• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    2017-09-06 11:30:12呂玲玲朱元成左國(guó)防袁焜王永成
    關(guān)鍵詞:超氧化物血紅素多態(tài)

    呂玲玲 朱元成 左國(guó)防 袁焜 王永成

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)(2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    呂玲玲*,1朱元成1左國(guó)防1袁焜1王永成2

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)
    (2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    采用密度泛函DFT-B3LYP理論對(duì)非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理進(jìn)行了探討.研究結(jié)果表明氫原子抽取過程遵守單態(tài)反應(yīng)機(jī)制,主要在基態(tài)高自旋七重態(tài)勢(shì)能面進(jìn)行,且具有較低活化能(ΔG≠=65.6 kJ·mol-1),非血紅素鐵超氧化物可以作為有效氧化劑抽取氫原子。單態(tài)反應(yīng)機(jī)制可能歸因于近來建議的交換-加強(qiáng)反應(yīng)原則(EER,鐵中心具有較大交換穩(wěn)定作用)。對(duì)于O-O鍵的活化,在CASSCF(10,8)/6-31+G(d)//TZVP水平下,勢(shì)能面交叉區(qū)內(nèi),高自旋七重態(tài)(S1)和五重態(tài)(Q0)的自旋-軌道耦合(SOC)常數(shù)分別為2.26和2.19 cm-1。軌道分析表明兩條發(fā)生翻轉(zhuǎn)自旋軌道具有相同空間組成(π*sub),SOC禁阻,因此通過SOC作用反應(yīng)體系不可能有效地從七重態(tài)(S=3)勢(shì)能面系間穿越到五重態(tài)(S=2)勢(shì)能面,系間穿越可能發(fā)生在反應(yīng)最后的退出階段。

    非血紅素鐵超氧化物;多態(tài)反應(yīng)機(jī)理;系間竄越;自旋軌道耦合

    0 Introduction

    Mononuclear non-heme Fe enzymes catalyze a diverserangeofoxidationreactions,including hydroxylation,halogenation,ring closure,desaturation and electrophilic aromatic substrate that are important inmedical,pharmaceutical,andenvironmental applications[1-2].Several species including ferryl-oxo, ferric-superoxo,and ferric-peroxy have been proposed or found to act as oxidants in these enzymes[2]. However,our understanding of the non-heme ferricsuperoxo complexes is rather scant,as opposed to the well studied oxy-heme species.Thus,mononuclear non-hemecomplexesinenzymesandsynthetic analogueshaveattractedconsiderableinterest recently.Thelower-valentferric-superoxospecies havebeendirectlyobservedinnaphthalene dioxygenase(NDO)and homo-protoctaechute 2,3-dioxygenase(HPCD)[3].Furthermore,synthetic ferricsuperoxoandothermetal-superoxospecieswere recently reported to be capable of catalyzing oxidation, includingC-Hbondactivation[4].Interestingly, comparedwithhemeenzymes,manynon-heme enzymes can use ferric-superoxo species as an oxidant but only a few heme enzymes(tryptophan 2,3-dioxygenase(TDO),and indoleamine 2,3-dioxygenase (IDO)so far)use ferric-superoxo species[5-6],which has also attracted our attention as a candidate for the active oxidant in the non-heme enzymes catalysis. Morokuma and co-workers compared reactivity of several vital ferryl-oxo and ferric-superoxo model complexes including title non-heme complex 1 model through DFT calculations to provide clues for rational design of ferric-superoxo oxidants[2],where it has been shown that a dominant feature of these reactions is the two-state reactivity(TSR)and multistate reactivity (MSR)that transpires due to the close proximity of the different multi-spin states in the ground state[7].

    Scheme 1A model reaction for the propene catalyzed by non-heme ferric-superoxo species

    For ferric-superoxo complexes,the findings show that ferric-superoxo species can be converted to a ferryl-oxo complex via O-O bond cleavage,thus these species seem to shareonecommonfundamental feature of the TSR/MSR mechanisms,they involve energy profiles of at least two spin states that either crossing or remaininproximity.Thus,thetitle reaction possibly occurs on two or more potential energy surfaces(PESs)under thermal conditions.

    Therefore,detailed analyses of crossing seam between the different PESs are important in order to better understand the TSR/MSR mechanism of the propenecatalyzedbynon-hemeferric-superoxo species(Scheme 1).This kind of knowledge is essential for understanding the whole reaction mechanism and is useful for establishing an appropriate model for the O-O bond cleavage processes.To our knowledge,a deep theoretical study for the propene catalyzed by non-hemeferric-superoxospecieshasnotbeen reported.However,since an experimental proof of mechanism is not a simple matter,in this sense, theoretical chemistry,specifically density functionaltheory(DFT)has been playing an essential role in role inprovidingmechanisticdataandstructuresof unstableintermediatesandinderivinguseful concepts.In the present paper we have performed hybrid DFT calculations on the reactions of the propenecatalyzedbynon-hemeferric-superoxo compound 1 models(Fig.1)to paint global pictures and discussed crossing seams,spin-orbit coupling (SOC)and possible spin-inversion processes in the OO bond cleavage step.

    1 Computational details

    1.1 Geometrical optimization

    Energiesandgeometriesofthereaction intermediates and the transition states were calculated using the Gaussian 09 program package[8]and the unrestricted hybrid density functional UB3LYP with the 6-31+G(d)basis set[9].The basis set used in DFT calculationforsinglepointenergiesonfinal geometries is LACVP+*[10],which has been widely used for transition-metal-containing systems and has an effective potential that accounts for the scalar relativistic effects in iron.At the non-local functional UBP86 level,single-point energy calculations were performed using the LACVP+*basis set for all the atoms.The PCM approach for accounting solvent effects(single points with CH3CN as solvent)was applied in the UBP86/LACVP+*level.However, UBP86 tended to overstabilize the low-spin ground state resulting in a large energy splitting between spin states,and in some cases this lead to an incorrect ground state(see Supporting Information).In addition, previous investigations of transition metal compounds employing the B3LYP functional by other groups[11]and us[12]indicated that this approach shows a very promising performance to predict properties such as bond dissociation energies,geometries,and harmonic frequencies with an accuracy comparable to that obtained from highly correlated wave function based ab initio methods.

    1.2 Treatment of spin-orbit coupling

    The SOC matrix elements are treated by an accuratemulticentermean-field(RI-SOMF) approximation[13-15]with the reasonable complete active space self-consistent field,CASSCF(10,8)(ten activateelectronsoccupytheeightmetal-ligand activate orbitals).An efficient implementation of the SOMF concept was explained,which is based on the following formulation of the effective one-electron operator[16]:

    2 Results and discussion

    2.1 Electronicstructuresofferric-superoxo species

    The optimized geometries and energetic data for the septet,quintet,and triplet electronic states aredepictedinFig.1andTableS1(Supporting information),respectively.Inordertokeepthe discussion more simple,the goal complex,denoted as7(5)1side-onor7(5)[3]1end-on,is initially formed as Fe center and O2collide side-on or end-on with each other, where the superscripts denote the spin multiplicities. Comparedtothereactionmechanism,side-on complex,7(5)1side-onis not an important point discussed.

    We obtain a septet71end-oncomplex,wherein O2is bound end-on and is an Fe-superoxo complex.The electronic structure of71end-onis in detailed shown in Fig.2.From Fig.2,O2here is a superoxide,having a singly occupied π*⊥,which is perpendicular to the Fe-O-O plane,while the other doubly occupied π* orbital,π*∥in the Fe-O-O plane,forms a 3-e bond with the Fe dz2orbital.In other words,in the plane π*∥orbital of the superoxo interacts with the dz2orbital of the Fe in a π-type fashion,which leads to forming two new orbitals dz2±π*,as shown in Fig.2. Thus,the septet71end-onwill inv o lve ferromagnetic coupling of S=5/2 Fewith the S=1/2 superoxo anionO2-.

    Fig.1Optimized geometries of the different spin states non-heme Ferric-superoxo complexes at the UB3LYP/6-31+G(d)level

    Fig.2Electronic configurations of septet,quintet and triplet states of the end-on complex 1

    For the quintet51end-oncomplex,one character of51end-onis that its formal iron oxidation state can be assigned as Fe-peroxo.The reason is that the π*⊥orbital of the O2moiety in51end-onis doubly occupied. Formally,there are four unpaired α electrons in51end-on, spin density on Fe is 4.09.To identify some main atomic orbital interactions,the main antiferromagnetic orbital interactions were also inferred from overlaps calculated from the broken symmetry wave function (UB3LYP/6-31+G(d)),theresultscalculatedare plotted in Fig.3.Calculation results show that dz2±π*∥electronsareactuallyhighlypronetospinpolarization,i.e.,partial separation of α-and β-spin electrons in the dz2±π*∥orbital into spatially different regions,since electrons paired in orbital repel each other electrostatically.Restricted open-shell B3LYP calculations indeed show instability relative to brokensymmetry(BS)solutions.The overlap between dz2and π*∥is considerably better than the overlap of π*⊥and any Fe3d orbital,a nd the overlap is T=<dz2| π*∥>=0.64.The singlet coupling between dxzand π*∥electron pair is therefore strong enough to lead to a short of the Fe-O distances(0.201 8 nm)in51end-on,as compared with that(0.213 2 nm)of71end-on.

    As for31end-on,O2is bound end-on and is an Fe-superoxo complex,having a singly occupied π*⊥orbital and a doubly occupied π*∥orbital.Then31end-oninvolves ferromagnetic coupling of S=1/2 Fewith the S=1/2 superoxo anion O2-.Relative to71end-on,the DFT-calculated relative free energy of31end-onis 48.9 and 51.8 kJ·mol-1at the B3LYP/6-31+G(d)and B3LYP/LACVP+*levels,respectively.Compared with the coupling of51end-on,the singlet coupling between π*∥and dz2in31end-onis much stronger,the overlap T=<dz2

    |π*∥>≈1 with the covalent interaction,which will lead to decrease the distance of Fe-O bond (0.192 1 nm).

    Fig.3Spin natural orbitals(SNO)and natural orbitals(NO)obtained with the symmetry broken method in51end-on

    2.2 Hydrogen-atom abstraction

    The optimized geometries and relative energies in the triplet,quintet,and septet electronic states are shown in Fig.4 and Table S2(Supporting information), respectively.The calculated potential energy profiles forthedifferentspinstatesareshownin Fig.5.Initially,the three reactive states of7(5)[3]1end-onform reactant complexes,7(5)[3]R1,in which7(5)[3]1end-onis weakly bound to propene.An electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital.This leads to the transfer of a H-atom along with a spin-down electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate aferrichydroperoxoproductandaradicalon substrate.Thus,a strong π(O2-)bond is broken.Since the electron is transferred into the superoxo π*⊥orbital, this requires an end-on approach of the C-H bond of the substrate relative to the Fe-O-O plane to ensure good orbital overlap.

    As can be seen from Fig.5,the lower energy pathway of the H-abstraction process was occurred on the high-spin(HS)S=3 state PES.The transition state7TSHhas calculated barrier heights of ΔE≠=78.6 kJ· mol-1and ΔG≠=65.6 kJ·mol-1relative to7R1.If electronic energies and free energies in the gas-phase are compared,the spin state ordering in the reactants and transition states remains the same.This indicates that the reaction will take place through single-state reactivity on the HS S=3 state potential surface only, which is compared with the behavior of nonheme and heme iron-oxo complexes where generally two-or multi-state reactivity modes are obtained on competing spin state surfaces.This difference is possibly due to the exchange stabilization of the Fe center during the H-abstraction.

    Fig.4UB3LYP/6-31+G(d)optimized structures for the key species for the 2-propenol reactions of7(5)[3]1end-onwith propene

    Fig.5Energy profiles(in kJ·mol-1)for the 2-propenol reactions of7(5)[3]1end-onwith propene.All energy values are at the UB3LYP/LACVP+*level

    Basedontherecentlyproposedexchangeenhanced reactivity(EER)principle by Shaik et al[19], which states that if the number of identical-spin unpaired electrons on the metal center increases in the transition state(or the orbitals get more localizedon the metal center),this will maximize the exchange stabilization of the transition state.For the S=3,S=2, and S=1 spin states,during the H-abstraction,an electron shifts from the C-H bond to the O2π*⊥orbital andtherebythedelectronisfreedfromits antiferromagneticcoupling.i.e.,thenumberof unpaired d electrons of the Fe center is the same from reactantstoferrichydroperoxointermediate. Therefore,the condition of the smaller deformation energy of the reactants on the spin state,the HS S=5/ 2 state has a lower barrier as compared with the lowspin(LS)states,leading to single-state reactivity.The suggestion that the HS S=5/2 iron center of all these electronic structures has a high reactivity due EER is consistent with the experimental results of the key role of the HS non-heme iron center in O2activation.

    2.3 Calculations of O-O bond cleavage process 2.3.1Crossing of the different PESs.

    From Fig.5,the ground state product in quintet state,5P,will be formed from the intermediate in septet state,7IM1 via the transition state with the O-O bond broken.Therefore,at least a crossing and spin inversion process may be take place in the O-O cleavage reaction pathway.The geometric structure of the HS S=3 transition state,7TSOHis very different from those of the intermediate spin(IS)S=2,5TSOHand LS S=1,3TSOHtransition states(Fig.4).The7TSOHhas an O-O bond of 0.168 3 nm,which is shorter than those of the5TSOH,and3TSOH(0.1711,and 0.173 4 nm, respectively).These bond lengths indicate the7TSOHoccurs early in the O-O bond cleavage coordinate.As the O-Obond distanceincreases,theHSS=3 potentialenergysurfacesteeplyincreasesin energy and the S=2 potential energy surface gradually increases,which will lead to the crossing of different spin surfaces.

    It is noted that the likelihood of such a crossover seems significant in view of the fact that the spin state surfaces are so close and cross from7IM1 to the crossing region(Fig.5).And,the7IM1-5IM1 energy gap is very small(Fig.5).As such,a change in the geometry of the septet complex7IM1 in the direction ofthequintetcomplexgeometry,5IM1,causes crossingbetweenthetwostates.Thereafter,the reactioncanproceedonthequintetsurfaceor bifurcate again to the septet surface.These willdepend on the magnitude of the transition probability. Among the factors that affect the magnitude of the transition probability is the SOC interaction between the states.Let us then discuss the SOC interaction.

    Table 1Contributions to the calculated ZFS between SOC and Spin-Spin(SS)(all numbers are in cm-1) in the crossing region

    Table 2Calculated SOC matrix elements(cm-1)of septet and quintet states in the crossing region by CASSC (10,8)method

    2.2.2 Spin-orbit coulping(SOC)inthecrossingregion. Because of the intricate interplay of the spin-spin (SS)dipolar interaction with the SOC of the quintet state in the crossing seam,here we considered it desirable to include the calculation ofzero-field splitting(ZFS)parameters(D-tensor,D=Dzz-1/2(Dxx+

    Dyy))[20].The ZFS and SOC matrix elements were evaluated at the CASSCF(10,8)wave function with 6-31+G(d)and TZVP basis sets using quasi-degenerate perturbationtheory.Thesecalculationswere performed with the program ORCA 2.8[18].The mixing of the S=3 and S=2 levels in the crossing seam by the spin-dependent terms in the Hamiltonian is treated approximately.Only the elements of SOC operator between the lowest HS septet state and the lowest three quintets are considered,where elements between quintets and triplets are ignored.These detailed results of the ZFS calculations are shown in Table 1. From the results in Table 1,the main contribution is from the second-order SOC interaction,while the SS contributions are negligible.The SOC part contains three parts:the SOC of electronic excited states of the same spin(Sexcited=Sground;ΔS=0,D(0))into the ground state;from states differing by one spin flip(Sexcited= Sground±1;ΔS=-1,D(-1)and ΔS=+1,D(+1));and the elements of quintets,S=2→triplets,S=1(S=-1), which are ignored(D(-1)=0.0).The ΔS=0 contribu-tions are found to make significant contributions to Dxx=-0.099 cm-1,Dyy=-0.202 cm-1,and Dzz=-0.193 cm-1, with the main contribution arising from the same spin states(i.e.,the quintet ground state→excited quintet mixing).In addition,it is very small that the SOC contributions come from the spin-raising ΔS=+1 excitations corresponding to the quintet ground state septet mixing,which indicates that the quintet and septetmixingcanbeforbiddenbytheSOC interaction.

    In order to further understand the mechanism of intersystem crossing from the septet state to quintet state PES,the ROHF orbitals for the construction of the quintet and septet CASCI wave functions to be used in the SOC evaluation have been generated in the crossing region by quintet ROHF calculations, which were performed with the GAMESS program package[21].At least eight active orbitals,as given in Fig.6(in order to save space,the two nonactive doubly occupied orbitals are omitted),are found to be essential to reproduce the qualitative trends of SOC in the O-O bond cleavage step.The SOC matrix elements between the septet state and the quintet states in the crossing region are indicated in Table 2,we computed the SOC constants of the sextet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively.These values are very low and provide a first hint that intersystem crossing may be forbidden primarily for an electronic reason.For facile spin flip from the S=3 to S=2 surfaces,the crossing points are required to have similar geometries and energies.Moreover,the electronic configurations must be able to SOC.SOC is effectively a localized,singlecenter,one-electron operator and can be written as

    Fig.6Electronic configurations of the SOC interactions of the septet state and quintet states(Q0,Q1and Q2)in the vicinity of thecrossing region for the O-O bond breaking step.The labels S and Q refer to the spin states septet and quintet, respectively.

    where L is the orbital angular momentum operator, and S is the spin operator,while L·S=I is the angular momentum of electron(see formulations 2 and 3 in Computational details);the φ is the space part of the molecular orbital,θ the spin of the electron.The L+S-+ L-S+operator in Eq.4 performs a spin-flip and this process is accompanied by achange in the orbital due to the L+/L-raising/lowering operator[22].Therefore, two orbitals of opposite spins in SOC have to different spatial components.In addition,SOC is also feasible only if two microstates differ solely in the occupation of two orbitals with the same spin states or two microstates have the same Msfor the two different spin states and these two orbitals can couple through the Lzoperator.

    Orbital analysis on the SOC mechanism are listed in Fig.6,for both spin states,S1and Q0,the Fe center remains HS ferric with strong bonding interaction with the O atom.Hence,the major difference in the electronic structure between the S=3 and S=2 spin states at the crossing point lies in the spin of electron residing in the singly occupied π*sub,with α for S=3 and β for S=2.Obviously,two spin orbitals have the same spatial component in their wave functions(π*sub). Therefore,theS=3surfacecannoteffectively intersystem cross to the S=2 surface through the SOC interactionsastheorbitalangularmomentum operators associated with SOC in Eq.4 require a change in orbital occupation.Thus,thereaction system can still proceed on the S=3 surface.

    We also explored the SOC interaction of the septet state and two low lying quintet excited states, Q1and Q2,involving mostly Fe-3d excitations due to a transition metal complex where there are a number of near-degenerate states for close lying metal d-orbials. From Fig.6,because the SOC constant(ζFe)is an order of magnitude greater than the SOC values for oxygen, it is a reasonable approximation to consider only the Fe contribution when discussing spin-orbit mixing with quintet states.Thus for the SOC matrix elements of S1and Q1can be written as[17,23]

    where η is the Ms-dependent weighing factor,and θ=α and/or β.In this case,for the septet state,S1,the fundamentalopen-shellconfigurationhasone dominantcoefficient,i.e.C0=0.961,whilethe coefficient for quintet state is CQ1=0.87.Thus,the Q1state is generated from the septet S1state by electron shifts from φ5to φ1,lead to the d-atomic orbital matrix elements,Based on transfer of d orbitals under the operator of Lx,y,zoperators,the former will generate a y component of the SOC,the latter will lead to z component of the angular momentum,which is consistent with the calculated SOC values of<7φcm-1at CASSCF(10,8)/6-31+G(d)level.Similarly,the Q2state originates from the septet S1state by electron shifts from φ5to φ2,leading thereby to an x,y components of SOC with theelements,respectively.These calculated results show that the Q1and Q2states in crossing point will produce a significant one-center SOC interaction.Therefore,this can enhance the probability of intersystem crossing from the septet to the quintet state.However, these spin-flip pathways(S1→Q1,S1→Q2)are unfeasible because the excited crossing points have signifi-cantly higher in energy than the S1state,Q1and Q2are approximately 56.2 and 64.2 kJ·mol-1higher than the S1state at the CASSCF(10,8)/6-31+G(d),respectively.Thus,the O-O bond homolysis step should remain on the S=3 surface as the reaction proceeds, overcoming an activation free energy of 124.9 kJ·mol-1(Fig.5),while the intersystem crossing is possibly occurred at the exit stage of the reaction.

    To further understand mechanism of the S1→Q0spin-flip,the corresponding splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region can be seen in Fig.7.In zero magnetic field,the lowest quintet state Q0is split into three spin states with eigenfunctions|Qx>,|Qy>,and|Qz>, with an energy splitting described by the parameter D. For splitting of Zeeman sublevels,the eigenfunctions of the quintet spin states are given by|Q±2>,|Q±1>, and|Q0>and can be related to those at zero field by mixing coefficients that depend on the strength and direction of the magnetic field.From Fig.7,three zero field sublevels Qx,Qy,and Qzare selectively populated,and their relative populations are carried over to the high field energy levels,Q±2,Q±1,and Q0,Qy,and Qzoverpopulation and some population on the Qxsublevel.The populations on Qy,and Qzlevels are nearly equal,1.17×10-1,whereas that on Qxis somewhat smaller,1.16×10-1.These different populations are mainly attributed to the SOC-ISC interactions(<7φ-1.57 cm-1),but these populations are very small, which indicate that intersystem crossing from septet to quintet is low efficient in the crossing region.

    Fig.7Splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region z axis of the molecule is defined as its Zeeman axis

    3 Conclusions

    In this study,the multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated using density functional theory calculations.For H-atom abstraction step,an electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital. This leads to the transfer of a H-atom along with a spindown β electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate a ferric hydroperoxo product and a radical on substrate.Thus,a strong π(O2-) bond is broken.The lower energy pathway of the H-abstraction process was occurred on the HS S=3 state potential energy surface(PES).By contrast,the corresponding quintet and triplet H-abstraction barriers are well higher in energy and will not play a role of importance.These are possibly due to the exchange stabilization of the Fe center during the H-abstraction.As for the O-O bond broken step,at least a crossing and spin inversion process may be taken place in the O-O cleavage reaction pathway.In order to quantitatively understand the crossing of the S=3,S=2,and S=1 PESs,we computed the SOC constants(2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively) of the septet,S1and quintet,Q0state at the crossing re-gion.Orbital analysis show that the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions as the orbital angular momentum operators associated with SOC require a change in orbital occupation.Thus,the reaction system can still proceed on the S=3 surface.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Solomon E L,Brunold T C,Davis M I.Chem.Rev.,2010, 100:235-350

    [2](a)Nam W.Acc.Chem.Res.,2007,40:522-531 (b)Chung L W,Li X,Hirao H,et al.J.Am.Chem.Soc., 2011,133:20076-20079

    [3]Mbughuni M M,Charkrabarti M,Hayden J A,et al.Proc. Natl.Acad.Sci.U.S.A.,2010,107:16788-16793

    [4]Peterson R L,Himes R A,Kotani H,et al.J.Am.Chem. Soc.,2011,133:1702-1705

    [5]Sugimoto H,Ods S L,Otsuki T.Proc.Natl.Acad.Sci.U.S.A., 2006,103:2611-2616

    [6]Li F,Meier K K,Cranswick M A,et al.J.Am.Chem.Soc., 2011,133:7256-7259

    [7]Hirao H,Kumar D,Que L,et al.J.Am.Chem.Soc.,2006, 128:8590-8606

    [8]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09, Revision-D.01;Gaussian Inc.:Wallingford,CT,2009.

    [9]Ditchfield R,Hehre W J,Pople J.A.J.Chem.Phys.,1971, 54:724-732

    [10]Hay J P,Wadt W R.J.Chem.Phys.,1985,82:299-309

    [11]Lai W Z,Li C S,Chen H,et al.Angew.Chem.,Int.Ed., 2012,51:5556-5578

    [13]Sinnecker S,Neese F.J.Phys.Chem.A,2006,110:12267-12275

    [14]Neese F,Edward I,Solomon E I.Inorg.Chem.,1998,37: 6568-6582.

    [15]Hess B A,Marian C M,Wahlgren U,et al.Chem.Phys. Lett.,1996,251:365-371

    [16]Neese F.J.Am.Chem.Soc.,2006,128:10213-10222

    [17]Danovich D,Shaik S.J.Am.Chem.Soc.,1997,119:1773-17786

    [18]Neese F.ORCA-an ab initio,Density Functional and Semiempirical Program Package,Version 2.8,Max-Planck Institute for Bioinorganic Chemistry,Germany,2010.

    [19](a)Shaik S,Chen H,Janardanan D.Nat.Chem.,2011,3: 19-27

    (b)Mas-Ballesté R,McDonald A R,Reed D,et al.Chem. Eur.J.,2012,18:11747-11760

    [21]Granovsky A A.GAMESS Program,Moscow State University, Russia,2007.

    [22]Pau M Y M.Proc.Natl.Acad.Sci.U.S.A.,2007,104:18355-18362

    Theoretical Investigation on the Multi-State Reaction Mechanism for the Propene Catalyzed by Non-Heme Ferric-Superoxo Species

    Lü Ling-Ling*,1ZHU Yuan-Cheng1ZUO Guo-Fang1YUAN Kun1WANG Yong-Cheng2
    (1College of Chemical Engineering and Technology,Tianshui Normal University,TianShui,Gansu 741001,China)
    (2College of Chemistry and Chemical Engineering,Northwest Normal University,LanZhou,730070,China)

    The multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated at the DFT-B3LYP level.The calculations show that non-heme ferric-superoxo complex can be considered as effective oxidants in hydrogen atom abstraction reaction(single-state-reactivity),for which we find a lower barrier of ΔG≠=65.6 kJ·mol-1on the septet spin state surface.Single-state-reactivity is possibly due to the recently proposed exchange-enhanced reactivity(EER)principle with larger exchange stabilization of the Fe center.For the O-O bond activated step,we computed the spin-orbit coupling(SOC)constants of the septet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF (10,8)/6-31+G(d)//TZVP levels,respectively.Orbital analysis show that two spin orbitals have the same spatial component in their wave functions(π*sub),therefore,the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions,and the intersystem crossing is possibly occurred at the exit stage of the reaction.

    non-heme ferric-superoxo;multi-state reaction mechanism;intersystem crossing;spin-orbit coupling

    O641.12+1

    A

    1001-4861(2017)02-0329-11

    10.11862/CJIC.2017.028

    2016-02-04。收修改稿日期:2016-12-03。

    國(guó)家自然基金(No.21263022;21663025;2163024)、甘肅省教育廳導(dǎo)師基金和天水師范學(xué)院“青藍(lán)”人才工程基金資助項(xiàng)目。*

    。E-mail:lvling002@163.com

    猜你喜歡
    超氧化物血紅素多態(tài)
    分層多態(tài)加權(quán)k/n系統(tǒng)的可用性建模與設(shè)計(jì)優(yōu)化
    參差多態(tài)而功不唐捐
    新型耐高溫超氧化物歧化酶SOD的產(chǎn)業(yè)化
    超氧化物歧化酶保健飲用水及其制取方法探討
    血紅素氧合酶-1與急性腎損傷研究新進(jìn)展
    人多巴胺D2基因啟動(dòng)子區(qū)—350A/G多態(tài)位點(diǎn)熒光素酶表達(dá)載體的構(gòu)建與鑒定及活性檢測(cè)
    血紅素加氧酶-1對(duì)TNF-α引起內(nèi)皮細(xì)胞炎癥損傷的保護(hù)作用
    麥苗中超氧化物歧化酶抗氧化活性研究
    煙堿型乙酰膽堿受體基因多態(tài)與早發(fā)性精神分裂癥的關(guān)聯(lián)研究
    富血紅素多肽研究進(jìn)展
    久久精品国产亚洲av涩爱 | 国产精品亚洲美女久久久| 欧美大码av| 亚洲欧美日韩高清在线视频| 99精品在免费线老司机午夜| 脱女人内裤的视频| 18+在线观看网站| netflix在线观看网站| 又黄又爽又免费观看的视频| 亚洲av二区三区四区| 国产男靠女视频免费网站| 免费在线观看影片大全网站| 日本成人三级电影网站| 欧美日韩精品网址| 亚洲专区国产一区二区| 国产爱豆传媒在线观看| 国产真人三级小视频在线观看| 国产一区二区三区在线臀色熟女| 亚洲一区高清亚洲精品| 天堂av国产一区二区熟女人妻| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 欧美日韩乱码在线| 亚洲avbb在线观看| 少妇高潮的动态图| 婷婷六月久久综合丁香| 男人的好看免费观看在线视频| av片东京热男人的天堂| 亚洲天堂国产精品一区在线| 亚洲欧美激情综合另类| 久久香蕉精品热| 日本与韩国留学比较| 少妇丰满av| 久久久久久久久久黄片| 淫秽高清视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜激情福利司机影院| 成熟少妇高潮喷水视频| 91麻豆av在线| 最新美女视频免费是黄的| av黄色大香蕉| 99热精品在线国产| 老司机深夜福利视频在线观看| 小说图片视频综合网站| 国产高潮美女av| 国产成年人精品一区二区| 性色avwww在线观看| 亚洲人成网站在线播| 国产免费男女视频| 精华霜和精华液先用哪个| 俄罗斯特黄特色一大片| 青草久久国产| 亚洲一区高清亚洲精品| 亚洲欧美日韩东京热| 国产精品一区二区三区四区免费观看 | 少妇熟女aⅴ在线视频| 午夜福利在线在线| 男女床上黄色一级片免费看| 一个人免费在线观看的高清视频| 国产黄色小视频在线观看| 18美女黄网站色大片免费观看| 亚洲成a人片在线一区二区| 国产综合懂色| 亚洲精品亚洲一区二区| 天堂√8在线中文| 免费看十八禁软件| 欧美极品一区二区三区四区| 人人妻人人看人人澡| 一区二区三区高清视频在线| 淫秽高清视频在线观看| 美女高潮的动态| 亚洲无线观看免费| 2021天堂中文幕一二区在线观| 国产一区二区在线av高清观看| 1024手机看黄色片| 18+在线观看网站| 日本与韩国留学比较| 在线观看美女被高潮喷水网站 | 亚洲成av人片免费观看| 免费人成在线观看视频色| 我的老师免费观看完整版| 亚洲精品色激情综合| 日本一二三区视频观看| netflix在线观看网站| 亚洲乱码一区二区免费版| 嫩草影院精品99| 欧美色欧美亚洲另类二区| 好看av亚洲va欧美ⅴa在| 91字幕亚洲| 90打野战视频偷拍视频| 狂野欧美激情性xxxx| 伊人久久精品亚洲午夜| 91av网一区二区| 最近最新中文字幕大全免费视频| 无人区码免费观看不卡| 国产精品久久电影中文字幕| 两个人看的免费小视频| 在线十欧美十亚洲十日本专区| 免费观看的影片在线观看| 两人在一起打扑克的视频| 99热这里只有是精品50| 成人高潮视频无遮挡免费网站| 伊人久久大香线蕉亚洲五| 免费电影在线观看免费观看| 日本a在线网址| 麻豆国产av国片精品| 中文在线观看免费www的网站| 老司机在亚洲福利影院| 国产一级毛片七仙女欲春2| 九九久久精品国产亚洲av麻豆| 亚洲av免费在线观看| 久久久国产精品麻豆| 欧美性猛交╳xxx乱大交人| 俺也久久电影网| 99久久精品国产亚洲精品| 男女那种视频在线观看| 少妇高潮的动态图| 国产日本99.免费观看| 中出人妻视频一区二区| 国产探花在线观看一区二区| 欧美日韩瑟瑟在线播放| 亚洲电影在线观看av| 国产一区二区在线观看日韩 | 亚洲国产精品成人综合色| 成年人黄色毛片网站| 国产精品亚洲av一区麻豆| 伊人久久精品亚洲午夜| 久久久久久久久久黄片| 97超级碰碰碰精品色视频在线观看| 欧美+日韩+精品| 久久精品夜夜夜夜夜久久蜜豆| 久久精品91无色码中文字幕| 天堂av国产一区二区熟女人妻| 久久久久亚洲av毛片大全| 偷拍熟女少妇极品色| 中出人妻视频一区二区| 三级国产精品欧美在线观看| 舔av片在线| 少妇的丰满在线观看| 国产精品一区二区三区四区免费观看 | 精品欧美国产一区二区三| 少妇的逼水好多| 精品久久久久久,| 亚洲欧美一区二区三区黑人| 最近最新中文字幕大全电影3| 麻豆久久精品国产亚洲av| 天天添夜夜摸| 级片在线观看| 午夜免费成人在线视频| 色精品久久人妻99蜜桃| 亚洲午夜理论影院| 国产主播在线观看一区二区| 51国产日韩欧美| 特级一级黄色大片| 色吧在线观看| 日本黄色片子视频| 免费av不卡在线播放| 99精品欧美一区二区三区四区| 亚洲人成电影免费在线| 无限看片的www在线观看| 黄色女人牲交| x7x7x7水蜜桃| 成人国产综合亚洲| 床上黄色一级片| 久久精品国产99精品国产亚洲性色| 婷婷亚洲欧美| 97超视频在线观看视频| 成人鲁丝片一二三区免费| 久久国产精品影院| 偷拍熟女少妇极品色| 色尼玛亚洲综合影院| 午夜福利在线观看免费完整高清在 | 亚洲av一区综合| 国产成人啪精品午夜网站| 国产亚洲精品久久久久久毛片| 有码 亚洲区| 国产v大片淫在线免费观看| 中文亚洲av片在线观看爽| 九色成人免费人妻av| 亚洲人成伊人成综合网2020| 一区二区三区激情视频| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产高清在线一区二区三| 99在线人妻在线中文字幕| 免费看日本二区| 黄色日韩在线| 中文字幕熟女人妻在线| 最新美女视频免费是黄的| 国产av在哪里看| 久久精品91无色码中文字幕| 欧美乱色亚洲激情| 国产一区二区在线av高清观看| 婷婷丁香在线五月| ponron亚洲| 超碰av人人做人人爽久久 | 亚洲精品一区av在线观看| 亚洲欧美日韩卡通动漫| 成人欧美大片| 91麻豆精品激情在线观看国产| 欧美黑人巨大hd| 亚洲第一欧美日韩一区二区三区| 黑人欧美特级aaaaaa片| 久久久久性生活片| 成人欧美大片| 丁香欧美五月| 午夜老司机福利剧场| 国产精品电影一区二区三区| 在线观看66精品国产| 精品国产三级普通话版| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 99久久99久久久精品蜜桃| 久久精品国产自在天天线| 俺也久久电影网| 午夜视频国产福利| 婷婷精品国产亚洲av在线| 琪琪午夜伦伦电影理论片6080| 很黄的视频免费| 内射极品少妇av片p| 国内揄拍国产精品人妻在线| 高清毛片免费观看视频网站| 日韩大尺度精品在线看网址| 精品电影一区二区在线| a级毛片a级免费在线| 久久精品国产99精品国产亚洲性色| 老司机深夜福利视频在线观看| 亚洲精品亚洲一区二区| 一夜夜www| 国产精品永久免费网站| 国产精品久久久久久久电影 | 亚洲成人久久爱视频| 观看免费一级毛片| 国产毛片a区久久久久| 搡女人真爽免费视频火全软件 | 国产精品一区二区三区四区免费观看 | 蜜桃亚洲精品一区二区三区| 日韩欧美国产一区二区入口| 亚洲av免费高清在线观看| 少妇熟女aⅴ在线视频| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 好男人电影高清在线观看| 国产精品 国内视频| 18+在线观看网站| 日韩欧美三级三区| 国产亚洲欧美98| 一级黄色大片毛片| 乱人视频在线观看| 床上黄色一级片| 可以在线观看的亚洲视频| 亚洲国产日韩欧美精品在线观看 | 中文字幕av在线有码专区| 国产伦精品一区二区三区视频9 | 国产精品综合久久久久久久免费| 最后的刺客免费高清国语| 搡老熟女国产l中国老女人| 免费电影在线观看免费观看| 欧美国产日韩亚洲一区| av国产免费在线观看| 在线观看日韩欧美| 亚洲电影在线观看av| 最近最新中文字幕大全免费视频| 久久精品亚洲精品国产色婷小说| 噜噜噜噜噜久久久久久91| 亚洲在线自拍视频| 丰满人妻一区二区三区视频av | 人人妻,人人澡人人爽秒播| 久久久久国内视频| 手机成人av网站| or卡值多少钱| 少妇的逼水好多| 欧美黑人欧美精品刺激| 久久国产精品人妻蜜桃| 午夜a级毛片| 日本黄色片子视频| av天堂在线播放| 国产亚洲av嫩草精品影院| 99久久九九国产精品国产免费| 九九热线精品视视频播放| 亚洲第一电影网av| 国产伦精品一区二区三区视频9 | 国产午夜精品久久久久久一区二区三区 | 精品人妻一区二区三区麻豆 | 在线看三级毛片| 国产午夜福利久久久久久| 免费搜索国产男女视频| 内射极品少妇av片p| 久久久国产精品麻豆| 国产成人a区在线观看| 久久这里只有精品中国| 日本撒尿小便嘘嘘汇集6| 日本黄大片高清| 国产高清有码在线观看视频| 国产精品亚洲美女久久久| www.999成人在线观看| www.熟女人妻精品国产| 久久精品国产亚洲av香蕉五月| 夜夜夜夜夜久久久久| 精品人妻偷拍中文字幕| 99在线视频只有这里精品首页| 精品不卡国产一区二区三区| 99久久无色码亚洲精品果冻| 久久久久免费精品人妻一区二区| 九九热线精品视视频播放| 日韩大尺度精品在线看网址| www.999成人在线观看| 国产在视频线在精品| 97人妻精品一区二区三区麻豆| 免费在线观看亚洲国产| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 麻豆成人av在线观看| 精品免费久久久久久久清纯| 伊人久久精品亚洲午夜| 亚洲欧美一区二区三区黑人| 天天一区二区日本电影三级| 制服丝袜大香蕉在线| 小蜜桃在线观看免费完整版高清| www.999成人在线观看| 国产又黄又爽又无遮挡在线| 国产精品久久久久久精品电影| 欧美极品一区二区三区四区| 午夜a级毛片| 婷婷丁香在线五月| 男人舔女人下体高潮全视频| 亚洲国产中文字幕在线视频| 黄色女人牲交| 欧美大码av| 色综合亚洲欧美另类图片| 熟女少妇亚洲综合色aaa.| av中文乱码字幕在线| 岛国在线免费视频观看| 小蜜桃在线观看免费完整版高清| 露出奶头的视频| 蜜桃久久精品国产亚洲av| 夜夜看夜夜爽夜夜摸| 午夜老司机福利剧场| 国产精品1区2区在线观看.| 日日干狠狠操夜夜爽| 国产熟女xx| 成人特级av手机在线观看| 国产精品电影一区二区三区| 琪琪午夜伦伦电影理论片6080| 99热这里只有是精品50| 男女床上黄色一级片免费看| 免费在线观看日本一区| 天堂√8在线中文| 久久久精品大字幕| 国产精品一区二区三区四区久久| 国产探花在线观看一区二区| 国产精品日韩av在线免费观看| 高潮久久久久久久久久久不卡| 久久久久久久久大av| 成人18禁在线播放| 免费av毛片视频| 黄色丝袜av网址大全| 热99在线观看视频| 成人18禁在线播放| 丰满人妻一区二区三区视频av | 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 午夜a级毛片| 内地一区二区视频在线| 免费av毛片视频| av黄色大香蕉| 欧美黑人欧美精品刺激| 成人欧美大片| 中文字幕熟女人妻在线| 一本综合久久免费| 亚洲av熟女| 欧美不卡视频在线免费观看| 老鸭窝网址在线观看| 国产精品99久久99久久久不卡| 两个人视频免费观看高清| 91九色精品人成在线观看| 国产精品爽爽va在线观看网站| 日韩欧美在线乱码| 99国产综合亚洲精品| 亚洲午夜理论影院| 51午夜福利影视在线观看| 无限看片的www在线观看| 男女之事视频高清在线观看| 亚洲国产精品合色在线| 午夜福利在线观看吧| 国产黄片美女视频| 天天躁日日操中文字幕| 日韩中文字幕欧美一区二区| 国产亚洲av嫩草精品影院| 国产99白浆流出| 麻豆国产av国片精品| 一进一出抽搐gif免费好疼| 久久久国产成人免费| 国产免费一级a男人的天堂| 国产精品嫩草影院av在线观看 | 国产探花在线观看一区二区| 久久久久久大精品| 在线观看舔阴道视频| 在线观看美女被高潮喷水网站 | 成年女人看的毛片在线观看| 欧美日韩福利视频一区二区| av中文乱码字幕在线| 又爽又黄无遮挡网站| www日本黄色视频网| 亚洲av不卡在线观看| 国产不卡一卡二| 国内久久婷婷六月综合欲色啪| 国产91精品成人一区二区三区| 亚洲人成网站高清观看| 少妇的逼好多水| 成人精品一区二区免费| 俄罗斯特黄特色一大片| 手机成人av网站| 成人无遮挡网站| 午夜两性在线视频| 1024手机看黄色片| 精品人妻1区二区| 国产视频内射| 3wmmmm亚洲av在线观看| 精品久久久久久成人av| 精品乱码久久久久久99久播| 看片在线看免费视频| 欧美性猛交黑人性爽| 免费av观看视频| 欧美性感艳星| 国产欧美日韩精品亚洲av| 精品人妻一区二区三区麻豆 | 久久久久精品国产欧美久久久| 亚洲,欧美精品.| 免费人成在线观看视频色| 露出奶头的视频| 一个人看视频在线观看www免费 | 午夜福利高清视频| 欧美黄色淫秽网站| 久久精品国产自在天天线| 国产精品久久久久久精品电影| 日韩欧美在线二视频| 国产精品,欧美在线| 夜夜躁狠狠躁天天躁| 亚洲精品国产精品久久久不卡| 看黄色毛片网站| 深爱激情五月婷婷| 亚洲av二区三区四区| 国产亚洲av嫩草精品影院| 精品人妻偷拍中文字幕| 国产v大片淫在线免费观看| 99久久精品热视频| 免费人成在线观看视频色| 天天添夜夜摸| 精品福利观看| 成人无遮挡网站| 免费在线观看影片大全网站| 国产97色在线日韩免费| 亚洲片人在线观看| 日本一本二区三区精品| 精品久久久久久久毛片微露脸| 免费看光身美女| 成人无遮挡网站| 国产高潮美女av| 欧美丝袜亚洲另类 | 日本成人三级电影网站| 久99久视频精品免费| 国产三级在线视频| 国产av一区在线观看免费| 免费高清视频大片| 欧美乱色亚洲激情| 18禁裸乳无遮挡免费网站照片| 三级国产精品欧美在线观看| 日本黄色片子视频| 国产精品久久久久久精品电影| 精品国内亚洲2022精品成人| av在线天堂中文字幕| 色老头精品视频在线观看| 亚洲精品久久国产高清桃花| 国产精品综合久久久久久久免费| 久久草成人影院| 国产91精品成人一区二区三区| 国产激情欧美一区二区| 我要搜黄色片| 久久香蕉精品热| 国产成人av教育| eeuss影院久久| 男女那种视频在线观看| 亚洲性夜色夜夜综合| 国产黄片美女视频| 欧美日韩福利视频一区二区| 欧美在线黄色| 国产色婷婷99| 免费大片18禁| 黄色成人免费大全| 狂野欧美白嫩少妇大欣赏| 国产成人系列免费观看| 久久人妻av系列| 亚洲狠狠婷婷综合久久图片| 白带黄色成豆腐渣| 1024手机看黄色片| 亚洲成人中文字幕在线播放| 精品久久久久久久久久免费视频| 亚洲av电影在线进入| 国语自产精品视频在线第100页| 国产欧美日韩一区二区精品| 97人妻精品一区二区三区麻豆| 国产又黄又爽又无遮挡在线| 亚洲性夜色夜夜综合| 欧美最新免费一区二区三区 | 亚洲av不卡在线观看| 99精品欧美一区二区三区四区| 91九色精品人成在线观看| 18美女黄网站色大片免费观看| 日本免费一区二区三区高清不卡| 一卡2卡三卡四卡精品乱码亚洲| 一二三四社区在线视频社区8| 国产熟女xx| www.www免费av| 国产精品影院久久| 精品久久久久久久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 99久久九九国产精品国产免费| 久久久国产成人免费| 美女免费视频网站| 久久久久久久亚洲中文字幕 | 蜜桃亚洲精品一区二区三区| 国产高清视频在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 一本久久中文字幕| 亚洲成人精品中文字幕电影| 亚洲av成人精品一区久久| 在线观看美女被高潮喷水网站 | 免费看a级黄色片| 天堂影院成人在线观看| 欧美性猛交╳xxx乱大交人| 国产精品亚洲一级av第二区| 一级黄片播放器| 久久久成人免费电影| a级一级毛片免费在线观看| 男女之事视频高清在线观看| 精品一区二区三区人妻视频| 亚洲av不卡在线观看| 哪里可以看免费的av片| 少妇高潮的动态图| bbb黄色大片| 久久99热这里只有精品18| 免费一级毛片在线播放高清视频| 母亲3免费完整高清在线观看| 国产高潮美女av| 熟女少妇亚洲综合色aaa.| 亚洲精品国产精品久久久不卡| 白带黄色成豆腐渣| 热99re8久久精品国产| 99久久精品热视频| 亚洲成av人片在线播放无| 色精品久久人妻99蜜桃| 精品人妻1区二区| 国产 一区 欧美 日韩| 最近视频中文字幕2019在线8| 亚洲人成网站在线播放欧美日韩| 最新在线观看一区二区三区| 色吧在线观看| 老司机深夜福利视频在线观看| 国产精品嫩草影院av在线观看 | 国语自产精品视频在线第100页| 国产成人av教育| 国产欧美日韩一区二区三| 在线国产一区二区在线| 色精品久久人妻99蜜桃| 最好的美女福利视频网| 国产成人a区在线观看| 两个人视频免费观看高清| 国产爱豆传媒在线观看| www.熟女人妻精品国产| 免费看美女性在线毛片视频| 三级国产精品欧美在线观看| 亚洲久久久久久中文字幕| 综合色av麻豆| 一区二区三区激情视频| 婷婷丁香在线五月| 欧美一区二区国产精品久久精品| 女同久久另类99精品国产91| 国产单亲对白刺激| 亚洲精品国产精品久久久不卡| 欧美最新免费一区二区三区 | 国产高清videossex| 叶爱在线成人免费视频播放| 动漫黄色视频在线观看| 欧美另类亚洲清纯唯美| 噜噜噜噜噜久久久久久91| 动漫黄色视频在线观看| 欧美极品一区二区三区四区| 90打野战视频偷拍视频| 成年女人看的毛片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久久国产精品麻豆| 日韩中文字幕欧美一区二区| 婷婷丁香在线五月| 久久久久久大精品| 成年女人看的毛片在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲av免费在线观看| 国产精品国产高清国产av| 国内精品久久久久久久电影| 五月玫瑰六月丁香| 国产黄片美女视频| 最新在线观看一区二区三区| 国产黄a三级三级三级人| 国产精品99久久99久久久不卡| 国产97色在线日韩免费| 亚洲内射少妇av| 国产精品1区2区在线观看.| 国产精品亚洲av一区麻豆| 女生性感内裤真人,穿戴方法视频| 小说图片视频综合网站| 国产v大片淫在线免费观看| 欧美性猛交黑人性爽| 午夜福利在线观看免费完整高清在 | 久久人妻av系列|