• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    2017-09-06 11:30:12呂玲玲朱元成左國(guó)防袁焜王永成
    關(guān)鍵詞:超氧化物血紅素多態(tài)

    呂玲玲 朱元成 左國(guó)防 袁焜 王永成

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)(2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    呂玲玲*,1朱元成1左國(guó)防1袁焜1王永成2

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)
    (2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    采用密度泛函DFT-B3LYP理論對(duì)非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理進(jìn)行了探討.研究結(jié)果表明氫原子抽取過程遵守單態(tài)反應(yīng)機(jī)制,主要在基態(tài)高自旋七重態(tài)勢(shì)能面進(jìn)行,且具有較低活化能(ΔG≠=65.6 kJ·mol-1),非血紅素鐵超氧化物可以作為有效氧化劑抽取氫原子。單態(tài)反應(yīng)機(jī)制可能歸因于近來建議的交換-加強(qiáng)反應(yīng)原則(EER,鐵中心具有較大交換穩(wěn)定作用)。對(duì)于O-O鍵的活化,在CASSCF(10,8)/6-31+G(d)//TZVP水平下,勢(shì)能面交叉區(qū)內(nèi),高自旋七重態(tài)(S1)和五重態(tài)(Q0)的自旋-軌道耦合(SOC)常數(shù)分別為2.26和2.19 cm-1。軌道分析表明兩條發(fā)生翻轉(zhuǎn)自旋軌道具有相同空間組成(π*sub),SOC禁阻,因此通過SOC作用反應(yīng)體系不可能有效地從七重態(tài)(S=3)勢(shì)能面系間穿越到五重態(tài)(S=2)勢(shì)能面,系間穿越可能發(fā)生在反應(yīng)最后的退出階段。

    非血紅素鐵超氧化物;多態(tài)反應(yīng)機(jī)理;系間竄越;自旋軌道耦合

    0 Introduction

    Mononuclear non-heme Fe enzymes catalyze a diverserangeofoxidationreactions,including hydroxylation,halogenation,ring closure,desaturation and electrophilic aromatic substrate that are important inmedical,pharmaceutical,andenvironmental applications[1-2].Several species including ferryl-oxo, ferric-superoxo,and ferric-peroxy have been proposed or found to act as oxidants in these enzymes[2]. However,our understanding of the non-heme ferricsuperoxo complexes is rather scant,as opposed to the well studied oxy-heme species.Thus,mononuclear non-hemecomplexesinenzymesandsynthetic analogueshaveattractedconsiderableinterest recently.Thelower-valentferric-superoxospecies havebeendirectlyobservedinnaphthalene dioxygenase(NDO)and homo-protoctaechute 2,3-dioxygenase(HPCD)[3].Furthermore,synthetic ferricsuperoxoandothermetal-superoxospecieswere recently reported to be capable of catalyzing oxidation, includingC-Hbondactivation[4].Interestingly, comparedwithhemeenzymes,manynon-heme enzymes can use ferric-superoxo species as an oxidant but only a few heme enzymes(tryptophan 2,3-dioxygenase(TDO),and indoleamine 2,3-dioxygenase (IDO)so far)use ferric-superoxo species[5-6],which has also attracted our attention as a candidate for the active oxidant in the non-heme enzymes catalysis. Morokuma and co-workers compared reactivity of several vital ferryl-oxo and ferric-superoxo model complexes including title non-heme complex 1 model through DFT calculations to provide clues for rational design of ferric-superoxo oxidants[2],where it has been shown that a dominant feature of these reactions is the two-state reactivity(TSR)and multistate reactivity (MSR)that transpires due to the close proximity of the different multi-spin states in the ground state[7].

    Scheme 1A model reaction for the propene catalyzed by non-heme ferric-superoxo species

    For ferric-superoxo complexes,the findings show that ferric-superoxo species can be converted to a ferryl-oxo complex via O-O bond cleavage,thus these species seem to shareonecommonfundamental feature of the TSR/MSR mechanisms,they involve energy profiles of at least two spin states that either crossing or remaininproximity.Thus,thetitle reaction possibly occurs on two or more potential energy surfaces(PESs)under thermal conditions.

    Therefore,detailed analyses of crossing seam between the different PESs are important in order to better understand the TSR/MSR mechanism of the propenecatalyzedbynon-hemeferric-superoxo species(Scheme 1).This kind of knowledge is essential for understanding the whole reaction mechanism and is useful for establishing an appropriate model for the O-O bond cleavage processes.To our knowledge,a deep theoretical study for the propene catalyzed by non-hemeferric-superoxospecieshasnotbeen reported.However,since an experimental proof of mechanism is not a simple matter,in this sense, theoretical chemistry,specifically density functionaltheory(DFT)has been playing an essential role in role inprovidingmechanisticdataandstructuresof unstableintermediatesandinderivinguseful concepts.In the present paper we have performed hybrid DFT calculations on the reactions of the propenecatalyzedbynon-hemeferric-superoxo compound 1 models(Fig.1)to paint global pictures and discussed crossing seams,spin-orbit coupling (SOC)and possible spin-inversion processes in the OO bond cleavage step.

    1 Computational details

    1.1 Geometrical optimization

    Energiesandgeometriesofthereaction intermediates and the transition states were calculated using the Gaussian 09 program package[8]and the unrestricted hybrid density functional UB3LYP with the 6-31+G(d)basis set[9].The basis set used in DFT calculationforsinglepointenergiesonfinal geometries is LACVP+*[10],which has been widely used for transition-metal-containing systems and has an effective potential that accounts for the scalar relativistic effects in iron.At the non-local functional UBP86 level,single-point energy calculations were performed using the LACVP+*basis set for all the atoms.The PCM approach for accounting solvent effects(single points with CH3CN as solvent)was applied in the UBP86/LACVP+*level.However, UBP86 tended to overstabilize the low-spin ground state resulting in a large energy splitting between spin states,and in some cases this lead to an incorrect ground state(see Supporting Information).In addition, previous investigations of transition metal compounds employing the B3LYP functional by other groups[11]and us[12]indicated that this approach shows a very promising performance to predict properties such as bond dissociation energies,geometries,and harmonic frequencies with an accuracy comparable to that obtained from highly correlated wave function based ab initio methods.

    1.2 Treatment of spin-orbit coupling

    The SOC matrix elements are treated by an accuratemulticentermean-field(RI-SOMF) approximation[13-15]with the reasonable complete active space self-consistent field,CASSCF(10,8)(ten activateelectronsoccupytheeightmetal-ligand activate orbitals).An efficient implementation of the SOMF concept was explained,which is based on the following formulation of the effective one-electron operator[16]:

    2 Results and discussion

    2.1 Electronicstructuresofferric-superoxo species

    The optimized geometries and energetic data for the septet,quintet,and triplet electronic states aredepictedinFig.1andTableS1(Supporting information),respectively.Inordertokeepthe discussion more simple,the goal complex,denoted as7(5)1side-onor7(5)[3]1end-on,is initially formed as Fe center and O2collide side-on or end-on with each other, where the superscripts denote the spin multiplicities. Comparedtothereactionmechanism,side-on complex,7(5)1side-onis not an important point discussed.

    We obtain a septet71end-oncomplex,wherein O2is bound end-on and is an Fe-superoxo complex.The electronic structure of71end-onis in detailed shown in Fig.2.From Fig.2,O2here is a superoxide,having a singly occupied π*⊥,which is perpendicular to the Fe-O-O plane,while the other doubly occupied π* orbital,π*∥in the Fe-O-O plane,forms a 3-e bond with the Fe dz2orbital.In other words,in the plane π*∥orbital of the superoxo interacts with the dz2orbital of the Fe in a π-type fashion,which leads to forming two new orbitals dz2±π*,as shown in Fig.2. Thus,the septet71end-onwill inv o lve ferromagnetic coupling of S=5/2 Fewith the S=1/2 superoxo anionO2-.

    Fig.1Optimized geometries of the different spin states non-heme Ferric-superoxo complexes at the UB3LYP/6-31+G(d)level

    Fig.2Electronic configurations of septet,quintet and triplet states of the end-on complex 1

    For the quintet51end-oncomplex,one character of51end-onis that its formal iron oxidation state can be assigned as Fe-peroxo.The reason is that the π*⊥orbital of the O2moiety in51end-onis doubly occupied. Formally,there are four unpaired α electrons in51end-on, spin density on Fe is 4.09.To identify some main atomic orbital interactions,the main antiferromagnetic orbital interactions were also inferred from overlaps calculated from the broken symmetry wave function (UB3LYP/6-31+G(d)),theresultscalculatedare plotted in Fig.3.Calculation results show that dz2±π*∥electronsareactuallyhighlypronetospinpolarization,i.e.,partial separation of α-and β-spin electrons in the dz2±π*∥orbital into spatially different regions,since electrons paired in orbital repel each other electrostatically.Restricted open-shell B3LYP calculations indeed show instability relative to brokensymmetry(BS)solutions.The overlap between dz2and π*∥is considerably better than the overlap of π*⊥and any Fe3d orbital,a nd the overlap is T=<dz2| π*∥>=0.64.The singlet coupling between dxzand π*∥electron pair is therefore strong enough to lead to a short of the Fe-O distances(0.201 8 nm)in51end-on,as compared with that(0.213 2 nm)of71end-on.

    As for31end-on,O2is bound end-on and is an Fe-superoxo complex,having a singly occupied π*⊥orbital and a doubly occupied π*∥orbital.Then31end-oninvolves ferromagnetic coupling of S=1/2 Fewith the S=1/2 superoxo anion O2-.Relative to71end-on,the DFT-calculated relative free energy of31end-onis 48.9 and 51.8 kJ·mol-1at the B3LYP/6-31+G(d)and B3LYP/LACVP+*levels,respectively.Compared with the coupling of51end-on,the singlet coupling between π*∥and dz2in31end-onis much stronger,the overlap T=<dz2

    |π*∥>≈1 with the covalent interaction,which will lead to decrease the distance of Fe-O bond (0.192 1 nm).

    Fig.3Spin natural orbitals(SNO)and natural orbitals(NO)obtained with the symmetry broken method in51end-on

    2.2 Hydrogen-atom abstraction

    The optimized geometries and relative energies in the triplet,quintet,and septet electronic states are shown in Fig.4 and Table S2(Supporting information), respectively.The calculated potential energy profiles forthedifferentspinstatesareshownin Fig.5.Initially,the three reactive states of7(5)[3]1end-onform reactant complexes,7(5)[3]R1,in which7(5)[3]1end-onis weakly bound to propene.An electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital.This leads to the transfer of a H-atom along with a spin-down electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate aferrichydroperoxoproductandaradicalon substrate.Thus,a strong π(O2-)bond is broken.Since the electron is transferred into the superoxo π*⊥orbital, this requires an end-on approach of the C-H bond of the substrate relative to the Fe-O-O plane to ensure good orbital overlap.

    As can be seen from Fig.5,the lower energy pathway of the H-abstraction process was occurred on the high-spin(HS)S=3 state PES.The transition state7TSHhas calculated barrier heights of ΔE≠=78.6 kJ· mol-1and ΔG≠=65.6 kJ·mol-1relative to7R1.If electronic energies and free energies in the gas-phase are compared,the spin state ordering in the reactants and transition states remains the same.This indicates that the reaction will take place through single-state reactivity on the HS S=3 state potential surface only, which is compared with the behavior of nonheme and heme iron-oxo complexes where generally two-or multi-state reactivity modes are obtained on competing spin state surfaces.This difference is possibly due to the exchange stabilization of the Fe center during the H-abstraction.

    Fig.4UB3LYP/6-31+G(d)optimized structures for the key species for the 2-propenol reactions of7(5)[3]1end-onwith propene

    Fig.5Energy profiles(in kJ·mol-1)for the 2-propenol reactions of7(5)[3]1end-onwith propene.All energy values are at the UB3LYP/LACVP+*level

    Basedontherecentlyproposedexchangeenhanced reactivity(EER)principle by Shaik et al[19], which states that if the number of identical-spin unpaired electrons on the metal center increases in the transition state(or the orbitals get more localizedon the metal center),this will maximize the exchange stabilization of the transition state.For the S=3,S=2, and S=1 spin states,during the H-abstraction,an electron shifts from the C-H bond to the O2π*⊥orbital andtherebythedelectronisfreedfromits antiferromagneticcoupling.i.e.,thenumberof unpaired d electrons of the Fe center is the same from reactantstoferrichydroperoxointermediate. Therefore,the condition of the smaller deformation energy of the reactants on the spin state,the HS S=5/ 2 state has a lower barrier as compared with the lowspin(LS)states,leading to single-state reactivity.The suggestion that the HS S=5/2 iron center of all these electronic structures has a high reactivity due EER is consistent with the experimental results of the key role of the HS non-heme iron center in O2activation.

    2.3 Calculations of O-O bond cleavage process 2.3.1Crossing of the different PESs.

    From Fig.5,the ground state product in quintet state,5P,will be formed from the intermediate in septet state,7IM1 via the transition state with the O-O bond broken.Therefore,at least a crossing and spin inversion process may be take place in the O-O cleavage reaction pathway.The geometric structure of the HS S=3 transition state,7TSOHis very different from those of the intermediate spin(IS)S=2,5TSOHand LS S=1,3TSOHtransition states(Fig.4).The7TSOHhas an O-O bond of 0.168 3 nm,which is shorter than those of the5TSOH,and3TSOH(0.1711,and 0.173 4 nm, respectively).These bond lengths indicate the7TSOHoccurs early in the O-O bond cleavage coordinate.As the O-Obond distanceincreases,theHSS=3 potentialenergysurfacesteeplyincreasesin energy and the S=2 potential energy surface gradually increases,which will lead to the crossing of different spin surfaces.

    It is noted that the likelihood of such a crossover seems significant in view of the fact that the spin state surfaces are so close and cross from7IM1 to the crossing region(Fig.5).And,the7IM1-5IM1 energy gap is very small(Fig.5).As such,a change in the geometry of the septet complex7IM1 in the direction ofthequintetcomplexgeometry,5IM1,causes crossingbetweenthetwostates.Thereafter,the reactioncanproceedonthequintetsurfaceor bifurcate again to the septet surface.These willdepend on the magnitude of the transition probability. Among the factors that affect the magnitude of the transition probability is the SOC interaction between the states.Let us then discuss the SOC interaction.

    Table 1Contributions to the calculated ZFS between SOC and Spin-Spin(SS)(all numbers are in cm-1) in the crossing region

    Table 2Calculated SOC matrix elements(cm-1)of septet and quintet states in the crossing region by CASSC (10,8)method

    2.2.2 Spin-orbit coulping(SOC)inthecrossingregion. Because of the intricate interplay of the spin-spin (SS)dipolar interaction with the SOC of the quintet state in the crossing seam,here we considered it desirable to include the calculation ofzero-field splitting(ZFS)parameters(D-tensor,D=Dzz-1/2(Dxx+

    Dyy))[20].The ZFS and SOC matrix elements were evaluated at the CASSCF(10,8)wave function with 6-31+G(d)and TZVP basis sets using quasi-degenerate perturbationtheory.Thesecalculationswere performed with the program ORCA 2.8[18].The mixing of the S=3 and S=2 levels in the crossing seam by the spin-dependent terms in the Hamiltonian is treated approximately.Only the elements of SOC operator between the lowest HS septet state and the lowest three quintets are considered,where elements between quintets and triplets are ignored.These detailed results of the ZFS calculations are shown in Table 1. From the results in Table 1,the main contribution is from the second-order SOC interaction,while the SS contributions are negligible.The SOC part contains three parts:the SOC of electronic excited states of the same spin(Sexcited=Sground;ΔS=0,D(0))into the ground state;from states differing by one spin flip(Sexcited= Sground±1;ΔS=-1,D(-1)and ΔS=+1,D(+1));and the elements of quintets,S=2→triplets,S=1(S=-1), which are ignored(D(-1)=0.0).The ΔS=0 contribu-tions are found to make significant contributions to Dxx=-0.099 cm-1,Dyy=-0.202 cm-1,and Dzz=-0.193 cm-1, with the main contribution arising from the same spin states(i.e.,the quintet ground state→excited quintet mixing).In addition,it is very small that the SOC contributions come from the spin-raising ΔS=+1 excitations corresponding to the quintet ground state septet mixing,which indicates that the quintet and septetmixingcanbeforbiddenbytheSOC interaction.

    In order to further understand the mechanism of intersystem crossing from the septet state to quintet state PES,the ROHF orbitals for the construction of the quintet and septet CASCI wave functions to be used in the SOC evaluation have been generated in the crossing region by quintet ROHF calculations, which were performed with the GAMESS program package[21].At least eight active orbitals,as given in Fig.6(in order to save space,the two nonactive doubly occupied orbitals are omitted),are found to be essential to reproduce the qualitative trends of SOC in the O-O bond cleavage step.The SOC matrix elements between the septet state and the quintet states in the crossing region are indicated in Table 2,we computed the SOC constants of the sextet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively.These values are very low and provide a first hint that intersystem crossing may be forbidden primarily for an electronic reason.For facile spin flip from the S=3 to S=2 surfaces,the crossing points are required to have similar geometries and energies.Moreover,the electronic configurations must be able to SOC.SOC is effectively a localized,singlecenter,one-electron operator and can be written as

    Fig.6Electronic configurations of the SOC interactions of the septet state and quintet states(Q0,Q1and Q2)in the vicinity of thecrossing region for the O-O bond breaking step.The labels S and Q refer to the spin states septet and quintet, respectively.

    where L is the orbital angular momentum operator, and S is the spin operator,while L·S=I is the angular momentum of electron(see formulations 2 and 3 in Computational details);the φ is the space part of the molecular orbital,θ the spin of the electron.The L+S-+ L-S+operator in Eq.4 performs a spin-flip and this process is accompanied by achange in the orbital due to the L+/L-raising/lowering operator[22].Therefore, two orbitals of opposite spins in SOC have to different spatial components.In addition,SOC is also feasible only if two microstates differ solely in the occupation of two orbitals with the same spin states or two microstates have the same Msfor the two different spin states and these two orbitals can couple through the Lzoperator.

    Orbital analysis on the SOC mechanism are listed in Fig.6,for both spin states,S1and Q0,the Fe center remains HS ferric with strong bonding interaction with the O atom.Hence,the major difference in the electronic structure between the S=3 and S=2 spin states at the crossing point lies in the spin of electron residing in the singly occupied π*sub,with α for S=3 and β for S=2.Obviously,two spin orbitals have the same spatial component in their wave functions(π*sub). Therefore,theS=3surfacecannoteffectively intersystem cross to the S=2 surface through the SOC interactionsastheorbitalangularmomentum operators associated with SOC in Eq.4 require a change in orbital occupation.Thus,thereaction system can still proceed on the S=3 surface.

    We also explored the SOC interaction of the septet state and two low lying quintet excited states, Q1and Q2,involving mostly Fe-3d excitations due to a transition metal complex where there are a number of near-degenerate states for close lying metal d-orbials. From Fig.6,because the SOC constant(ζFe)is an order of magnitude greater than the SOC values for oxygen, it is a reasonable approximation to consider only the Fe contribution when discussing spin-orbit mixing with quintet states.Thus for the SOC matrix elements of S1and Q1can be written as[17,23]

    where η is the Ms-dependent weighing factor,and θ=α and/or β.In this case,for the septet state,S1,the fundamentalopen-shellconfigurationhasone dominantcoefficient,i.e.C0=0.961,whilethe coefficient for quintet state is CQ1=0.87.Thus,the Q1state is generated from the septet S1state by electron shifts from φ5to φ1,lead to the d-atomic orbital matrix elements,Based on transfer of d orbitals under the operator of Lx,y,zoperators,the former will generate a y component of the SOC,the latter will lead to z component of the angular momentum,which is consistent with the calculated SOC values of<7φcm-1at CASSCF(10,8)/6-31+G(d)level.Similarly,the Q2state originates from the septet S1state by electron shifts from φ5to φ2,leading thereby to an x,y components of SOC with theelements,respectively.These calculated results show that the Q1and Q2states in crossing point will produce a significant one-center SOC interaction.Therefore,this can enhance the probability of intersystem crossing from the septet to the quintet state.However, these spin-flip pathways(S1→Q1,S1→Q2)are unfeasible because the excited crossing points have signifi-cantly higher in energy than the S1state,Q1and Q2are approximately 56.2 and 64.2 kJ·mol-1higher than the S1state at the CASSCF(10,8)/6-31+G(d),respectively.Thus,the O-O bond homolysis step should remain on the S=3 surface as the reaction proceeds, overcoming an activation free energy of 124.9 kJ·mol-1(Fig.5),while the intersystem crossing is possibly occurred at the exit stage of the reaction.

    To further understand mechanism of the S1→Q0spin-flip,the corresponding splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region can be seen in Fig.7.In zero magnetic field,the lowest quintet state Q0is split into three spin states with eigenfunctions|Qx>,|Qy>,and|Qz>, with an energy splitting described by the parameter D. For splitting of Zeeman sublevels,the eigenfunctions of the quintet spin states are given by|Q±2>,|Q±1>, and|Q0>and can be related to those at zero field by mixing coefficients that depend on the strength and direction of the magnetic field.From Fig.7,three zero field sublevels Qx,Qy,and Qzare selectively populated,and their relative populations are carried over to the high field energy levels,Q±2,Q±1,and Q0,Qy,and Qzoverpopulation and some population on the Qxsublevel.The populations on Qy,and Qzlevels are nearly equal,1.17×10-1,whereas that on Qxis somewhat smaller,1.16×10-1.These different populations are mainly attributed to the SOC-ISC interactions(<7φ-1.57 cm-1),but these populations are very small, which indicate that intersystem crossing from septet to quintet is low efficient in the crossing region.

    Fig.7Splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region z axis of the molecule is defined as its Zeeman axis

    3 Conclusions

    In this study,the multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated using density functional theory calculations.For H-atom abstraction step,an electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital. This leads to the transfer of a H-atom along with a spindown β electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate a ferric hydroperoxo product and a radical on substrate.Thus,a strong π(O2-) bond is broken.The lower energy pathway of the H-abstraction process was occurred on the HS S=3 state potential energy surface(PES).By contrast,the corresponding quintet and triplet H-abstraction barriers are well higher in energy and will not play a role of importance.These are possibly due to the exchange stabilization of the Fe center during the H-abstraction.As for the O-O bond broken step,at least a crossing and spin inversion process may be taken place in the O-O cleavage reaction pathway.In order to quantitatively understand the crossing of the S=3,S=2,and S=1 PESs,we computed the SOC constants(2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively) of the septet,S1and quintet,Q0state at the crossing re-gion.Orbital analysis show that the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions as the orbital angular momentum operators associated with SOC require a change in orbital occupation.Thus,the reaction system can still proceed on the S=3 surface.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Solomon E L,Brunold T C,Davis M I.Chem.Rev.,2010, 100:235-350

    [2](a)Nam W.Acc.Chem.Res.,2007,40:522-531 (b)Chung L W,Li X,Hirao H,et al.J.Am.Chem.Soc., 2011,133:20076-20079

    [3]Mbughuni M M,Charkrabarti M,Hayden J A,et al.Proc. Natl.Acad.Sci.U.S.A.,2010,107:16788-16793

    [4]Peterson R L,Himes R A,Kotani H,et al.J.Am.Chem. Soc.,2011,133:1702-1705

    [5]Sugimoto H,Ods S L,Otsuki T.Proc.Natl.Acad.Sci.U.S.A., 2006,103:2611-2616

    [6]Li F,Meier K K,Cranswick M A,et al.J.Am.Chem.Soc., 2011,133:7256-7259

    [7]Hirao H,Kumar D,Que L,et al.J.Am.Chem.Soc.,2006, 128:8590-8606

    [8]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09, Revision-D.01;Gaussian Inc.:Wallingford,CT,2009.

    [9]Ditchfield R,Hehre W J,Pople J.A.J.Chem.Phys.,1971, 54:724-732

    [10]Hay J P,Wadt W R.J.Chem.Phys.,1985,82:299-309

    [11]Lai W Z,Li C S,Chen H,et al.Angew.Chem.,Int.Ed., 2012,51:5556-5578

    [13]Sinnecker S,Neese F.J.Phys.Chem.A,2006,110:12267-12275

    [14]Neese F,Edward I,Solomon E I.Inorg.Chem.,1998,37: 6568-6582.

    [15]Hess B A,Marian C M,Wahlgren U,et al.Chem.Phys. Lett.,1996,251:365-371

    [16]Neese F.J.Am.Chem.Soc.,2006,128:10213-10222

    [17]Danovich D,Shaik S.J.Am.Chem.Soc.,1997,119:1773-17786

    [18]Neese F.ORCA-an ab initio,Density Functional and Semiempirical Program Package,Version 2.8,Max-Planck Institute for Bioinorganic Chemistry,Germany,2010.

    [19](a)Shaik S,Chen H,Janardanan D.Nat.Chem.,2011,3: 19-27

    (b)Mas-Ballesté R,McDonald A R,Reed D,et al.Chem. Eur.J.,2012,18:11747-11760

    [21]Granovsky A A.GAMESS Program,Moscow State University, Russia,2007.

    [22]Pau M Y M.Proc.Natl.Acad.Sci.U.S.A.,2007,104:18355-18362

    Theoretical Investigation on the Multi-State Reaction Mechanism for the Propene Catalyzed by Non-Heme Ferric-Superoxo Species

    Lü Ling-Ling*,1ZHU Yuan-Cheng1ZUO Guo-Fang1YUAN Kun1WANG Yong-Cheng2
    (1College of Chemical Engineering and Technology,Tianshui Normal University,TianShui,Gansu 741001,China)
    (2College of Chemistry and Chemical Engineering,Northwest Normal University,LanZhou,730070,China)

    The multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated at the DFT-B3LYP level.The calculations show that non-heme ferric-superoxo complex can be considered as effective oxidants in hydrogen atom abstraction reaction(single-state-reactivity),for which we find a lower barrier of ΔG≠=65.6 kJ·mol-1on the septet spin state surface.Single-state-reactivity is possibly due to the recently proposed exchange-enhanced reactivity(EER)principle with larger exchange stabilization of the Fe center.For the O-O bond activated step,we computed the spin-orbit coupling(SOC)constants of the septet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF (10,8)/6-31+G(d)//TZVP levels,respectively.Orbital analysis show that two spin orbitals have the same spatial component in their wave functions(π*sub),therefore,the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions,and the intersystem crossing is possibly occurred at the exit stage of the reaction.

    non-heme ferric-superoxo;multi-state reaction mechanism;intersystem crossing;spin-orbit coupling

    O641.12+1

    A

    1001-4861(2017)02-0329-11

    10.11862/CJIC.2017.028

    2016-02-04。收修改稿日期:2016-12-03。

    國(guó)家自然基金(No.21263022;21663025;2163024)、甘肅省教育廳導(dǎo)師基金和天水師范學(xué)院“青藍(lán)”人才工程基金資助項(xiàng)目。*

    。E-mail:lvling002@163.com

    猜你喜歡
    超氧化物血紅素多態(tài)
    分層多態(tài)加權(quán)k/n系統(tǒng)的可用性建模與設(shè)計(jì)優(yōu)化
    參差多態(tài)而功不唐捐
    新型耐高溫超氧化物歧化酶SOD的產(chǎn)業(yè)化
    超氧化物歧化酶保健飲用水及其制取方法探討
    血紅素氧合酶-1與急性腎損傷研究新進(jìn)展
    人多巴胺D2基因啟動(dòng)子區(qū)—350A/G多態(tài)位點(diǎn)熒光素酶表達(dá)載體的構(gòu)建與鑒定及活性檢測(cè)
    血紅素加氧酶-1對(duì)TNF-α引起內(nèi)皮細(xì)胞炎癥損傷的保護(hù)作用
    麥苗中超氧化物歧化酶抗氧化活性研究
    煙堿型乙酰膽堿受體基因多態(tài)與早發(fā)性精神分裂癥的關(guān)聯(lián)研究
    富血紅素多肽研究進(jìn)展
    日本三级黄在线观看| 久久精品亚洲熟妇少妇任你| xxxhd国产人妻xxx| 久久精品91蜜桃| 男女做爰动态图高潮gif福利片 | 无限看片的www在线观看| 久9热在线精品视频| 99热国产这里只有精品6| 青草久久国产| 欧美黄色淫秽网站| 久久影院123| 国产在线精品亚洲第一网站| 9色porny在线观看| 制服人妻中文乱码| xxx96com| 国产成人免费无遮挡视频| 看免费av毛片| 丝袜美足系列| 变态另类成人亚洲欧美熟女 | 国产91精品成人一区二区三区| 69av精品久久久久久| 在线av久久热| a级毛片黄视频| 天天躁狠狠躁夜夜躁狠狠躁| cao死你这个sao货| 在线播放国产精品三级| 日韩中文字幕欧美一区二区| 国产一区二区三区综合在线观看| 人人妻人人澡人人看| 亚洲精品av麻豆狂野| 身体一侧抽搐| 久久久国产精品麻豆| 69精品国产乱码久久久| 99久久99久久久精品蜜桃| 午夜精品国产一区二区电影| 大陆偷拍与自拍| x7x7x7水蜜桃| 日韩国内少妇激情av| 午夜影院日韩av| 淫秽高清视频在线观看| 性欧美人与动物交配| 91九色精品人成在线观看| www.自偷自拍.com| 欧美日韩乱码在线| 久久人人精品亚洲av| 久久久精品欧美日韩精品| 日本一区二区免费在线视频| av电影中文网址| ponron亚洲| 黄色 视频免费看| 久99久视频精品免费| 首页视频小说图片口味搜索| 黄色丝袜av网址大全| 咕卡用的链子| 精品国产超薄肉色丝袜足j| 亚洲自拍偷在线| 亚洲第一av免费看| 91精品三级在线观看| 69av精品久久久久久| 国产黄色免费在线视频| 成人国语在线视频| 日韩大尺度精品在线看网址 | 日韩免费高清中文字幕av| 一级a爱视频在线免费观看| ponron亚洲| 日韩精品免费视频一区二区三区| 欧美av亚洲av综合av国产av| 精品一品国产午夜福利视频| 一a级毛片在线观看| 国产精品二区激情视频| www.999成人在线观看| 极品教师在线免费播放| 最近最新免费中文字幕在线| 操出白浆在线播放| 成年女人毛片免费观看观看9| 很黄的视频免费| 精品无人区乱码1区二区| 欧美黄色淫秽网站| www.精华液| 欧美最黄视频在线播放免费 | 99re在线观看精品视频| 大香蕉久久成人网| av国产精品久久久久影院| 午夜视频精品福利| av在线天堂中文字幕 | 国产99久久九九免费精品| 欧美精品啪啪一区二区三区| 午夜视频精品福利| 一个人免费在线观看的高清视频| 校园春色视频在线观看| 国产一区二区三区视频了| 国产精品一区二区三区四区久久 | 亚洲中文av在线| 国产国语露脸激情在线看| 午夜91福利影院| 无遮挡黄片免费观看| 国产亚洲精品久久久久5区| 成年女人毛片免费观看观看9| 国产精品国产高清国产av| 日本 av在线| 国产成人影院久久av| 成人18禁高潮啪啪吃奶动态图| 久久国产精品影院| 欧美黑人欧美精品刺激| 日本vs欧美在线观看视频| 高清欧美精品videossex| 美女午夜性视频免费| 欧美在线一区亚洲| 人人妻人人添人人爽欧美一区卜| 91成人精品电影| 亚洲av熟女| www.熟女人妻精品国产| 国产欧美日韩一区二区三区在线| 51午夜福利影视在线观看| 亚洲国产中文字幕在线视频| 久久婷婷成人综合色麻豆| 久久久国产精品麻豆| 亚洲成国产人片在线观看| 女性被躁到高潮视频| 国产av一区二区精品久久| 午夜免费激情av| 亚洲色图综合在线观看| 国产一区在线观看成人免费| 青草久久国产| 色播在线永久视频| 日韩欧美一区二区三区在线观看| 女警被强在线播放| 女性被躁到高潮视频| 欧美午夜高清在线| 免费在线观看亚洲国产| 老司机在亚洲福利影院| 黄色视频不卡| 校园春色视频在线观看| 一进一出抽搐gif免费好疼 | 侵犯人妻中文字幕一二三四区| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 99国产精品一区二区三区| 欧美黑人精品巨大| 国产欧美日韩综合在线一区二区| 又黄又爽又免费观看的视频| 免费高清视频大片| 国产区一区二久久| 少妇 在线观看| 国产成年人精品一区二区 | 午夜福利欧美成人| 国产欧美日韩一区二区精品| 热99国产精品久久久久久7| 国产精品久久久人人做人人爽| 欧美日韩视频精品一区| 亚洲va日本ⅴa欧美va伊人久久| 久久天堂一区二区三区四区| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 日韩欧美三级三区| 国产单亲对白刺激| 色哟哟哟哟哟哟| 亚洲人成77777在线视频| 精品欧美一区二区三区在线| 国产无遮挡羞羞视频在线观看| 色综合站精品国产| 天堂影院成人在线观看| 免费看a级黄色片| 电影成人av| 免费在线观看日本一区| 亚洲精品一区av在线观看| 人成视频在线观看免费观看| 成人精品一区二区免费| 少妇被粗大的猛进出69影院| 免费不卡黄色视频| 久久久久久免费高清国产稀缺| 欧美日韩中文字幕国产精品一区二区三区 | 老汉色∧v一级毛片| 亚洲人成77777在线视频| 欧美中文综合在线视频| 自线自在国产av| 满18在线观看网站| 国产成人免费无遮挡视频| 国产xxxxx性猛交| 国产精品偷伦视频观看了| 热re99久久国产66热| 一a级毛片在线观看| 一区在线观看完整版| 免费在线观看视频国产中文字幕亚洲| a级片在线免费高清观看视频| 国产成人一区二区三区免费视频网站| 精品福利观看| 亚洲人成77777在线视频| 成人18禁在线播放| 亚洲欧美日韩无卡精品| 欧美色视频一区免费| 国产亚洲精品一区二区www| 日韩欧美一区二区三区在线观看| 女人被狂操c到高潮| 国产精品亚洲一级av第二区| 国产亚洲精品久久久久5区| 男女高潮啪啪啪动态图| 黑人巨大精品欧美一区二区mp4| 久久久国产欧美日韩av| 热99国产精品久久久久久7| 一a级毛片在线观看| 久久久久久久午夜电影 | 一区二区三区国产精品乱码| 免费久久久久久久精品成人欧美视频| 水蜜桃什么品种好| 两个人免费观看高清视频| 精品福利永久在线观看| 欧美日韩一级在线毛片| 法律面前人人平等表现在哪些方面| 在线国产一区二区在线| 身体一侧抽搐| www.自偷自拍.com| 他把我摸到了高潮在线观看| 一个人观看的视频www高清免费观看 | 视频区图区小说| 日日摸夜夜添夜夜添小说| 国产99白浆流出| 午夜亚洲福利在线播放| 在线国产一区二区在线| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9| 亚洲精品中文字幕在线视频| 日韩人妻精品一区2区三区| 中文字幕高清在线视频| 99国产精品免费福利视频| 婷婷丁香在线五月| 亚洲精品在线观看二区| 在线观看日韩欧美| 亚洲三区欧美一区| 久久人妻福利社区极品人妻图片| 精品国产乱子伦一区二区三区| 国产又爽黄色视频| 亚洲成a人片在线一区二区| 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 老司机深夜福利视频在线观看| 国产一区二区三区综合在线观看| 黄色丝袜av网址大全| 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| av免费在线观看网站| 久久久久久大精品| 可以在线观看毛片的网站| 久久精品国产亚洲av香蕉五月| 精品无人区乱码1区二区| 日韩中文字幕欧美一区二区| 电影成人av| 91九色精品人成在线观看| 天堂动漫精品| 成人18禁高潮啪啪吃奶动态图| 美女大奶头视频| 在线观看免费午夜福利视频| 亚洲一区二区三区色噜噜 | 午夜福利影视在线免费观看| 五月开心婷婷网| 正在播放国产对白刺激| 日本 av在线| av片东京热男人的天堂| 日韩精品青青久久久久久| 国产成人影院久久av| 亚洲va日本ⅴa欧美va伊人久久| 女生性感内裤真人,穿戴方法视频| 欧洲精品卡2卡3卡4卡5卡区| 天天影视国产精品| 夜夜夜夜夜久久久久| 老司机靠b影院| 亚洲五月天丁香| 高清欧美精品videossex| av有码第一页| 亚洲精品久久午夜乱码| 在线永久观看黄色视频| 法律面前人人平等表现在哪些方面| 国产男靠女视频免费网站| 99在线视频只有这里精品首页| 手机成人av网站| 五月开心婷婷网| 9色porny在线观看| 18禁国产床啪视频网站| 高清在线国产一区| 在线观看一区二区三区| 女人精品久久久久毛片| 日韩欧美国产一区二区入口| 真人一进一出gif抽搐免费| 国产精品免费视频内射| 久久亚洲真实| 欧美日韩精品网址| 亚洲av熟女| 女人爽到高潮嗷嗷叫在线视频| 免费高清视频大片| 午夜免费鲁丝| 88av欧美| 成人18禁高潮啪啪吃奶动态图| 午夜a级毛片| 女人精品久久久久毛片| 免费看a级黄色片| 国产极品粉嫩免费观看在线| 免费在线观看影片大全网站| 十八禁人妻一区二区| 午夜激情av网站| 久久人妻福利社区极品人妻图片| 好看av亚洲va欧美ⅴa在| 欧美日本中文国产一区发布| 国产日韩一区二区三区精品不卡| 欧美老熟妇乱子伦牲交| 久久国产精品人妻蜜桃| 亚洲激情在线av| 老司机福利观看| 国产三级在线视频| av片东京热男人的天堂| 久久人人精品亚洲av| 热99re8久久精品国产| 亚洲国产欧美日韩在线播放| 欧美乱妇无乱码| 在线观看66精品国产| cao死你这个sao货| 欧美日韩av久久| 91av网站免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 9色porny在线观看| 亚洲男人天堂网一区| 多毛熟女@视频| 免费少妇av软件| 操美女的视频在线观看| 涩涩av久久男人的天堂| 日本撒尿小便嘘嘘汇集6| 精品电影一区二区在线| 国产一区二区激情短视频| 黄片播放在线免费| 欧美激情 高清一区二区三区| 成人18禁在线播放| 一进一出好大好爽视频| 国产aⅴ精品一区二区三区波| 亚洲片人在线观看| svipshipincom国产片| 日本欧美视频一区| 熟女少妇亚洲综合色aaa.| 在线视频色国产色| 99久久综合精品五月天人人| 国产xxxxx性猛交| 少妇的丰满在线观看| 欧美日本亚洲视频在线播放| 亚洲免费av在线视频| 97碰自拍视频| 无人区码免费观看不卡| 97碰自拍视频| 无人区码免费观看不卡| 最好的美女福利视频网| 亚洲成国产人片在线观看| 国产野战对白在线观看| 精品国产一区二区久久| 久久久久久人人人人人| 久久精品亚洲av国产电影网| 亚洲人成网站在线播放欧美日韩| 1024视频免费在线观看| 色老头精品视频在线观看| 亚洲人成77777在线视频| 精品国内亚洲2022精品成人| 亚洲精品美女久久久久99蜜臀| 免费av中文字幕在线| 亚洲国产精品sss在线观看 | 久久精品亚洲熟妇少妇任你| 丝袜美腿诱惑在线| 欧美乱码精品一区二区三区| 久久久久久大精品| 看黄色毛片网站| 亚洲av成人av| 免费观看精品视频网站| 一二三四社区在线视频社区8| 国内久久婷婷六月综合欲色啪| 亚洲国产精品sss在线观看 | 激情在线观看视频在线高清| 亚洲一码二码三码区别大吗| 老司机亚洲免费影院| 99国产综合亚洲精品| 久久 成人 亚洲| 免费高清视频大片| 怎么达到女性高潮| 老汉色av国产亚洲站长工具| 人人妻人人添人人爽欧美一区卜| 国产精品一区二区三区四区久久 | 欧美黄色片欧美黄色片| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 最近最新中文字幕大全电影3 | 久久青草综合色| 岛国视频午夜一区免费看| 天堂影院成人在线观看| 亚洲精品一二三| 国产av一区在线观看免费| av在线播放免费不卡| 99久久综合精品五月天人人| 在线观看免费视频网站a站| 久久久久国产一级毛片高清牌| 超碰97精品在线观看| 欧美激情高清一区二区三区| 午夜91福利影院| 久久精品影院6| 久久久国产成人精品二区 | 女人精品久久久久毛片| 丁香欧美五月| 人妻久久中文字幕网| 无遮挡黄片免费观看| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 免费在线观看亚洲国产| 亚洲国产精品999在线| 夜夜夜夜夜久久久久| 日本五十路高清| 十分钟在线观看高清视频www| 久久久国产欧美日韩av| 久久久国产一区二区| 国产主播在线观看一区二区| 制服人妻中文乱码| 99精品欧美一区二区三区四区| 最近最新中文字幕大全电影3 | 淫妇啪啪啪对白视频| 亚洲成人国产一区在线观看| 搡老乐熟女国产| 在线永久观看黄色视频| 久久人妻av系列| 亚洲第一青青草原| 精品国产乱子伦一区二区三区| 国产亚洲欧美在线一区二区| 午夜福利影视在线免费观看| 亚洲国产欧美一区二区综合| 国产一区二区三区视频了| 日韩有码中文字幕| 欧美日本亚洲视频在线播放| 法律面前人人平等表现在哪些方面| 亚洲激情在线av| 高潮久久久久久久久久久不卡| 女性生殖器流出的白浆| 久久精品亚洲熟妇少妇任你| 日韩高清综合在线| 天天躁夜夜躁狠狠躁躁| 亚洲第一欧美日韩一区二区三区| 日韩欧美一区二区三区在线观看| 99精品在免费线老司机午夜| 极品教师在线免费播放| 欧美精品亚洲一区二区| 成人黄色视频免费在线看| 波多野结衣高清无吗| 欧美黄色淫秽网站| 日韩欧美一区二区三区在线观看| 99精品在免费线老司机午夜| 中文字幕另类日韩欧美亚洲嫩草| 水蜜桃什么品种好| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 亚洲精品国产色婷婷电影| 久久精品影院6| 亚洲欧美一区二区三区久久| 一级片免费观看大全| 国产99白浆流出| 久久这里只有精品19| 久久国产精品男人的天堂亚洲| 成人18禁在线播放| 国产精品九九99| 高清欧美精品videossex| 日韩人妻精品一区2区三区| 妹子高潮喷水视频| 日本wwww免费看| 又黄又粗又硬又大视频| 99精品欧美一区二区三区四区| 美女福利国产在线| 国产成人精品无人区| 中文亚洲av片在线观看爽| 亚洲人成电影免费在线| 18禁观看日本| 色综合欧美亚洲国产小说| 久久天堂一区二区三区四区| 美女福利国产在线| 最近最新中文字幕大全免费视频| 午夜两性在线视频| 极品人妻少妇av视频| 国产不卡一卡二| 91老司机精品| 丝袜美腿诱惑在线| 欧美成人午夜精品| 国产成人一区二区三区免费视频网站| 男人舔女人下体高潮全视频| 91老司机精品| 欧美激情高清一区二区三区| 午夜两性在线视频| 日本vs欧美在线观看视频| 久久亚洲精品不卡| xxxhd国产人妻xxx| 精品免费久久久久久久清纯| 久久精品91蜜桃| aaaaa片日本免费| 久久亚洲精品不卡| 丁香六月欧美| 满18在线观看网站| 欧美亚洲日本最大视频资源| 亚洲免费av在线视频| 丰满的人妻完整版| 热re99久久国产66热| 人成视频在线观看免费观看| 少妇粗大呻吟视频| 99久久综合精品五月天人人| 国产精品一区二区三区四区久久 | 一进一出好大好爽视频| 精品高清国产在线一区| av网站免费在线观看视频| 亚洲一区二区三区色噜噜 | 伊人久久大香线蕉亚洲五| 中文字幕色久视频| 国产精品二区激情视频| 欧美 亚洲 国产 日韩一| 18禁裸乳无遮挡免费网站照片 | 99久久99久久久精品蜜桃| 电影成人av| 日韩免费av在线播放| 一级片'在线观看视频| www.999成人在线观看| 中文字幕精品免费在线观看视频| 91国产中文字幕| 国产野战对白在线观看| 久久国产精品人妻蜜桃| 久久中文字幕一级| 亚洲熟女毛片儿| 97超级碰碰碰精品色视频在线观看| 国产av一区二区精品久久| 一级毛片高清免费大全| 亚洲黑人精品在线| 男人舔女人的私密视频| 国产精品 欧美亚洲| videosex国产| 久久国产精品影院| 99久久精品国产亚洲精品| 另类亚洲欧美激情| 欧美日韩国产mv在线观看视频| 这个男人来自地球电影免费观看| 亚洲少妇的诱惑av| 成人18禁高潮啪啪吃奶动态图| 大陆偷拍与自拍| 亚洲成人免费电影在线观看| 在线av久久热| www.999成人在线观看| 欧美精品啪啪一区二区三区| 午夜精品久久久久久毛片777| 国产一区在线观看成人免费| 日日爽夜夜爽网站| a级毛片在线看网站| 三上悠亚av全集在线观看| 高清av免费在线| 国产一区二区在线av高清观看| 色婷婷久久久亚洲欧美| 一级作爱视频免费观看| 国产主播在线观看一区二区| 午夜日韩欧美国产| 十八禁人妻一区二区| 亚洲美女黄片视频| 夜夜躁狠狠躁天天躁| 欧美成人性av电影在线观看| 久久久久久人人人人人| 午夜成年电影在线免费观看| 国产一区二区三区在线臀色熟女 | 中文欧美无线码| 免费看a级黄色片| 亚洲情色 制服丝袜| 免费女性裸体啪啪无遮挡网站| 老汉色∧v一级毛片| 高清av免费在线| 亚洲av日韩精品久久久久久密| 一级黄色大片毛片| 在线av久久热| 欧美日本中文国产一区发布| 国产精品一区二区精品视频观看| 国产国语露脸激情在线看| 免费av毛片视频| 日韩免费高清中文字幕av| 欧美日韩视频精品一区| 男女下面进入的视频免费午夜 | 十分钟在线观看高清视频www| 国产成年人精品一区二区 | 波多野结衣一区麻豆| 国产又色又爽无遮挡免费看| 精品高清国产在线一区| 黄片大片在线免费观看| 欧美在线黄色| 麻豆一二三区av精品| a在线观看视频网站| 91成人精品电影| 免费在线观看日本一区| 亚洲五月天丁香| 午夜影院日韩av| 脱女人内裤的视频| 免费搜索国产男女视频| 久久欧美精品欧美久久欧美| 国产在线精品亚洲第一网站| 高清黄色对白视频在线免费看| 亚洲全国av大片| 最新美女视频免费是黄的| 男女之事视频高清在线观看| 亚洲专区中文字幕在线| 天堂影院成人在线观看| 亚洲精品中文字幕一二三四区| 亚洲全国av大片| av网站在线播放免费| 88av欧美| 香蕉久久夜色| 欧美日韩视频精品一区| 久热这里只有精品99| 99国产精品99久久久久| 一夜夜www| 丰满饥渴人妻一区二区三| 欧美丝袜亚洲另类 | 人人妻人人澡人人看| 黄片小视频在线播放| 国产精品国产高清国产av| 色婷婷av一区二区三区视频| 老汉色av国产亚洲站长工具| 一级黄色大片毛片| 91麻豆av在线|