• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering and characterization of new intrinsic transcriptional terminators in Bacillus subtilis 168

    2017-08-01 00:15:25JeanPaulSinumvayoSenYangJianChenGuochengDuandZhenKang
    生物工程學(xué)報(bào) 2017年7期
    關(guān)鍵詞:陳堅(jiān)楊森發(fā)卡

    Jean Paul Sinumvayo, Sen Yang, Jian Chen,2, Guocheng Du,2, and Zhen Kang,2

    ?

    Engineering and characterization of new intrinsic transcriptional terminators in168

    Jean Paul Sinumvayo1, Sen Yang1, Jian Chen1,2, Guocheng Du1,2, and Zhen Kang1,2

    1 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China 2 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu,China

    Terminators as regulatory signals are typically placed behind the last coding sequence to block the transcription of DNA to RNA and release the transcript. In the present study, the hairpin and the U-rich sequence of the bacteriophage λtoterminator were first modified to investigate their effects on termination efficiency and mRNA stability in168. Compared with the native λtoterminator, the terminator variants M3, M11 and M12 showed higher termination efficiency values. Moreover, the variantsM3, M4 and M11 showed significant positive effects on the mRNA stability of the upstreamgene. Additionally, insertion of RNase site also increased the mRNA stability. The results of this study suggested that the composition of the hairpin loop is not required for effective intrinsic termination in. Our results also showed that the terminator could also be used as a potential tool for increasing mRNA stability and the corresponding enzyme production in.

    synthetic biology, transcription terminator, λtoterminator, mRNA stability,

    Introduction

    Terminators are usually located at the end of a gene or an operon where they terminate the transcription of DNA to RNA and release the transcript[1]. Terminators fall into two categories: 1) rho-independent (or intrinsic) terminators and 2) rho-dependent terminators[2-3]. A majority of previous studies focused on intrinsic terminators, due to their function in the dissociation of transcription complexes without the assistance of auxiliary factors. In bacteria, the intrinsic terminator contains a stable GC-rich hairpin stem loop and a U-stretch that required for disturbing the stable transcription elongation complexes[3-5]. The transcription termination process involves in dissociation of RNA polymerase and separation of the RNA:DNA hybrid[6].

    For a long time, terminators have not received enough attention as genetic regulators[2]and most studies have focused on prediction and identification alone[2,7], as well as the mutation and evaluation of the effects of the GC-rich hairpin and the poly(U) sequence[4,8-12]. Recently, terminators have been demonstrated to be highly important not only on downstream gene protection against transcript read-through but also for its positive effect on the stabilization of upstream mRNA transcripts[8,13]. In this regard, Chen. built a library of 582 natural and synthetic terminators. After calculation and comparison, they found that in addition to receiving the greatest contribution from the U-tract, the base content of the hairpin stem also correlated with the terminator strength. Specially, they found that strong terminators usually have higher GC content at the bottom of the hairpin stem. In contrast, no or weak correlations were observed between the hairpin stability and its length[14]. Similarly, Cambray. characterized 61 natural and synthetic terminators and attested their roles in the quantitative modeling of transcription termination for the optimization of synthetic genetic systems[8]. More recently, Liquantified the relationship between terminator position and terminator efficiency and provided a simple method for fine tuning termination efficiency without changing terminator sequences[11]. In addition to these fundamental studies, many studies have extended the usability of terminators in the construction of genetic systems (such as Logic gates[15-16]and genetic bandpass filter[17-18]), pathway optimization[19]and enzyme expression[9,13,20], suggesting the potential powerful applications of terminators in synthetic biology.

    To date, most studies have concentrated onstrains and only a small fraction of literatures are focused on other microorganisms[21], such as[1,22-23]. In fact, the generally recognized safe strainhas been widely used as a powerful cell factory for multiple applications, including enzyme production, pathway engineering and synthetic biology[24-27]. Hence, engineering and characterization of rho-independent terminators inis of great significance. In the present study, the bacteriophage λtoterminator was engineered and investigated with an experimental system using. The results would have important applications in synthetic biology.

    1 Materials and methods

    1.1 Bacterial strains and plasmids

    The strains, plasmids and primers used in this study are listed in Table 1 and Table 2, respectively.strain JM109 (e14?(mcrA), endA1, recA1, hsdR17 (rk?, mk+), (lac-proAB) lacIqZM15, relA1) used for plasmid construction and molecular manipulation of all genetic parts andstrain TOP10 (F–mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ (ara-leu) 7697 galE15 galK16 rpsL (StrR) endA1 λ), were purchased from Invitrogen. The pUC57-simple (Ampr, cloning vector in, isolated fromstrain DH5α, MCS) that harbored thegene was obtained from Takara. To perform the assay on the genetic system in this study, samples of168 (trpC2) obtained from BGSC and pP43NMK (Ampr, Kanr, shuttle expression-secretion vector) were used as expression host and vector, respectively.

    1.2 Construction of characterization devices

    The development of devices that allow the characterization of our new BioBrick terminator variants was based on construction of the GFP/RFP dual fluorescent system being with the inputs/outputs to the system controlled by the P43 promoter. We started by introducing several additional restriction enzyme recognition sites into the multiple cloning site (MCS) of the pP43NMK expression vector. Firstly, areporter gene fragment was amplified using primers GFP-F/GFP-R (Table 2). The resulting PCR product was digested withⅠ andⅠ and ligated intramolecularly to generate plasmid pP43NMK-, which contained successiveⅠ,Ⅰ,Ⅰ andⅠ recognition sites downstream. Secondly, a fragment of thereporter gene was amplified from the pUC57-simple plasmid using primers RFP-F/RFP-R and digested withⅠ andⅠ. The resulting PCR product was ligated in pP43NMK-plasmid digested with the same enzymes (Ⅰ andⅠ) to generate a control device pP43NMK--. The next step was the insertion of a testing terminator genetic sequence which was synthesized and amplified using primers λto-F/λto-R to generate pP43NMK--λto-. The construction of an insulated terminator was performed by insertion of new genetic devices (RNase site and strong hairpin) in the testing plasmid by means of amplification of pUC57-simple using primers RNase F/RNase R. The resulting PCR product was immediately mixed with 1 U ofⅠ to digest the remaining circular plasmid and the product was digested withⅠ then self-ligated to generate the plasmid pUC57-RNase site-λto-RNase site-strong hairpin. From the resulting plasmid, we amplified the fragment harboring the RNase site, λtoterminator and strong hairpin with primers λto-F/λto-R. The resulting PCR fragment was digested withⅠ andⅠ, then ligated downstream of thereporter in pP43NMK-digested with the same enzymes to generate the testing device pP43NMK--RNase site-λto-RNase site-strong hairpin-. Furthermore, we attained our characterization construct model by constructing terminator variants M1, M2, M3, M4, M5, M6, M7, M8, M9, M10 and M11 using primers M1-F/λto-R, M2–F/λto-R, M3-F/λto-R, M4-F/λto-R, M5-F/λto-R, M6-F/λto-R, M7-F/λto-R, M8-F/λto-R, M9-F/λto-R, M10-F/λto-R and M11-F/λto-R to generate recombinant plasmids named pP43NMK--M1-, pP43NMK--M2-, pP43NMK--M3-, pP43NMK--M4-, pP43NMK--M5-, pP43NMK-- M6-, pP43NMK--M7-, pP43NMK--M8-, pP43NMK--M9-, pP43NMK--M10-and pP43NMK--M11-, respectively. Recombinant bacteria harboring controls and testing devices were isolated, and the entire resulting devices were confirmed by sequencing. We further continued by transforming all confirmed plasmids into168 competent cells, and finally we obtained a control strain168 GFP-RFP and recombinant test strains168-M1,168-M2,168-M3,168-M4,168-M5,168-M6,168-M7,168-M8,168-M9,168-M10,168-M11 and168 GFP-RNase site-λto-RNase site-strong hairpin-which were treated and subjected to the characterization experiment.

    Table 1 Strains and plasmids used in this study

    Table 2 Primers used in this study

    1.3 Media and culture conditions

    JM109, TOP10 and168 were typically cultured in LB broth (per liter: 10.0 g tryptone, 5.0 g yeast extract, and 10.0 g NaCl) at 37 ℃ with shaking speed of 220 r/min. Solid media were prepared by adding 1.5 g/Lagar to the respective media. Unless otherwise stated, the antibiotic concentrations were 100 mg/Lampicillin for, and 100 mg/Lkanamycin for168. To evaluate the expression of our genetic devices, all plasmids harboring genetic sequences were cultured in LB medium supplemented with antibiotic and flask cultivations were performed at 37 ℃ with a rotational speed of 220 r/min for 12 hours where samples were collected and treated every 2 hours and subjected to fluorescence measurements.

    1.4 Analytical methods

    1.4.1 GFP and RFP intensity quantification

    For the GFP and RFP determination, the culture broth was centrifuged at 10 000×for 10 min, washed with 0.1 mol/L phosphate-buffered saline (pH 7.4), and diluted in the same buffer. Therefore, 200 μL of each sample was pipetted, added to the 96-well plates and immediately subjected to fluorescence determination. The GFP and RFP fluorescence intensity produced by the characterization devices were measured by using a Cytation 3 Cell Imaging Multi-Mode Reader (BioTek) at an excitation/emission wavelength of 490/530 nm and 555/584 nm respectively.

    1.4.2 Analysis of GFP mRNA transcript level

    Samples taken from the culture media between 7 and 8 hours were thawed and centrifuged for 2 min at~11 000×at 4 ℃. The supernatant was discarded, and the pellet was immediately frozen at ?80 ℃. Cell pellets were suspended in Tris-EDTA (TE) buffer (10 mmol/L Tris-HCl, pH 8.0, 1 mmol/L EDTA) with lysozyme to a final concentration of 0.4 mg/ml. Total RNA was extracted with RNAprep Pure Kit (Tiangen biotech, CHINA) and RNA concentration was determined with the NanoDrop1000 (Thermo Fisher Scientific, MA, USA). Furthermore, cDNA was synthesized by Takara Prime Script Reverse Transcriptase with gDNA eraser and quantitative-PCR (Q-PCR) was carried out using TaKaRa SYBR Premix Dimer Eraser.

    2 Results and discussion

    2.1 Structures of the λtoterminator and its variants

    The DNA sequences as well as the free energies of the λtoterminator[28]and its variants are shown in Table 3. In particular, both the RNA hairpin structures and their corresponding free energies were predicted by[29]The loop and the adjacent C-G base pair were examined and mutated since each contributed to the terminator strength[9].Generally, nucleotides mismatches occur very rarely in strong terminators, thus, the nucleotides mismatches in the stem of the hairpin were eliminated. In addition, the effects of the poly (T) tail was also analyzed. Specifically, the TGCC loop in variants M2, M3, M4, M5, M6, M7 and M8 were replaced with TTCG and GAAA which are considered to increase terminator efficiency and mRNA stability in many prokaryotes[7]. In variants M1, M2, M3 and M4, A was substituted with T to increase the number of T in the poly (T) tract but in variants M9, M10 and M11, the TGCC loop was substituted with GAAC, AAATC and AAAA, respectively. Additionally, to eliminate the mismatched nucleotide pair, T at positions 22 and 26 in the G+C rich stem were substituted with C in the variants M6, M7, M8, M9, M10 and M11 (Fig. 1).

    Table 3 Wild type and terminator variant sequences used in this study

    Fig. 1 Secondary structures of the λtO terminator and its variants. The predicted stabilities of the RNA hairpin structures were determined by the Kinefold web server. The termination positions for all engineered functional λtO variants were highlighted in red.

    Fig. 2 Structures of the expression cassettes with two reporter genes gfp and rfp. (a) The control without terminator. (b) Terminator was inserted between two fluorescent protein encoding genes. (c) RNase sites and strong hairpin were inserted followed by rfp gene. RBS: ribosome-binding site.

    2.2 Termination efficiencies of the constructed terminator variants

    To assess the effects of the loops, poly (T) tract and mismatched nucleotide pair on transcription termination, as well as the termination efficiencies of the variants were determined by measuring the input and output fluorescence of the reporter genes (and) in the constructed system (Fig. 2). As shown in Fig. 3b, the insertion of the wild-type strong λtoterminator and its variants resulted in low expression of, suggesting the strong termination efficiency of all the terminators. After further quantification of the GFP fluorescence (Fig. 3a) and calculation[18], terminator variants M3, M4 and M11 showed higher termination efficiency values compared with the wild type λtoand the remaining variants (Fig. 3c). Interestingly, the inclusion of RNase sites in the variant M12 (Fig. 3c), showed a considerable termination efficiency of about 98% which prove its positive effect on the termination efficiency. The results clearly showed that the loop causes no significant effect on transcription termination although both tetra loops GAAA and TTCG are frequently found in many prokaryotic and eukaryotic RNAs[2-7].Meanwhile, the results also suggested that the introduction of mutations to enhance the RNA stem stability did not contribute to the termination efficiency, which are different from that in[22].

    Fig. 3 Comparison of termination efficiency and mRNA stability of the λto terminator variant. (a) The GFP fluorescence of the native terminator (control) and the variants. (b) The RFP fluorescence of the native terminator and its variants. (c) Termination efficiencies of native (λtO) and its variants. (d) The mRNA levels of the gfp gene with the λtO terminator and its variants. Error bars are standard deviations calculated from three independent experiments.

    2.3 Insertion of terminator increased upstream gene expression

    In addition to evaluating the termination efficiency, the effect of the terminators on the upstream gene was also investigated and compared. Furthermore, the lowexpression revel obtained by measuring the negative control compared with other studied terminator variants (Fig. 3a), explains the role of terminators on the upstream gene. Interestingly, the GFP fluorescence was significantly increased when inserting all the terminator variants (Fig. 3a), indicating its positive effect on the RNA stability of the upstream, which is similar to previous studies in[10,30]and[9,13]. To further confirm this phenomenon, the mRNA ofin all the constructs were analyzed. Compared with the control, most of the constructs with terminator variants (especially M2, M3, M4, M9, M11 and M12) yielded a higher level ofmRNA (Fig. 3d). Recently, it has been reported that the addition of RNase sites surrounding the target terminator can impact the expression of reporter genes in[8,31]. Thus, two RNase sites and one strong hairpin were inserted between the reporter genesand(Fig. 2c). As expected, the expression ofwas significantly increased (Fig. 3a).

    3 Conclusions

    In this study, the hairpin and the U-rich sequence of the strong bacteriophage λtoterminator were first engineered and investigated in168. Compared with the wild-type strong λtoterminator, all the variants showed a higher termination efficiencies. The results suggested that the hairpin loop is not a critical factor for strong terminator. More importantly, the results first demonstrated that terminator insertion can significantly increase the expression of upstream gene in. As a result, these rho-independent terminators should be used as a potential tool for synthetic biology research in. In addition, the constructed terminators should also be used for increasing mRNA stability and the corresponding enzyme production in.

    REFERENCES

    [1] Kingsford CL, Ayanbule K, Salzberg SL. Rapid, accurate, computational discovery of Rho-independenttranscription terminators illuminates their relationship to DNA uptake. Genome Biol, 2007, 8(2): R22.

    [2] Lesnik EA, Sampath R, Levene HB, et al.Prediction of rho-independent transcriptional terminators in. Nucleic Acids Res, 2001, 29(17): 3583–3594.

    [3] Peters JM, Vangeloff AD, Landick R. Bacterial transcription terminators: the RNA 3′-end chronicles. J Mol Biol, 2011, 412(5): 793–813.

    [4] Abe H, Aiba H. Differential contributions of two elements of rho-independent terminator to transcription termination and mRNA stabilization. Biochimie, 1996, 78(11–12): 1035–1042.

    [5] Abe H, Abo T, Aiba H. Regulation of intrinsic terminator by translation in: transcription termination at a distance downstream. Genes Cells, 1999, 4(2): 87–97.

    [6] Henkin TM, Yanofsky C. Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays,2002, 24(8): 700–707.

    [7] d’Aubenton Carafa Y, Brody E, Thermes C. Prediction of rho-independenttranscription terminators:a statistical analysis of their RNA stem-loop structures. J Mol Biol, 1990, 216(4): 835–858.

    [8] Cambray G, Guimaraes JC, Mutalik VK, et al.Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res, 2013, 41(9): 5139–5148.

    [9] Curran KA, Morse NJ, Markham KA, et al.Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth Biol, 2015, 4(7): 824–832.

    [10] Wilson KS, von Hippel PH. Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc Natl Acad Sci USA, 1995, 92(19): 8793–8797.

    [11] Li R, Zhang Q, Li JB, et al.Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator. Nucleic Acids Res, 2016, 44(6): 2554–2563.

    [12] Britton RA, Lupski JR. Functional analysis of mutations in the transcription terminator T1that suppress twoalleles in. Mol Gen Genet, 1995, 246(6): 729–733.

    [13] Curran KA, Karim AS, Gupta A, et al.Use of expression-enhancing terminators into increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab Eng, 2013, 19: 88–97.

    [14] Chen YJ, Liu P, Nielsen AAK, et al.Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods, 2013, 10(7): 659–664.

    [15] Bonnet J, Yin P, Ortiz ME, et al.Amplifying genetic logic gates. Science, 2013, 340(6132): 599–603.

    [16] Siuti P, Yazbek J, Lu TK. Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol, 2013, 31(5): 448–452.

    [17] Gasanov NB, Toshchakov SV, Georgiev PG, et al.The use of transcription terminators to generate transgenic lines of chinese hamster ovary cells (CHO) with stable and high level of reporter gene expression. Acta Naturae, 2015, 7(3): 74–80.

    [18] Lin MT, Wang CY, Xie HJ, et al.Novel utilization of terminators in the design of biologically adjustable synthetic filters. ACS Synth Biol, 2016, 5(5): 365–374.

    [19] Pfleger BF, Pitera DJ, Smolke CD, et al.Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol, 2006, 24(8): 1027–1032.

    [20] Ito Y, Yamanishi M, Ikeuchi A, et al.Characterization of five terminator regions that increase the protein yield of a transgene in. J Biotechnol, 2013, 168(4): 486–492.

    [21] Fritsch TE, Siqueira FM, Schrank IS. Intrinsic terminators intranscription. BMC Genomics, 2015, 16(1): 273.

    [22] de Hoon MJL, Makita Y, Nakai K, et al.Prediction of transcriptional terminators inand related species. PLoS Comput Biol, 2005, 1(3): e25.

    [23] Hess GF, Graham RS. Efficiency of transcriptional terminators in. Gene, 1990, 95(1): 137–141.

    [24] Harwood CR, Cranenburgh R.protein secretion: an unfolding story. Trends Microbiol, 2008, 16(2): 73–79.

    [25] Liu YF, Liu L, Shin HD, et al.Pathway engineering offor microbial production of-acetylglucosamine. Metab Eng, 2013, 19: 107–115.

    [26] Tsukahara K, Ogura M. Characterization of DegU-dependent expression of bpr in. FEMSMicrobiol Lett, 2008, 280(1): 8–13.

    [27] Zhang JJ, Kang Z, Ling ZM, et al.High-level extracellular production of alkaline polygalacturonate lyase inwith optimized regulatory elements. Bioresour Technol, 2013, 146: 543–548.

    [28] Zhang XZ, Yan X, Cui ZL, et al., a novel counter-selectable marker for unmarked chromosomal manipulation in. Nucleic Acids Res, 2006, 34: e71.

    (本文責(zé)編 郝麗芳)

    枯草芽孢桿菌168新型轉(zhuǎn)錄終止子的構(gòu)建與表征

    Jean Paul Sinumvayo1,楊森1,陳堅(jiān)1,2,堵國(guó)成1,2,康振1,2

    1 江南大學(xué)工業(yè)生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇無(wú)錫 214122 2 江南大學(xué)食品安全與營(yíng)養(yǎng)協(xié)同創(chuàng)新中心,江蘇無(wú)錫 214122

    Jean Paul Sinumvayo, 楊森, 陳堅(jiān), 等. 枯草芽孢桿菌168新型轉(zhuǎn)錄終止子的構(gòu)建與表征. 生物工程學(xué)報(bào), 2017, 33(7): 1091?1100.Jean Paul Sinumvayo, Yang S, Chen J, et al. Engineering and characterization of new intrinsic transcriptional terminators in Bacillus subtilis 168. Chin J Biotech, 2017, 33(7): 1091?1100.

    轉(zhuǎn)錄終止子作為一種位于終止密碼子后的調(diào)控信號(hào),負(fù)責(zé)終止DNA的轉(zhuǎn)錄和RNA的釋放。文中首次改造并分析了來(lái)源于噬菌體的λto終止子的發(fā)卡結(jié)構(gòu)與富含尿嘧啶的序列對(duì)枯草芽孢桿菌168中基因轉(zhuǎn)錄終止效率以及mRNA穩(wěn)定性的影響。結(jié)果表明,相對(duì)于野生型的λt0終止子,突變體M3、M11和M12表現(xiàn)出了更高的轉(zhuǎn)錄終止效率,突變體M3、M4和M11更有利于上游綠色熒光蛋白mRNA的穩(wěn)定。另外,我們發(fā)現(xiàn)插入RNase作用位點(diǎn)同樣提高了mRNA的穩(wěn)定性。研究結(jié)果表明終止子中的發(fā)卡環(huán)對(duì)轉(zhuǎn)錄終止不是必需的,同時(shí),結(jié)果也證明了轉(zhuǎn)錄終止子可以作為一種潛在的工具用于提高枯草芽孢桿菌中mRNA的穩(wěn)定性以及相應(yīng)酶的 表達(dá)。

    合成生物學(xué),轉(zhuǎn)錄終止子,λto終止子,mRNA穩(wěn)定性,枯草芽孢桿菌

    December 16, 2016; Accepted: February 8, 2017

    Supported by:National Natural Science Foundation of China (No. 31670092), Key Technologies R&D Program of Jiangsu Province, China (No. BE2014607), Program for Changjiang Scholars and Innovative Research Team in University (no. IRT_15R26), Natural Science Foundation of Jiangsu Province (No. BK20141107).

    Zhen Kang. Tel: +86-510-85918307; E-mail: zkang@jiangnan.edu.cn Guocheng Du. Tel: +86-510-85918307; Fax: +86-510-85918309; E-mail: gcdu@jiangnan.edu.cn

    國(guó)家自然科學(xué)基金 (No. 31670092),江蘇省科技攻關(guān)項(xiàng)目(No. BE2014607),長(zhǎng)江學(xué)者與創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(no. IRT_15R26),江蘇省自然科學(xué)基金(No. BK20141107) 資助。

    猜你喜歡
    陳堅(jiān)楊森發(fā)卡
    陳堅(jiān):“自然而然”的表達(dá)
    身價(jià)
    陳堅(jiān) 中央黨史和文獻(xiàn)研究院研究員
    彩虹發(fā)卡
    朱德萬(wàn)縣爭(zhēng)取楊森
    要戴發(fā)卡的小男孩
    生命的張力“質(zhì)樸的精神
    ——陳堅(jiān)水彩作品展”前言
    獨(dú)辟蹊徑 尋求別樣精彩——訪(fǎng)浙江代喜衛(wèi)生用品有限公司陳堅(jiān)總經(jīng)理
    生活用紙(2016年7期)2017-01-19 07:36:32
    民國(guó)軍閥有情義
    百家講壇(2016年18期)2016-11-01 12:49:29
    劉伯承拒絕楊森“起義”
    18禁美女被吸乳视频| 99在线人妻在线中文字幕| 欧美日韩瑟瑟在线播放| 国产一区二区激情短视频| 极品人妻少妇av视频| 亚洲九九香蕉| 久久精品人人爽人人爽视色| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看 | 国产aⅴ精品一区二区三区波| 青草久久国产| 18禁裸乳无遮挡免费网站照片 | 国产成人精品久久二区二区91| 一区二区日韩欧美中文字幕| 日韩一卡2卡3卡4卡2021年| 久99久视频精品免费| 久久精品国产99精品国产亚洲性色 | av在线天堂中文字幕| 亚洲中文av在线| 亚洲人成77777在线视频| 国内毛片毛片毛片毛片毛片| 久久中文字幕人妻熟女| 日韩av在线大香蕉| 如日韩欧美国产精品一区二区三区| 国产成人欧美在线观看| 国产日韩一区二区三区精品不卡| 91精品国产国语对白视频| 欧美另类亚洲清纯唯美| 成熟少妇高潮喷水视频| www.精华液| 国内久久婷婷六月综合欲色啪| 成人18禁高潮啪啪吃奶动态图| 黄片播放在线免费| 午夜久久久久精精品| 黄色a级毛片大全视频| 国产高清videossex| 成人18禁在线播放| 国产亚洲精品综合一区在线观看 | 18禁国产床啪视频网站| 日韩欧美一区二区三区在线观看| 久久中文看片网| 亚洲中文av在线| 亚洲狠狠婷婷综合久久图片| 变态另类丝袜制服| 亚洲人成77777在线视频| 香蕉丝袜av| 女生性感内裤真人,穿戴方法视频| 亚洲狠狠婷婷综合久久图片| 亚洲七黄色美女视频| 亚洲七黄色美女视频| 18美女黄网站色大片免费观看| 18美女黄网站色大片免费观看| 在线观看午夜福利视频| 亚洲五月婷婷丁香| 一边摸一边抽搐一进一小说| 麻豆av在线久日| 午夜福利在线观看吧| 亚洲色图 男人天堂 中文字幕| 十八禁人妻一区二区| 色播亚洲综合网| 91国产中文字幕| av在线天堂中文字幕| 精品久久久久久久毛片微露脸| 黄色视频不卡| 国产又色又爽无遮挡免费看| 国产乱人伦免费视频| 欧美不卡视频在线免费观看 | 成人三级黄色视频| avwww免费| 久久婷婷人人爽人人干人人爱 | 精品欧美国产一区二区三| 美女 人体艺术 gogo| 亚洲第一欧美日韩一区二区三区| 久久久久久久久免费视频了| 精品高清国产在线一区| 婷婷丁香在线五月| www.自偷自拍.com| 9热在线视频观看99| 欧美精品亚洲一区二区| 日本免费一区二区三区高清不卡 | 女警被强在线播放| 色尼玛亚洲综合影院| 亚洲中文日韩欧美视频| av电影中文网址| 侵犯人妻中文字幕一二三四区| 精品一区二区三区视频在线观看免费| 亚洲专区中文字幕在线| 亚洲自拍偷在线| 一级a爱片免费观看的视频| 国产色视频综合| 精品欧美国产一区二区三| 精品午夜福利视频在线观看一区| 亚洲欧美日韩高清在线视频| 国产91精品成人一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲一区二区三区色噜噜| 国产精品98久久久久久宅男小说| 脱女人内裤的视频| 精品国产一区二区三区四区第35| 午夜激情av网站| 精品一区二区三区视频在线观看免费| 免费在线观看影片大全网站| 欧美亚洲日本最大视频资源| 高清黄色对白视频在线免费看| 长腿黑丝高跟| 啦啦啦 在线观看视频| 美女高潮到喷水免费观看| 90打野战视频偷拍视频| 国产伦人伦偷精品视频| 欧美日韩乱码在线| 91国产中文字幕| 精品午夜福利视频在线观看一区| 午夜成年电影在线免费观看| 中文字幕最新亚洲高清| svipshipincom国产片| 精品一区二区三区av网在线观看| 色尼玛亚洲综合影院| 制服人妻中文乱码| 可以在线观看毛片的网站| 十分钟在线观看高清视频www| 亚洲性夜色夜夜综合| 女警被强在线播放| 级片在线观看| 亚洲一区二区三区不卡视频| 又黄又爽又免费观看的视频| 国产麻豆69| 亚洲av电影在线进入| 99国产精品免费福利视频| 长腿黑丝高跟| 18美女黄网站色大片免费观看| 国产成人欧美在线观看| 真人做人爱边吃奶动态| 成人欧美大片| 亚洲一区二区三区不卡视频| 动漫黄色视频在线观看| 在线观看66精品国产| av中文乱码字幕在线| 在线免费观看的www视频| 国产午夜精品久久久久久| 久久久久久久午夜电影| 最近最新中文字幕大全免费视频| 国产精品 国内视频| 成人三级做爰电影| 一本综合久久免费| 国产亚洲av高清不卡| 免费少妇av软件| 色综合站精品国产| 夜夜爽天天搞| bbb黄色大片| 色av中文字幕| 在线国产一区二区在线| 色综合婷婷激情| 亚洲成av人片免费观看| 电影成人av| 国产麻豆69| 午夜久久久久精精品| 亚洲最大成人中文| 国产男靠女视频免费网站| 久久中文看片网| 国产精品 国内视频| 久久草成人影院| 在线观看舔阴道视频| 国产亚洲av高清不卡| 亚洲成人久久性| 精品国产一区二区三区四区第35| 国产亚洲精品久久久久5区| 热99re8久久精品国产| 91大片在线观看| 波多野结衣巨乳人妻| 国产亚洲av高清不卡| 亚洲成人精品中文字幕电影| 久热这里只有精品99| 91麻豆精品激情在线观看国产| 日本欧美视频一区| 亚洲男人天堂网一区| 久久久精品欧美日韩精品| 国产一区二区激情短视频| 长腿黑丝高跟| 91麻豆精品激情在线观看国产| 色综合亚洲欧美另类图片| 日韩三级视频一区二区三区| 久久天躁狠狠躁夜夜2o2o| 一卡2卡三卡四卡精品乱码亚洲| 国产日韩一区二区三区精品不卡| 香蕉久久夜色| 中文亚洲av片在线观看爽| 中文字幕人成人乱码亚洲影| 欧美午夜高清在线| 亚洲欧美一区二区三区黑人| 亚洲人成电影免费在线| 人妻久久中文字幕网| 日韩大尺度精品在线看网址 | 女人高潮潮喷娇喘18禁视频| 午夜影院日韩av| 日韩欧美一区视频在线观看| 午夜视频精品福利| 欧美最黄视频在线播放免费| 搡老熟女国产l中国老女人| 久久香蕉精品热| 亚洲精品在线观看二区| 脱女人内裤的视频| 欧美日韩精品网址| 国产av在哪里看| 宅男免费午夜| 午夜亚洲福利在线播放| 无人区码免费观看不卡| 日本在线视频免费播放| 国产熟女xx| 欧美一区二区精品小视频在线| 午夜福利,免费看| 十八禁人妻一区二区| 国产成+人综合+亚洲专区| 淫妇啪啪啪对白视频| 视频在线观看一区二区三区| 大香蕉久久成人网| 精品日产1卡2卡| 757午夜福利合集在线观看| 久久国产精品男人的天堂亚洲| 国产一区二区三区在线臀色熟女| 国产成人av教育| 在线观看舔阴道视频| 亚洲专区中文字幕在线| 一级,二级,三级黄色视频| 精品一区二区三区av网在线观看| 久久亚洲精品不卡| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费| 18禁美女被吸乳视频| 亚洲欧美日韩高清在线视频| 国产免费av片在线观看野外av| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费| av视频在线观看入口| 中文字幕久久专区| 91麻豆精品激情在线观看国产| 欧美色欧美亚洲另类二区 | 国产高清有码在线观看视频 | 高清毛片免费观看视频网站| 色老头精品视频在线观看| 啦啦啦 在线观看视频| 亚洲男人的天堂狠狠| 欧美一区二区精品小视频在线| 夜夜爽天天搞| 欧美性长视频在线观看| or卡值多少钱| 99精品在免费线老司机午夜| 在线永久观看黄色视频| 欧美日韩亚洲国产一区二区在线观看| 久久人人精品亚洲av| 午夜精品在线福利| 变态另类成人亚洲欧美熟女 | 国产精品免费视频内射| 狠狠狠狠99中文字幕| 丁香六月欧美| 男女床上黄色一级片免费看| 在线播放国产精品三级| 午夜福利欧美成人| 性欧美人与动物交配| 悠悠久久av| 一个人观看的视频www高清免费观看 | 一边摸一边做爽爽视频免费| 高清黄色对白视频在线免费看| 波多野结衣巨乳人妻| 91麻豆精品激情在线观看国产| 桃色一区二区三区在线观看| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 亚洲自偷自拍图片 自拍| 免费高清视频大片| 国产人伦9x9x在线观看| 久久久国产欧美日韩av| 午夜老司机福利片| 一进一出抽搐gif免费好疼| 色精品久久人妻99蜜桃| 欧美不卡视频在线免费观看 | 亚洲精品美女久久久久99蜜臀| 精品午夜福利视频在线观看一区| 村上凉子中文字幕在线| 老司机午夜十八禁免费视频| 午夜视频精品福利| 真人一进一出gif抽搐免费| 国产精品一区二区精品视频观看| 国产高清有码在线观看视频 | 欧美色欧美亚洲另类二区 | 成人国语在线视频| 神马国产精品三级电影在线观看 | 国产av精品麻豆| 免费久久久久久久精品成人欧美视频| 国产精品电影一区二区三区| 一区二区三区高清视频在线| 深夜精品福利| 欧美色视频一区免费| 在线国产一区二区在线| 波多野结衣av一区二区av| 亚洲国产精品成人综合色| 国内久久婷婷六月综合欲色啪| 日本黄色视频三级网站网址| av有码第一页| svipshipincom国产片| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器 | 国产精品一区二区三区四区久久 | 看免费av毛片| 亚洲熟妇中文字幕五十中出| 久久影院123| 久久国产精品男人的天堂亚洲| 亚洲人成伊人成综合网2020| 97碰自拍视频| 热99re8久久精品国产| 不卡一级毛片| 午夜精品在线福利| 999久久久精品免费观看国产| 国产精品久久久久久人妻精品电影| 香蕉久久夜色| 亚洲九九香蕉| 女人爽到高潮嗷嗷叫在线视频| 国产精品九九99| 人人澡人人妻人| 国产高清激情床上av| 中文字幕色久视频| 国产精品久久久av美女十八| 亚洲一区高清亚洲精品| 午夜福利18| 国产极品粉嫩免费观看在线| 91字幕亚洲| 一区在线观看完整版| 亚洲三区欧美一区| 黄片大片在线免费观看| 中文亚洲av片在线观看爽| 一级片免费观看大全| 又黄又粗又硬又大视频| 91av网站免费观看| 美国免费a级毛片| 淫秽高清视频在线观看| 精品卡一卡二卡四卡免费| 国产精品九九99| 国内精品久久久久精免费| 欧美激情 高清一区二区三区| 亚洲国产精品久久男人天堂| 国产蜜桃级精品一区二区三区| 老司机福利观看| 欧美av亚洲av综合av国产av| 性欧美人与动物交配| 婷婷精品国产亚洲av在线| bbb黄色大片| 久久久久久人人人人人| 一进一出抽搐动态| 韩国精品一区二区三区| 三级毛片av免费| 天天躁夜夜躁狠狠躁躁| 99久久国产精品久久久| 亚洲精品在线观看二区| 女人精品久久久久毛片| 国产成人系列免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 免费看a级黄色片| 精品国产一区二区久久| 日韩欧美国产一区二区入口| 97超级碰碰碰精品色视频在线观看| 国产精品综合久久久久久久免费 | 一级黄色大片毛片| 99riav亚洲国产免费| 精品不卡国产一区二区三区| 国产精品自产拍在线观看55亚洲| 看片在线看免费视频| 长腿黑丝高跟| 真人做人爱边吃奶动态| 淫秽高清视频在线观看| 美国免费a级毛片| 久久中文字幕人妻熟女| 欧美 亚洲 国产 日韩一| 制服丝袜大香蕉在线| 色综合婷婷激情| 成人免费观看视频高清| 在线观看舔阴道视频| 黄色视频,在线免费观看| 一级毛片高清免费大全| 大陆偷拍与自拍| 窝窝影院91人妻| 国产精品九九99| 免费一级毛片在线播放高清视频 | 亚洲国产精品合色在线| 男女下面插进去视频免费观看| 色婷婷久久久亚洲欧美| 母亲3免费完整高清在线观看| 欧美日韩瑟瑟在线播放| 最近最新免费中文字幕在线| 夜夜看夜夜爽夜夜摸| 国产色视频综合| 亚洲精品中文字幕在线视频| 国产极品粉嫩免费观看在线| 男女午夜视频在线观看| 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免费看| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区| 制服人妻中文乱码| 一二三四社区在线视频社区8| 国产99久久九九免费精品| 十八禁网站免费在线| 亚洲色图综合在线观看| 成在线人永久免费视频| 亚洲专区字幕在线| 69av精品久久久久久| 午夜激情av网站| 一边摸一边抽搐一进一小说| 亚洲精品中文字幕在线视频| 99久久国产精品久久久| 精品久久久久久,| 精品午夜福利视频在线观看一区| 久久婷婷人人爽人人干人人爱 | 午夜福利免费观看在线| 国产免费男女视频| 一个人观看的视频www高清免费观看 | 久久精品aⅴ一区二区三区四区| 日本在线视频免费播放| 国产精品二区激情视频| 真人做人爱边吃奶动态| 免费观看人在逋| 亚洲国产精品合色在线| 99riav亚洲国产免费| 999久久久精品免费观看国产| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻,人人澡人人爽秒播| 成人国语在线视频| 婷婷六月久久综合丁香| 国产日韩一区二区三区精品不卡| 国产一区二区在线av高清观看| 成人精品一区二区免费| 黄频高清免费视频| 变态另类成人亚洲欧美熟女 | 亚洲伊人色综图| 国内精品久久久久久久电影| 一级a爱片免费观看的视频| 欧美中文综合在线视频| 男女床上黄色一级片免费看| 在线国产一区二区在线| 最近最新中文字幕大全免费视频| 国产亚洲av高清不卡| tocl精华| 日本五十路高清| 国产单亲对白刺激| 丰满的人妻完整版| 99精品在免费线老司机午夜| 亚洲九九香蕉| 亚洲一区中文字幕在线| 在线观看免费日韩欧美大片| 亚洲av成人一区二区三| 免费看美女性在线毛片视频| 欧美日韩精品网址| 国产av又大| 97碰自拍视频| 成熟少妇高潮喷水视频| 免费少妇av软件| 国产区一区二久久| 好男人电影高清在线观看| 成人手机av| av免费在线观看网站| 久久中文字幕人妻熟女| 黄色a级毛片大全视频| 久热这里只有精品99| 国产成人欧美在线观看| 波多野结衣高清无吗| 欧美日韩一级在线毛片| 亚洲 欧美 日韩 在线 免费| 国产精品久久视频播放| 国产精品国产高清国产av| 免费观看人在逋| 韩国av一区二区三区四区| 国产三级黄色录像| 啦啦啦观看免费观看视频高清 | av天堂久久9| 一区二区日韩欧美中文字幕| 精品久久蜜臀av无| 国产男靠女视频免费网站| 国产麻豆69| 18禁观看日本| 成人手机av| 国产亚洲精品久久久久久毛片| a级毛片在线看网站| 女性被躁到高潮视频| 久久精品国产亚洲av高清一级| 老司机深夜福利视频在线观看| 亚洲av第一区精品v没综合| 美女国产高潮福利片在线看| 久久久久久久精品吃奶| 激情在线观看视频在线高清| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲一区高清亚洲精品| 村上凉子中文字幕在线| 欧美黄色淫秽网站| 精品国产美女av久久久久小说| 国内精品久久久久精免费| 成人亚洲精品一区在线观看| 女性被躁到高潮视频| 久久久久国内视频| 免费在线观看视频国产中文字幕亚洲| 亚洲久久久国产精品| 日韩av在线大香蕉| 操美女的视频在线观看| 国产av一区在线观看免费| 国产一区二区三区视频了| 欧美国产精品va在线观看不卡| 男女下面进入的视频免费午夜 | 久久亚洲精品不卡| 高清在线国产一区| 午夜两性在线视频| 免费搜索国产男女视频| 欧美乱码精品一区二区三区| 19禁男女啪啪无遮挡网站| 看免费av毛片| 国产精品久久久久久精品电影 | 高清在线国产一区| av中文乱码字幕在线| 人人妻人人澡人人看| 日本免费一区二区三区高清不卡 | 少妇粗大呻吟视频| 国产成人一区二区三区免费视频网站| 999久久久国产精品视频| av福利片在线| 乱人伦中国视频| 免费在线观看亚洲国产| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 国产不卡一卡二| 老司机午夜福利在线观看视频| 国产精品久久久久久亚洲av鲁大| 狂野欧美激情性xxxx| 欧美av亚洲av综合av国产av| 国产亚洲欧美98| 精品人妻1区二区| 老司机午夜十八禁免费视频| 欧美日本亚洲视频在线播放| 亚洲免费av在线视频| 久久人人精品亚洲av| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 法律面前人人平等表现在哪些方面| 亚洲成人国产一区在线观看| 日本在线视频免费播放| 岛国视频午夜一区免费看| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区久久 | 91字幕亚洲| 变态另类丝袜制服| 免费在线观看亚洲国产| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9| 日韩精品青青久久久久久| 亚洲免费av在线视频| 国产亚洲精品第一综合不卡| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 日日夜夜操网爽| 亚洲无线在线观看| 中文字幕久久专区| 亚洲九九香蕉| 国产99久久九九免费精品| 国产欧美日韩精品亚洲av| 久久 成人 亚洲| 免费高清在线观看日韩| 久久精品国产综合久久久| 黄色视频不卡| 亚洲专区字幕在线| 亚洲五月天丁香| 夜夜看夜夜爽夜夜摸| 给我免费播放毛片高清在线观看| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 大型黄色视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 国产野战对白在线观看| 婷婷丁香在线五月| 国产精品免费一区二区三区在线| 免费在线观看日本一区| videosex国产| 国产免费男女视频| 亚洲国产欧美一区二区综合| 动漫黄色视频在线观看| 十八禁人妻一区二区| 999精品在线视频| 在线观看免费午夜福利视频| 天天躁夜夜躁狠狠躁躁| 亚洲免费av在线视频| 国产av一区二区精品久久| 久久青草综合色| 国产精品av久久久久免费| 国产乱人伦免费视频| 国产欧美日韩一区二区精品| 国产三级在线视频| 女人精品久久久久毛片| 99re在线观看精品视频| 精品午夜福利视频在线观看一区| 日本在线视频免费播放| av欧美777| 丰满人妻熟妇乱又伦精品不卡| 男女床上黄色一级片免费看| 欧美最黄视频在线播放免费| 亚洲视频免费观看视频| 成人精品一区二区免费| 一进一出好大好爽视频| 黄片播放在线免费| 亚洲av电影在线进入| 超碰成人久久| 中亚洲国语对白在线视频| 亚洲人成网站在线播放欧美日韩| 男人操女人黄网站| 大型黄色视频在线免费观看| aaaaa片日本免费| 久久久国产欧美日韩av| 欧美另类亚洲清纯唯美| 国产精品,欧美在线| 19禁男女啪啪无遮挡网站| 日日夜夜操网爽|