• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mild closed head traumatic brain injury-induced changes in monoamine neurotransmitters in the trigeminal subnuclei of a rat model: mechanisms underlying orofacial allodynias and headache

    2017-08-07 02:29:03GolamMustafaJiameiHouRachelNelsonShigeharuTsudaMansuraJahanNaweedMohammadJosephWattsFloydompsonProdipBose

    Golam Mustafa, Jiamei Hou, Rachel Nelson Shigeharu Tsuda, Mansura Jahan Naweed S. Mohammad Joseph V. Watts Floyd J. ■ompson,, Prodip Bose,

    1 Brain Rehabilitation Research Center of Excellence, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA

    2 Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA

    3 Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA

    4 Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA

    Mild closed head traumatic brain injury-induced changes in monoamine neurotransmitters in the trigeminal subnuclei of a rat model: mechanisms underlying orofacial allodynias and headache

    Golam Mustafa1,2, Jiamei Hou1,2, Rachel Nelson1, Shigeharu Tsuda2, Mansura Jahan1, Naweed S. Mohammad1, Joseph V. Watts1, Floyd J. ■ompson1,2,3, Prodip Bose1,2,4,*

    1 Brain Rehabilitation Research Center of Excellence, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA

    2 Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA

    3 Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA

    4 Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA

    Our recent findings have demonstrated that rodent models of closed head traumatic brain injury exhibit comprehensive evidence of progressive and enduring orofacial allodynias, a hypersensitive pain response induced by non-painful stimulation.ese allodynias, tested using thermal hyperalgesia, correlated with changes in several known pain signaling receptors and molecules along the trigeminal pain pathway, especially in the trigeminal nucleus caudalis.is study focused to extend our previous work to investigate the changes in monoamine neurotransmitter immunoreactivity changes in spinal trigeminal nucleus oralis, pars interpolaris and nucleus tractus solitaries following mild to moderate closed head traumatic brain injury, which are related to tactile allodynia, touch-pressure sensitivity, and visceral pain. Our results exhibited significant alterations in the excitatory monoamine, serotonin, in spinal trigeminal nucleus oralis and pars interpolaris which usually modulate tactile and mechanical sensitivity in addition to the thermal sensitivity. Moreover, we also detected a robust alteration in the expression of serotonin, and inhibitory molecule norepinephrine in the nucleus tractus solitaries, which might indicate the possibility of an alteration in visceral pain, and existence of other morbidities related to solitary nucleus dysfunction in this rodent model of mild to moderate closed head traumatic brain injury. Collectively, widespread changes in monoamine neurotransmitter may be related to orofacial allodynhias and headache aer traumatic brain injury.

    nerve regeneration; mild to moderate traumatic brain injury; trigeminal sensory system; neuromodulators; facial and somatic allodynia; thermal hyperalgesia; headache; migraine; neural regeneration

    Introduction

    Traumatic brain injury (TBI) is a major cause of death and disability affecting more than 10 million people globally every year (Hyder et al., 2007). A large number of TBI patients undergo mild to moderate TBI (mTBI) which is oen unattended clinically. mTBI causes multiple morbidities and neurological sequela including long-term sensory disabilities. Post-traumatic headache (PTH) is one of the most common and persisting sensory disabilities following TBI (Hoffman et al., 2007, 2011; Hyder et al., 2007; Theeler et al., 2013). Many patients with PTH and migraine also develop increased facial sensitization called facial allodynia (Burstein et al., 2010).e pathophysiology of this PTH or associated facial allodynia is unknown. However, the functional comorbidity of PTH and facial allodynia is consistent with a systemic sensitization affecting the significant anatomical viscerosomatic convergence of the trigeminal vascular afferents and facial cutaneous afferents within the trigeminal sensory system (Burstein et al., 2000; Sandkuhler, 2009; Sokolov et al., 2012; Noseda and Burstein, 2013).e cutaneous allodynia of extra cephalic regions seen in migraine and cluster headache patients (Edelmayer et al., 2009) often includes sensitization to thermal, touch, and pressure modalities.

    Figure 1 Possible neurological sequelae following traumatic brain injury leading to the development of post-traumatic headache.

    A significant alteration in facial thermosensitivity/allodynia has been reported recently by us in this rodent model of closed head traumatic brain injury (cTBI) based on an operant avoidance behavior of reward/conflict to a noxious challenge temperature (Mustafa et al., 2016). We reported that cTBI causes significant loss of noradrenergic cells of the locus coeruleus (Bose et al., 2013; Tsuda et al., 2016) and noradrenergic fiber densities in the locus coeruleus, periaqueductal gray, and medial division of central nucleus of amygdala (Tsuda et al., 2016). Physiologically, the noradrenergic inputs are vasoconstrictive through alpha-adrenergic receptor and vasodilator through beta-adrenergic receptor and are essential for maintaining the vasculature tone during normal cerebral blood flow. Accordingly, injury-associated alterations in the multiple roles of noradrenergic input, including modulation of sensory transmission, vascular tone regulation, and upregulation of vasodilators, contribute to PTH development (Figure 1). Based on previous findings from ours (Bose et al., 2013; Mustafa et al., 2016; Tsuda et al., 2016) and others (Uomoto and Esselman, 1993; Ofek and Defrin, 2007; Oshinsky and Gomonchareonsiri, 2007; Edelmayer et al., 2009), we predict that a widespread neurochemical alteration in the trigeminal sensory and associated nuclei accounts for post TBI sensory disabilities that include facial allodynia, headache, and central pain (Figure 2). In this article, we extend our recent findings regarding the alteration of neuromodulators in the trigeminal sensory system aer mTBI. Here, we have focused on monoamine neurotransmitter immunoreactivity changes in spinal trigeminal nucleus oralis (Sp5O), pars interpolaris (Sp5I) and nucleus tractus solitaries (NTS) implicated in the pathophysiology of allodynia and headache aer mTBI.

    Materials and Methods

    Animals

    Sprauge-Dawley specific pathogen free (SPF) female rats (12 weeks old, weighing 240–270 g at the start of this study; Charles River Laboratory, USA) were used in this study. All procedures were performed in accordance with the U.S Government Principle for the Utilization and Care of Vertebrate Animals, specifically following the National Institutes of Health “Guide for the Care and Use of Laboratory Animals”. Experimental protocols were approved by the Institutional Animal Care & Use Committee (IACUC) at the North Florida/South Georgia Veterans Health System, and the University of Florida, USA.

    Figure 2 Diagram showing the pathways of neuronal connection between various trigeminal subnuclei [spinal trigeminal nucleus oralis (Sp5O), pars interpolaris (Sp5I), pars caudalis (Sp5C) and nucleus tractus solitaries (NTS)], thalamus and sensory cortex.

    Surgical approach to create closed head mTBI

    For producing closed head mTBI, a standardized 1.25 m/ 450 g weight-drop method (Marmarou model, Marmarou et al., 1994b) was used using the procedures as previously described in the original reports (Foda and Marmarou, 1994; Marmarou et al., 1994a) and in our recently published reports (Bose et al., 2013; Mustafa et al., 2016; Tsuda et al., 2016).

    Tissue collection for immunohistochemistry

    Brain tissues were collected 2 weeks following injury, and thus considered as acute. Briefly the animals were transcardially perfused with phosphate-buffered saline (PBS; 0.01 M, pH 7.4), followed by 4% paraformaldehyde in phosphate buffer (0.1 M, pH 7.4, 4°C) for immunohistochemistry. Briefly, the brain was dissected and post-fixed with fresh 4% paraformaldehyde for 24—48 hours. The whole brain was placed into 30% sucrose for 3 days and then cut serially into 40-μm-thick sections rostrocaudally by Cryostat (Leica CM 1850, Leica Biosystems, Bannockburn, IL, USA) approximately from Bregma: –10.68 mm to –11.04 mm for Sp5O;–12.84 mm to –13.20 mm for Sp5I, and –14.40 mm to –14.76 mm for NTS according to rat stereotaxic atlas of Paxinos and Watson (Watson, 2009).

    Immunohistochemical analysis

    Figure 3 Immunofluorescence staining for 5-HT in the trigeminal subnuclei Sp5O (A), Sp5I (B) and NTS (C).

    A total of five sets of serial sections (approximately 80 μm apart from one another) for every specified region (SP50, SP5I and NTS) were collected from each animal (3 normal and 3 mTBI). The sections were incubated with three antibodies for 24 hours at 4°C: rabbit anti-serotonin (5-HT) (1:6,000), mouse anti-dopamine beta-hydroxylase (DβH) for norepinephrine (1:6,000), and rabbit anti-neurokinin 1 receptor (NK1R) (1;1,000). Aer washing with PBS, sections were then incubated with secondary antibodies (Alexa Fluor 594 goat anti-rabbit immunoglobulin G [IgG], 1:2,000 for 5-HT and NK1R; Alexa Fluor 488 goat anti-mouse IgG, 1: 2,000 for DβH), processed and mounted using procedure as described earlier (Watson, 2009; Bose et al., 2013; Mustafa et al., 2016). For microscopic observation, slides were viewed using a Zeiss Confocal microscope (LSM 710) with Zen software (version 2012; Carl Zeiss, Jena, Germany). The number of immunopositive cells (NK1R) and fibers (5-HT, DβH) in every 3rdequally spaced serial sections for 4 sections was counted in an investigator blinded semiquantitative approach by using the petrimetric (sine-wave) probe to quantify immunoreactive cells and fibers as the procedure described earlier (Ducros and Wolff, 2016) in Sp5O, Sp5I and NTS.e procedure for acquiring images, and unbiased stereological analysis were the same as we previously reported or reported by others (West and Gundersen, 1990; Bose et al., 2005; Bernstein et al., 2011; Bernstein and O’Malley, 2013; Hou et al., 2014; Mustafa et al., 2016).

    Results

    Neurochemical alteration in trigeminal subnuclei

    Figure 4 Immunofluorescence labeling of the trigeminal subnuclei Sp5O (A), Sp5I (B) and NTS (C).

    In both Sp5O and Sp5l, increased immunoreactive 5-HT expression was observed in closed head mTBI rats than in age- and sex-matched normal control rats (Figure 3A–C).e expression levels of DβH (a surrogate marker for norepinephrine) and NK1R were similar in both closed head mTBI rats and normal control rats (Figure 4A,B). However, the NK1R expression in Sp5O was greater in closed head mTBI rats than in the normal control rats (Figure 4A).

    Neuromodulatory changes in the NTS

    Following TBI, significant changes in the expression of 5-HT and the number of DβH immunoreactive fibers were observed in the caudal NTS. The expression of 5-HT was increased, and DβH immunoreactivity was decreased, in tissues from TBI animals than in normal tissues (Figure 3C,Figure 4C). NK1R expression was similar between closed head mTBI and normal control rats (Figure 4C).

    Discussion

    mTBI-caused diffuse axonal injury (Bose et al., 2012) results in widespread neurological sequelae in human and experimental animal models. PTH and cephalgic syndrome after TBI may be viewed as expression of surrogate symptomatic markers such as facial allodynia, tactile allodynia, and disturbance in circadian rhythm. PTH is very common in mTBI, so we used an mTBI animal model in our study. However, there are some controversies regarding mTBI modelssince the pioneer investigators (Marmarou and colleagues) and subsequent users of the Marmarou’s closed head injury model compared brain injuries using intensities sustained by 450 g weight drop from 1 m to 2 m; designations: 1 m: mild; 1.5 m: moderate; 2.0 m: severe.is classification was based upon, a) histological changes and b) neurologic deficits (Foda and Marmarou, 1994; Marmarou et al., 1994). However, a more comprehensive characterization of pre-clinical injury severity is needed so that the terms mild to moderate injury models will have more documented relevance to human TBI, for which duration of loss of consciousness and absence of detectable anatomical injury are standard criteria for mTBI. In this regard, it is worth noting that for the original closed head Marmarou TBI model, 1.25 m × 450 g weight drop was not an injury parameter in the original Marmarou report. The 1.25 m/450 g injury parameter was included in our studies to produce an injury that would potentially induce more detectable and enduring pain-like behavior within the setting of a mTBI model. Since this mTBI model exhibits injury patterns and detectable symptoms in pain-like behavior consistent with human mTBI, we extended our recently published work to provide better understanding in the possible pathophysiology of mTBI-induced pain and headache in this report.

    We recently reported that several key neuromodulators related to pain perception were observed to be altered in the Sp5C following closed head mTBI (Mustafa et al., 2016). In the present study, we extended our investigation of the extent of neurochemical alteration in the trigeminal nucleus to include the subnuclei, Sp5O and Sp5I. It is known that caudal part of Sp5C receives afferents that transmit pain and temperature from the orofacial region. Whereas, the more rostral Sp5O and Sp5I are involved in the transmission of tactile sensitivity that would be more closely related to tactile allodynia (Sessle et al., 1986).e upregulation of 5-HT in Sp5O and Sp5I subnuclei in the current study is similar to what was observed in the nucleus caudalis in a study from Mustafa et al. (2016). Accordingly, this altered expression of 5-HT may relate to tactile allodynia in the orofacial region. Therefore, these observations suggest that comorbidity of visceral (PTH) and somatic sensitization (facial allodynia) is consistent with TBI-induced neurochemical alterations in both the caudal and more rostral trigeminal subnuclei.e changes in 5-HT expession in these two trigeminal subnuclei may be directly related to the physiological alteration in touch and pressure sensitivity (allodynia) in these closed head mTBI animals. This finding may be related to the changes in touch and pressure sensitivity in the periorbital region of the TBI patients as reported in several case reports (Hines, 1999; Walker et al. 2005; Ofek and Defrin, 2007).

    Although the exact mechanism of PTH is unknown, the TBI-associated changes that lead to sensitization of trigeminal system to both vascular afferents (headache) and cutaneous afferents (facial allodynia) are promising candidates for the headache/allodynia related pain. Headache has been considered as a part of a systemic sensitization that includes facial allodynia (Ofek and Defrin, 2007; Bernstein and Burstein, 2012; Defrin, 2014). Accordingly, it is becoming progressively evident that headache (trigeminovascular) and facial allodynia (trigeminosomatic) are companion derivatives of sensitization at multiple levels of the trigeminal system (Ofek and Defrin, 2007; Bernstein and Burstein, 2012; Defrin, 2014). Results from this work exhibited significant alterations in the excitatory molecule, 5-HT, in the trigeminal subnuclei oralis and interpolaris regions, which may be related to the alterations in tactile and mechanical sensitivity from orofacial regions following TBI. Although etiologies associated with trigeminal sensitization are heavily weighting the balance, changes in vessel tone have also been suggested in association with several primary headache disorders (Couturier et al., 1997; Limmroth et al., 2007; Asghar et al., 2011).

    We further noticed that closed head mTBI injury caused significant alteration in the immunoreactive expression of some key neuromodulators in NTS. It is known that a group of fibers from the trigeminal nucleus project to the NTS, although the role of NTS in tactile sensation is not clear. However, NTS is well known to subserve afferent projection of general and special visceral afferent modalities including visceral pain, gag reflex, respiratory reflex, and taste sensation, projecting centrally through the cranial nerves VII, IX and X (Goldsmith, 2000; Machado et al., 2000; Cortelli and Pierangeli, 2003; Kitchen et al., 2006; Chen et al., 2008; Deyama et al., 2009). It is also known that general visceral afferent and special visceral (taste) modalities project to the caudal and rostral NTS regions, respectively. Accordingly, these current observations of TBI-induced changes in the caudal solitarius are consistent with the reports that many TBI patients develop neurogenic dysphagia which has been reported to be directly related to dysfunction of NTS (Saito et al., 2006). In patients with serotonergic symptoms, serotonergic hyperactivity at the NTS may inhibit swallowing reflex (Kessler and Jean, 1985). In addition, a direct innervation from mechanoreceptor, and chemoreceptor from carotid body are located near the bifurcation of the carotid artery. Reversible cerebral vasoconstriction syndrome is believed to be related to the use of vasoactive drug in about 50% of cases (Miller et al., 2015a, b).ese drugs include selective 5-HT reuptake inhibitors, and other agents or their withdrawal such as nitroglycerin that induce headache (Limmroth et al., 1996; Couturier et al., 1997; Eriksen et al., 2004; Lipton et al., 2004; 2013). We predict that changes in serotonergic neurochemistry in the NTS may play a significant role in the development of PTH by altering the normal integrity of the cerebral blood vessel. In fact, we have recently observed a significant change in the vasculature of the middle cerebral artery following closed head TBI by an MRI-based angiogram study (data not shown). Future studies are needed to detail the changes in the solitary nucleus, which may provide important information regarding the role of solitary nucleus in the PTH, visceral pain, and gastroparesis following TBI.

    Conclusion

    Author contributions:GM conducted the majority of this research work and he wrote the manuscript. JH and RN conducted traumatic brain injury surgery, post-operative care and animal handling. ST, MJ, NSM, and JVW assisted in tissue processing and microscopic quantification. FJT assisted in editing the manuscript and scientific discussion. PB supervised and organized the entire project and provided insight in experimental design, scientific, technical and editorial assistance to complete this manuscript work. All authors approved the final version of this paper.

    Conflicts of interest:There is no financial, personal, or other form of conflict of interest among all the authors or the organizations they are af filiated with.

    Research ethics:All procedures were performed in accordance with the U.S Government Principle for the Utilization and Care of Vertebrate Animals, specifically following the National Institutes of Health “Guide for the Care and Use of Laboratory Animals”. Experimental protocols were approved by the Institutional Animal Care & Use Committee (IACUC) at the North Florida/South Georgia Veterans Health System, and the University of Florida, USA.

    Open access statement:

    Contributor agreement:A statement of “Publishing Agreement” has been signed by an authorized author on behalf of all authors prior to publication.

    Plagiarism check:This paper has been checked twice with duplication-checking soware ienticate.

    Peer review:A double-blind and stringent peer review process has been performed to ensure the integrity, quality and significance of this paper.

    Asghar MS, Hansen AE, Amin FM, van der Geest RJ, Koning P, Larsson HB, Olesen J, Ashina M (2011) Evidence for a vascular factor in migraine. Ann Neurol 69:635-645.

    Bernstein AI, O’Malley KL (2013) MPP+-induces PUMA- and p53-dependent, but ATF3-independent cell death. Toxicol Lett 219:93-98.

    Bernstein AI, Garrison SP, Zambetti GP, O’Malley KL (2011) 6-OHDA generated ROS induces DNA damage and p53- and PUMA-dependent cell death. Mol Neurodegener 6:2.

    Bernstein C, Burstein R (2012) Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J Clin Neurol 8:89-99.

    Bose P, Hou J, Nelson R, Nissim N, Parmer R, Keener J, Wacnik PW,ompson FJ (2013) Effects of acute intrathecal baclofen in an animal model of TBI-induced spasticity, cognitive, and balance disabilities. J Neurotrauma 30:1177-1191.

    Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH (2000) An association between migraine and cutaneous allodynia. Ann Neurol 47:614-624.

    Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, Becerra L, Borsook D (2010)alamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68:81-91.

    Chen SL, Wu XY, Cao ZJ, Fan J, Wang M, Owyang C, Li Y (2008) Subdiaphragmatic vagal afferent nerves modulate visceral pain. Am J Physiol Gastrointest Liver Physiol 294:G1441-1449.

    Cortelli P, Pierangeli G (2003) Chronic pain-autonomic interactions. Neurol Sci 24 Suppl 2:S68-70.

    Couturier EG, Laman DM, van Duijn MA, van Duijn H (1997) Influence of caffeine and caffeine withdrawal on headache and cerebral blood flow velocities. Cephalalgia 17:188-190.

    Defrin R (2014) Chronic post-traumatic headache: clinical findings and possible mechanisms. J Man Maniper 22:36-44.

    Deyama S, Katayama T, Kondoh N, Nakagawa T, Kaneko S, Yamaguchi T, Yoshioka M, Minami M (2009) Role of enhanced noradrenergic transmission within the ventral bed nucleus of the stria terminalis in visceral pain-induced aversion in rats. Behav Brain Res 197:279-283.

    Edelmayer RM, Vanderah TW, Majuta L, Zhang E-T, Fioravanti B, De Felice M, Chichorro JG, Ossipov MH, King T, Lai J, Kori SH, Nelsen AC, Cannon KE, Heinricher MM, Porrecaf(2009) Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol 65:184-193.

    Eriksen MK, Thomsen LL, Olesen J (2004) New international classification of migraine with aura (ICHD-2) applied to 362 migraine patients. Eur J Neurol 11:583-591.

    Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg 80:301-313.

    Goldsmith T (2000) Evaluation and treatment of swallowing disorders following endotracheal intubation and tracheostomy. Int Anesthesiol Clin 38:219-242.

    Hines ME (1999) Posttraumatic headaches. In: The evaluation and treatment of mild traumatic brain injury (Varney NR, Roberts RJ, eds),pp375-410. Psychology Press.

    Hoffman JM, Pagulayan KF, Zawaideh N, Dikmen S, Temkin N, Bell KR (2007) Understanding pain aer traumatic brain injury: impact on community participation. Am J Phys Med Rehabil 86:962-969.

    Hoffman JM, Lucas S, Dikmen S, Braden CA, Brown AW, Brunner R, Diaz-Arrastia R, Walker WC, Watanabe TK, Bell KR (2011) Natural history of headache aer traumatic brain injury. J Neurotrauma 28:1719-1725.

    Hou J, Nelson R, Nissim N, Parmer R, Thompson FJ, Bose P (2014) Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J Neurotrauma 31:1088-1106.

    Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007)e impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341-353.

    Kessler JP, Jean A (1985) Inhibition of the swallowing reflex by local application of serotonergic agents into the nucleus of the solitary tract. Eur J Pharmacol 118:77-85.

    Kitchen AM, O’Leary DS, Scislo TJ (2006) Sympathetic and parasympathetic component of bradycardia triggered by stimulation of NTS P2X receptors. Am J Physiol Heart Circ Physiol 290:H807-812.

    Limmroth V, Biondi D, Pfeil J, Schwalen S (2007) Topiramate in patients with episodic migraine: reducing the risk for chronic forms of headache. Headache 47:13-21.

    Limmroth V, May A, Auerbach P, Wosnitza G, Eppe T, Diener HC (1996) Changes in cerebral blood flow velocity aer treatment with sumatriptan or placebo and implications for the pathophysiology of migraine. J Neurol Sci 138:60-65.

    Lipton RB, Bigal ME, Steiner TJ, Silberstein SD, Olesen J (2004) Classification of primary headaches. Neurology 63:427-435.

    Machado BH, Castania JA, Bonagamba LG, Salgado HC (2000) Neurotransmission of autonomic components of aortic baroreceptor afferents in the NTS of awake rats. Am J Physiol Heart Circ Physiol 279:H67-75.

    Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 80:291-300.

    Miller TR, Shivashankar R, Mossa-Basha M, Gandhi D (2015a) Reversible Cerebral Vasoconstriction Syndrome, Part 1: Epidemiology, Pathogenesis, and Clinical Course. AJNR Am J Neuroradiol 36:1392-1399.

    Miller TR, Shivashankar R, Mossa-Basha M, Gandhi D (2015b) Reversible Cerebral Vasoconstriction Syndrome, Part 2: Diagnostic Work-Up, Imaging Evaluation, and Differential Diagnosis. AJNR Am J Neuroradiol 36:1580-1588.

    Mustafa G, Hou J, Tsuda S, Nelson R, Sinharoy A, Wilkie Z, Pandey R, Caudle RM, Neubert JK, Thompson FJ, Bose P (2016) Trigeminal neuroplasticity underlies allodynia in a preclinical model of mild closed head traumatic brain injury (cTBI). Neuropharmacology 107:27-39.

    Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain 154 Suppl 1.

    Oshinsky ML, Gomonchareonsiri S (2007) Episodic dural stimulation in awake rats: a model for recurrent headache. Headache 47:1026-1036.

    Saito Y, Kawashima Y, Kondo A, Chikumaru Y, Matsui A, Nagata I, Ohno K (2006) Dysphagia-gastroesophageal reflux complex: complications due to dysfunction of solitary tract nucleus-mediated vago-vagal reflex. Neuropediatrics 37:115-120.

    Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707-758.

    Sessle BJ, Hu JW, Amano N, Zhong G (1986) Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Pain 27:219-235.

    Sokolov AY, Lyubashina OA, Panteleev SS (2012) Spinal trigeminal neurons demonstrate an increase in responses to dural electrical stimulation in the orofacial formalin test. J Headache Pain 13:75-82.

    Theeler B, Lucas S, Riechers RG 2nd, Ruff RL (2013) Post-traumatic headaches in civilians and military personnel: a comparative, clinical review. Headache 53:881-900.

    Tsuda S, Hou J, Nelson R, Mustafa G, Watts J, Thompson FJ, Bose P (2016) Impact of chronic traumatic brain injury on noradrenergic innervation to the major anxiety-related neural pathways in rats. Poster: 322 - Traumatic Brain Injury: Models, Mechanisms, and Treatments 322.12. Society for Neuroscience Abstract, San Diego, Cal.

    Uomoto JM, Esselman PC (1993) Traumatic brain injury and chronic pain: differential types and rates by head injury severity. Arch Phys Med Rehabil 74:61-64.

    Walker WC, Seel RT, Curtiss G, Warden DL (2005) Headache after moderate and severe traumatic brain injury: a longitudinal analysis. Arch Phys Med Rehabil 86:1793-1800.

    West MJ, Gundersen HJ (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296:1-22.

    Copyedited by Li CH, Song LP, Zhao M

    How to cite this article: Mustafa G, Hou J, Nelson R, Tsuda S, Jahan M, Mohammad NS, Watts JV,ompson FJ, Bose P (2017) Mild closed head traumatic brain injury-induced changes in monoamine neurotransmitters in the trigeminal subnuclei of a rat model: mechanisms underlying orofacial allodynias and headache. Neural Regen Res 12(6):981-986.

    *Correspondence to:

    Prodip Bose, M.D., Ph.D., pkbose@u fl.edu or Prodip.bose@va.gov.

    orcid:

    0000-0000-1378-3644

    (Prodip Bose)

    10.4103/1673-5374.208594

    Accepted: 2017-04-22

    国内精品宾馆在线| 精品亚洲成a人片在线观看| 少妇被粗大的猛进出69影院 | .国产精品久久| 欧美亚洲 丝袜 人妻 在线| 色吧在线观看| 99九九在线精品视频| 热re99久久精品国产66热6| 男女无遮挡免费网站观看| 亚洲国产日韩一区二区| 国产精品无大码| 国产亚洲最大av| 日本欧美国产在线视频| 精品一区二区三卡| 伊人亚洲综合成人网| 亚洲精品色激情综合| 精品卡一卡二卡四卡免费| 久久精品国产亚洲网站| 精品人妻在线不人妻| 最近中文字幕2019免费版| 国产欧美日韩综合在线一区二区| 国产免费视频播放在线视频| 如何舔出高潮| 伦理电影大哥的女人| 欧美精品一区二区免费开放| 啦啦啦中文免费视频观看日本| 人妻系列 视频| 成人午夜精彩视频在线观看| 亚洲精品乱码久久久久久按摩| 国产男人的电影天堂91| 在现免费观看毛片| 亚洲三级黄色毛片| 天天躁夜夜躁狠狠久久av| 日韩大片免费观看网站| 简卡轻食公司| 热99久久久久精品小说推荐| 久久热精品热| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品在线电影| 免费不卡的大黄色大毛片视频在线观看| 大片免费播放器 马上看| 嘟嘟电影网在线观看| 亚洲性久久影院| 亚洲av中文av极速乱| 午夜久久久在线观看| 99久国产av精品国产电影| 丁香六月天网| 满18在线观看网站| 午夜激情久久久久久久| 久久久久国产精品人妻一区二区| 97超碰精品成人国产| 亚洲av国产av综合av卡| 国产日韩一区二区三区精品不卡 | 免费大片黄手机在线观看| 欧美日韩在线观看h| 制服人妻中文乱码| 蜜桃国产av成人99| 欧美老熟妇乱子伦牲交| 成年人免费黄色播放视频| 日韩欧美一区视频在线观看| 久久久久久久亚洲中文字幕| 黄色欧美视频在线观看| 成人综合一区亚洲| 亚洲精品成人av观看孕妇| 热re99久久国产66热| 91精品国产九色| 日本黄色日本黄色录像| 色婷婷av一区二区三区视频| 高清欧美精品videossex| 国产亚洲av片在线观看秒播厂| 免费av不卡在线播放| 精品一区二区免费观看| 免费日韩欧美在线观看| 成年女人在线观看亚洲视频| 2022亚洲国产成人精品| 国精品久久久久久国模美| 久久久久久久国产电影| 国产免费现黄频在线看| 亚州av有码| 久久久久网色| 黄色欧美视频在线观看| 国产极品天堂在线| 日日摸夜夜添夜夜爱| 纯流量卡能插随身wifi吗| 亚洲经典国产精华液单| 精品久久蜜臀av无| 人妻系列 视频| 午夜福利,免费看| 国产黄频视频在线观看| 一区二区三区免费毛片| 男女无遮挡免费网站观看| 国产永久视频网站| 天美传媒精品一区二区| 国产亚洲av片在线观看秒播厂| 欧美日韩一区二区视频在线观看视频在线| 免费不卡的大黄色大毛片视频在线观看| av不卡在线播放| 日本欧美视频一区| 日本与韩国留学比较| 天堂8中文在线网| 性色av一级| 欧美激情国产日韩精品一区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产最新在线播放| 日韩一区二区视频免费看| 91午夜精品亚洲一区二区三区| 国产高清国产精品国产三级| 18禁观看日本| 亚洲第一区二区三区不卡| 国产男人的电影天堂91| 蜜桃国产av成人99| 久久人妻熟女aⅴ| 国产成人精品婷婷| 婷婷成人精品国产| 国产男女超爽视频在线观看| 国产亚洲欧美精品永久| 国产精品熟女久久久久浪| 一级毛片aaaaaa免费看小| 久久免费观看电影| 亚洲色图综合在线观看| 中文字幕亚洲精品专区| 日本免费在线观看一区| 制服人妻中文乱码| 亚洲少妇的诱惑av| freevideosex欧美| 精品少妇内射三级| 日韩一区二区视频免费看| 超色免费av| 久久99热这里只频精品6学生| 久热久热在线精品观看| 成年美女黄网站色视频大全免费 | 日韩成人伦理影院| 国产欧美日韩综合在线一区二区| 女性被躁到高潮视频| 人妻 亚洲 视频| av在线观看视频网站免费| av国产精品久久久久影院| 九九爱精品视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲av电影在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 大香蕉久久网| 九色成人免费人妻av| 亚洲欧美一区二区三区国产| 国产成人精品在线电影| 亚洲欧洲精品一区二区精品久久久 | 少妇 在线观看| 午夜福利,免费看| 少妇人妻 视频| 免费日韩欧美在线观看| 亚洲在久久综合| 亚洲伊人久久精品综合| 老司机亚洲免费影院| 少妇被粗大的猛进出69影院 | 日韩三级伦理在线观看| 99热6这里只有精品| 精品少妇黑人巨大在线播放| 国产欧美另类精品又又久久亚洲欧美| 成人二区视频| 成人毛片a级毛片在线播放| 18禁在线播放成人免费| 国产高清三级在线| 日本色播在线视频| 在线 av 中文字幕| 欧美激情极品国产一区二区三区 | 国产精品嫩草影院av在线观看| 日韩欧美一区视频在线观看| 国产成人91sexporn| 国产老妇伦熟女老妇高清| 国产精品人妻久久久久久| 欧美日韩视频精品一区| 男男h啪啪无遮挡| 久久狼人影院| 视频区图区小说| 在线 av 中文字幕| 99国产精品免费福利视频| 国产伦精品一区二区三区视频9| 亚洲四区av| 中国美白少妇内射xxxbb| av福利片在线| 国产黄色视频一区二区在线观看| 波野结衣二区三区在线| av一本久久久久| 欧美成人精品欧美一级黄| 人体艺术视频欧美日本| 91久久精品国产一区二区三区| 亚洲精品456在线播放app| 你懂的网址亚洲精品在线观看| 日本猛色少妇xxxxx猛交久久| 性色av一级| 国产熟女欧美一区二区| 久久久久久久精品精品| 午夜视频国产福利| 国产成人91sexporn| 在线免费观看不下载黄p国产| 日日摸夜夜添夜夜添av毛片| 国产黄色免费在线视频| 久久免费观看电影| 成人手机av| 国产成人av激情在线播放 | 免费观看a级毛片全部| 美女cb高潮喷水在线观看| 亚洲国产精品999| 久久99热6这里只有精品| 夫妻性生交免费视频一级片| 亚洲国产精品一区三区| 国产免费又黄又爽又色| 国产 一区精品| 国产精品久久久久成人av| kizo精华| 啦啦啦在线观看免费高清www| 丰满饥渴人妻一区二区三| 99精国产麻豆久久婷婷| 亚洲色图综合在线观看| 97超碰精品成人国产| 亚洲伊人久久精品综合| 丝袜在线中文字幕| 18在线观看网站| 国产免费一区二区三区四区乱码| 精品少妇黑人巨大在线播放| 男女国产视频网站| 丁香六月天网| 免费播放大片免费观看视频在线观看| 久久99热6这里只有精品| 高清午夜精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久这里有精品视频免费| 搡女人真爽免费视频火全软件| 丝袜脚勾引网站| 黄色一级大片看看| 18禁在线播放成人免费| 秋霞伦理黄片| 成人国语在线视频| 欧美亚洲日本最大视频资源| 久久久久久久久久久久大奶| 国产亚洲精品久久久com| 国产成人一区二区在线| 国产精品欧美亚洲77777| 中文字幕免费在线视频6| 成人毛片a级毛片在线播放| 热re99久久国产66热| kizo精华| 夫妻午夜视频| tube8黄色片| 日本av免费视频播放| 国产精品嫩草影院av在线观看| 黄色配什么色好看| 97在线视频观看| 久久精品国产亚洲av天美| 欧美日韩成人在线一区二区| 九色亚洲精品在线播放| 国产精品久久久久久久电影| 久久国产亚洲av麻豆专区| 午夜免费观看性视频| 久久久久精品久久久久真实原创| 蜜桃国产av成人99| 欧美日韩成人在线一区二区| 最近2019中文字幕mv第一页| 在线看a的网站| 啦啦啦视频在线资源免费观看| 少妇的逼水好多| 久久久久久伊人网av| 国产69精品久久久久777片| 久久99一区二区三区| 久久国产亚洲av麻豆专区| 国产精品人妻久久久久久| 国产精品国产三级国产av玫瑰| 亚洲精品中文字幕在线视频| 一区二区三区精品91| 在现免费观看毛片| 日本免费在线观看一区| 能在线免费看毛片的网站| 精品人妻熟女毛片av久久网站| 色哟哟·www| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 久久精品久久久久久久性| 91久久精品电影网| 国产精品久久久久成人av| 女人久久www免费人成看片| 伦理电影免费视频| 精品视频人人做人人爽| 国产男人的电影天堂91| 久久久久久久亚洲中文字幕| 日日撸夜夜添| 99热这里只有精品一区| 久久精品国产自在天天线| 51国产日韩欧美| 国产av码专区亚洲av| 久久青草综合色| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 精品亚洲成a人片在线观看| 69精品国产乱码久久久| 性色av一级| a级毛片在线看网站| 99九九在线精品视频| 亚洲国产日韩一区二区| 黑人欧美特级aaaaaa片| 18+在线观看网站| 国产国拍精品亚洲av在线观看| 久久久久久久久久久丰满| 欧美日韩在线观看h| 狂野欧美激情性bbbbbb| 日韩一本色道免费dvd| 精品久久久精品久久久| 欧美日韩综合久久久久久| 亚洲欧美日韩卡通动漫| 国产一区二区三区综合在线观看 | 日本黄色片子视频| 久久久午夜欧美精品| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 黄色毛片三级朝国网站| 亚洲中文av在线| 国产日韩一区二区三区精品不卡 | 爱豆传媒免费全集在线观看| 一个人免费看片子| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩一区二区三区在线 | 涩涩av久久男人的天堂| 女人精品久久久久毛片| 日本91视频免费播放| 婷婷色综合大香蕉| 蜜桃国产av成人99| 日本午夜av视频| 青春草国产在线视频| 91久久精品电影网| 欧美精品亚洲一区二区| 91午夜精品亚洲一区二区三区| 在线 av 中文字幕| 中文天堂在线官网| 亚洲人与动物交配视频| freevideosex欧美| 久久99热6这里只有精品| 亚洲精品乱码久久久久久按摩| a级毛片黄视频| 日本-黄色视频高清免费观看| 18禁在线无遮挡免费观看视频| 国产精品一区二区三区四区免费观看| av国产精品久久久久影院| 国产精品99久久久久久久久| 成人漫画全彩无遮挡| 亚洲人成网站在线观看播放| 久久久久人妻精品一区果冻| 人妻一区二区av| 激情五月婷婷亚洲| 免费看不卡的av| 一级a做视频免费观看| 国产日韩欧美在线精品| 高清av免费在线| 又黄又爽又刺激的免费视频.| 桃花免费在线播放| 一级爰片在线观看| 十分钟在线观看高清视频www| 伊人久久国产一区二区| 99热网站在线观看| 老女人水多毛片| 日韩制服骚丝袜av| 丁香六月天网| 国产男人的电影天堂91| 在线观看免费视频网站a站| 2018国产大陆天天弄谢| 秋霞伦理黄片| 搡老乐熟女国产| 久久久精品免费免费高清| 欧美精品国产亚洲| 日韩精品免费视频一区二区三区 | 免费观看性生交大片5| 99re6热这里在线精品视频| 有码 亚洲区| 国产爽快片一区二区三区| 欧美日本中文国产一区发布| 日韩不卡一区二区三区视频在线| 在现免费观看毛片| 久热这里只有精品99| 26uuu在线亚洲综合色| 水蜜桃什么品种好| 欧美最新免费一区二区三区| 日韩强制内射视频| 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区三区| 特大巨黑吊av在线直播| 久久99一区二区三区| 黄色毛片三级朝国网站| 18+在线观看网站| 国产精品人妻久久久影院| 99热这里只有精品一区| freevideosex欧美| 最后的刺客免费高清国语| 大陆偷拍与自拍| 亚洲精品国产av成人精品| 午夜福利在线观看免费完整高清在| 亚洲四区av| 两个人的视频大全免费| 一边摸一边做爽爽视频免费| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| 亚洲av成人精品一二三区| 精品亚洲乱码少妇综合久久| 五月玫瑰六月丁香| 国产午夜精品一二区理论片| 99九九线精品视频在线观看视频| 国产探花极品一区二区| 好男人视频免费观看在线| 九九在线视频观看精品| 在现免费观看毛片| 国产黄色免费在线视频| 欧美成人精品欧美一级黄| 视频区图区小说| 十八禁高潮呻吟视频| 一本色道久久久久久精品综合| 久久久久久久亚洲中文字幕| 久久久精品94久久精品| 一个人看视频在线观看www免费| 国产成人av激情在线播放 | 久久ye,这里只有精品| 色5月婷婷丁香| 免费观看性生交大片5| 成人免费观看视频高清| 欧美日韩国产mv在线观看视频| 欧美三级亚洲精品| 欧美xxxx性猛交bbbb| 国产黄频视频在线观看| 自线自在国产av| 亚洲国产精品专区欧美| 精品视频人人做人人爽| 成人漫画全彩无遮挡| 久久鲁丝午夜福利片| 好男人视频免费观看在线| 狠狠婷婷综合久久久久久88av| 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 韩国av在线不卡| 一区在线观看完整版| 亚洲精品乱码久久久v下载方式| 色婷婷av一区二区三区视频| 国产淫语在线视频| 青春草亚洲视频在线观看| 欧美人与善性xxx| 久久国产亚洲av麻豆专区| 最近中文字幕2019免费版| 日韩欧美一区视频在线观看| 亚洲欧洲日产国产| 久久精品国产亚洲av涩爱| 91精品伊人久久大香线蕉| 日本免费在线观看一区| 亚洲五月色婷婷综合| 男人操女人黄网站| 老熟女久久久| 国产精品免费大片| 精品少妇黑人巨大在线播放| 午夜老司机福利剧场| 两个人的视频大全免费| 国产69精品久久久久777片| 免费播放大片免费观看视频在线观看| 午夜影院在线不卡| 成人18禁高潮啪啪吃奶动态图 | 成人漫画全彩无遮挡| 国产在线免费精品| av不卡在线播放| 亚洲av国产av综合av卡| 18禁观看日本| 又粗又硬又长又爽又黄的视频| 成人午夜精彩视频在线观看| 一区二区三区四区激情视频| 插逼视频在线观看| 国产黄色视频一区二区在线观看| 观看av在线不卡| 老熟女久久久| 国产精品三级大全| 久久鲁丝午夜福利片| 性色avwww在线观看| 日韩人妻高清精品专区| 欧美亚洲日本最大视频资源| 一本—道久久a久久精品蜜桃钙片| 日韩欧美一区视频在线观看| av在线播放精品| av.在线天堂| 秋霞在线观看毛片| 亚洲美女视频黄频| 99久久精品一区二区三区| 久久99热这里只频精品6学生| 美女脱内裤让男人舔精品视频| 熟女人妻精品中文字幕| 精品国产乱码久久久久久小说| 中文字幕人妻熟人妻熟丝袜美| 久久久久视频综合| a级片在线免费高清观看视频| 精品久久国产蜜桃| 国产av一区二区精品久久| 欧美性感艳星| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 中文字幕人妻丝袜制服| 欧美日韩av久久| 五月伊人婷婷丁香| 又黄又爽又刺激的免费视频.| 久久久久人妻精品一区果冻| 国产精品一区二区在线观看99| 下体分泌物呈黄色| 免费观看a级毛片全部| 丝袜喷水一区| 一级二级三级毛片免费看| 欧美最新免费一区二区三区| 狂野欧美激情性bbbbbb| 少妇人妻 视频| 久久婷婷青草| 国产成人免费无遮挡视频| 永久免费av网站大全| 美女视频免费永久观看网站| 各种免费的搞黄视频| 中国美白少妇内射xxxbb| 精品国产国语对白av| 91久久精品电影网| 18禁观看日本| 男女边吃奶边做爰视频| 久久久久国产网址| 亚洲四区av| 如日韩欧美国产精品一区二区三区 | 国产成人精品在线电影| 51国产日韩欧美| 日韩不卡一区二区三区视频在线| 日韩一区二区视频免费看| 黄色毛片三级朝国网站| 久久久久久久久久久久大奶| 久久久久久人妻| 午夜激情久久久久久久| www.av在线官网国产| a级毛片黄视频| 日韩中字成人| 久久这里有精品视频免费| 91精品国产国语对白视频| 91久久精品电影网| 99热这里只有精品一区| 久久久精品94久久精品| 老司机影院毛片| 51国产日韩欧美| 亚洲国产av新网站| 国产精品人妻久久久久久| 国模一区二区三区四区视频| 亚洲精品亚洲一区二区| 精品人妻一区二区三区麻豆| 一级二级三级毛片免费看| 国产精品久久久久久久电影| 亚洲精品中文字幕在线视频| 啦啦啦在线观看免费高清www| 看免费成人av毛片| 成年人午夜在线观看视频| 3wmmmm亚洲av在线观看| 在线观看免费视频网站a站| 男男h啪啪无遮挡| 亚洲精品日韩在线中文字幕| 国产日韩欧美亚洲二区| 天堂8中文在线网| 大话2 男鬼变身卡| 中文字幕免费在线视频6| 欧美另类一区| .国产精品久久| 一边摸一边做爽爽视频免费| 亚洲一级一片aⅴ在线观看| 精品少妇黑人巨大在线播放| 亚洲国产色片| 国产极品粉嫩免费观看在线 | xxx大片免费视频| www.av在线官网国产| 精品人妻熟女av久视频| 少妇人妻久久综合中文| 欧美老熟妇乱子伦牲交| 日本欧美国产在线视频| 精品国产乱码久久久久久小说| 考比视频在线观看| 午夜91福利影院| 国产午夜精品久久久久久一区二区三区| 欧美一级a爱片免费观看看| 9色porny在线观看| 黄色一级大片看看| 婷婷色综合www| 欧美精品一区二区大全| 女性被躁到高潮视频| 亚洲av国产av综合av卡| 国产一区二区在线观看日韩| 国产男女内射视频| 中文字幕人妻熟人妻熟丝袜美| 久久人人爽人人爽人人片va| 成年女人在线观看亚洲视频| 亚洲av电影在线观看一区二区三区| 久热这里只有精品99| 欧美日韩视频高清一区二区三区二| 日韩熟女老妇一区二区性免费视频| 最近手机中文字幕大全| 久久热精品热| 欧美3d第一页| 九九久久精品国产亚洲av麻豆| 免费少妇av软件| 一级二级三级毛片免费看| 日韩熟女老妇一区二区性免费视频| 免费观看的影片在线观看| 日韩av不卡免费在线播放| 香蕉精品网在线| 久久久久久久久大av| 午夜免费观看性视频| 日本av手机在线免费观看| 最近中文字幕2019免费版| 午夜激情av网站| 黄片无遮挡物在线观看| 精品亚洲乱码少妇综合久久| 日本猛色少妇xxxxx猛交久久| 高清视频免费观看一区二区| 午夜福利影视在线免费观看| 欧美日韩视频精品一区| 80岁老熟妇乱子伦牲交| 国产精品久久久久成人av|