人久久久久久| 国产精品久久久久久久久免| 久久99蜜桃精品久久| 欧美成人精品欧美一级黄| 精品国产三级普通话版| 国产大屁股一区二区在线视频| 在线观看三级黄色| 亚洲精品一二三| 校园人妻丝袜中文字幕| 老司机影院毛片| 99久国产av精品国产电影| 国内少妇人妻偷人精品xxx网站| 免费在线观看成人毛片| 欧美bdsm另类| 观看免费一级毛片| 国产av不卡久久| 亚洲人成网站在线观看播放| 精品一区在线观看国产| 搞女人的毛片| 日韩欧美精品免费久久| 1000部很黄的大片| 久久久久性生活片| 久久久久精品久久久久真实原创| 久久久久久久亚洲中文字幕| 久久精品综合一区二区三区| 免费看光身美女| 一区二区三区免费毛片| 中文天堂在线官网| 婷婷色av中文字幕| 精品一区二区免费观看| av专区在线播放| 久久影院123| 大香蕉久久网| 一本一本综合久久| freevideosex欧美| 亚洲久久久久久中文字幕| 色吧在线观看| 秋霞伦理黄片| 超碰av人人做人人爽久久| 国产白丝娇喘喷水9色精品| 99久久精品国产国产毛片| 男男h啪啪无遮挡| 欧美日韩综合久久久久久| 好男人在线观看高清免费视频| freevideosex欧美| 熟妇人妻不卡中文字幕| 国产成年人精品一区二区| 午夜免费男女啪啪视频观看| 免费观看性生交大片5| 人体艺术视频欧美日本| 黄色视频在线播放观看不卡| av免费观看日本| 老师上课跳d突然被开到最大视频| 亚洲av福利一区| 熟女av电影| 久久韩国三级中文字幕| 国产高潮美女av| 女人被狂操c到高潮| 日本wwww免费看| 青春草视频在线免费观看| 欧美一区二区亚洲| 国产老妇女一区| 国产美女午夜福利| 精品国产乱码久久久久久小说| tube8黄色片| 激情 狠狠 欧美| h日本视频在线播放| 国产老妇伦熟女老妇高清| 国产精品福利在线免费观看| av在线app专区| 久久久久久国产a免费观看| 高清视频免费观看一区二区| 亚洲综合精品二区| 日产精品乱码卡一卡2卡三| 亚洲美女搞黄在线观看| 日本猛色少妇xxxxx猛交久久| 国产探花极品一区二区| 99久久精品国产国产毛片| 汤姆久久久久久久影院中文字幕| 中文字幕免费在线视频6| av又黄又爽大尺度在线免费看| 中文资源天堂在线| 18禁裸乳无遮挡免费网站照片| 日韩人妻高清精品专区| 精品99又大又爽又粗少妇毛片| 久久久久久伊人网av| 老师上课跳d突然被开到最大视频| 久久久久久伊人网av| 在线观看一区二区三区激情| 一级毛片久久久久久久久女| 亚洲国产日韩一区二区| 一二三四中文在线观看免费高清| 色综合色国产| 熟女人妻精品中文字幕| 成人国产麻豆网| 精品一区二区三卡| 亚洲色图综合在线观看| 国产免费一级a男人的天堂| 婷婷色av中文字幕| 五月玫瑰六月丁香| 十八禁网站网址无遮挡 | av国产精品久久久久影院| 国产精品久久久久久久电影| 久久精品国产亚洲网站| 七月丁香在线播放| 亚洲无线观看免费| 一本久久精品| 国产午夜精品久久久久久一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久午夜电影| .国产精品久久| 熟女人妻精品中文字幕| 亚洲美女视频黄频| 免费看不卡的av| 欧美xxxx黑人xx丫x性爽| 午夜日本视频在线| 精品人妻一区二区三区麻豆| 男女国产视频网站| 亚洲成人av在线免费| 午夜激情福利司机影院| 亚洲综合色惰| 亚洲无线观看免费| 2021少妇久久久久久久久久久| 国产一区二区三区av在线| 国产成人精品一,二区| 日本av手机在线免费观看| av.在线天堂| 男人狂女人下面高潮的视频| 又粗又硬又长又爽又黄的视频| 十八禁网站网址无遮挡 | 精品久久久久久久末码| 汤姆久久久久久久影院中文字幕| 国产亚洲av片在线观看秒播厂| 久久综合国产亚洲精品| 国产免费福利视频在线观看| 久久久久久久大尺度免费视频| 精品久久国产蜜桃| .国产精品久久| 人妻系列 视频| 18禁裸乳无遮挡动漫免费视频 | 亚洲欧美清纯卡通| 少妇人妻一区二区三区视频| 大又大粗又爽又黄少妇毛片口| av在线播放精品| 午夜福利高清视频| 亚洲av在线观看美女高潮| 亚洲精品国产成人久久av| 欧美日韩综合久久久久久| 久久精品久久久久久久性| xxx大片免费视频| 岛国毛片在线播放| 少妇人妻精品综合一区二区| 一级毛片 在线播放| 在线精品无人区一区二区三 | 联通29元200g的流量卡| 日本爱情动作片www.在线观看| 91久久精品电影网| 别揉我奶头 嗯啊视频| 成人漫画全彩无遮挡| 欧美xxⅹ黑人| 国产91av在线免费观看| 国产视频首页在线观看| 国产精品久久久久久久电影| 极品教师在线视频| 久久久精品94久久精品| 全区人妻精品视频| 欧美日韩亚洲高清精品| 成人特级av手机在线观看| 99精国产麻豆久久婷婷| 国产精品伦人一区二区| 男女边吃奶边做爰视频| 欧美区成人在线视频| 又爽又黄无遮挡网站| 国产男女内射视频| h日本视频在线播放| 青春草国产在线视频| 亚洲精品乱久久久久久| 大香蕉久久网| 久久久久性生活片| 亚洲av福利一区| 亚洲经典国产精华液单| 成年免费大片在线观看| 777米奇影视久久| 网址你懂的国产日韩在线| a级毛色黄片| 国产av不卡久久| 国产高清不卡午夜福利| 亚洲精品456在线播放app| 97在线视频观看| 亚洲国产高清在线一区二区三| 极品教师在线视频| 综合色av麻豆| 大话2 男鬼变身卡| 久久久久久久久久久丰满| 黄色怎么调成土黄色|