• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical research on the performances of slot hydrofoil*

    2015-02-16 06:43:32WEIQun魏群CHENHongxun陳紅勛ZHANGRui張睿
    關(guān)鍵詞:張睿

    WEI Qun (魏群), CHEN Hong-xun (陳紅勛), ZHANG Rui (張睿)

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    2. Institute of Civil Engineering, Nanchang University, Nanchang 330031, China, E-mail: qunwei@shu.edu.cn

    Numerical research on the performances of slot hydrofoil*

    WEI Qun (魏群)1,2, CHEN Hong-xun (陳紅勛)1, ZHANG Rui (張睿)1

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    2. Institute of Civil Engineering, Nanchang University, Nanchang 330031, China, E-mail: qunwei@shu.edu.cn

    (Received December 21, 2013, Revised July 3, 2014)

    The paper presents an numerical study of the hydraulic and cavitating characteristics of a slot hydrofoil at the angle of incidence ofo

    hydrofoil, performance, optimal design, cavitation inhibition

    Introduction

    Hydrofoil is the key factor of axial-flow pump’s design, foil section has direct effect on the performance. The high efficiency working area of axial-flow pump is very narrow, with the change of external operation environment it may work on low efficiency condition, companying by greater hydraulic loss and system instability. To improve the performance of axial-flow pumps at low flow rate, Chen applied slotted technology[1]on 791 hydrofoil and Zhang designed a slot hydrofoil[2]by hydraulic optimization design, which applied in the design of an axial-flow pump. It’s validated that the efficiency of this axial pump with slot blades increases at low flow rate by numerical and experimental means.

    Cavitation can give rise to hydraulic performance deterioration, noise, vibration and erosion damage, so cavitating character is another indicator evaluating the performance of a pump. In present paper, the research aiming at cavitating characteristics of this slot hydrofoil at the angle of incidence of 6° will be performed.

    Cavitation flow around a hydrofoil is often a multiphase flow associated with turbulence, unsteady flows and phase change, etc. Many researches have been carried out to simulate the cavitation flow and noticeable progresses have been made in recent years. A common approach to modeling cavitation is the homogeneous flow theory, where the mixture density is introduced and only one single set of mass and momentum equations is solved. Different approaches have been proposed to generate the variable density field. One of those is adopting arbitrary barotropic equation of state for density[3-5]. Another approach is transport equation model(TEM), fulfilled by a supplementary equation or the simplified Rayleigh-Plesset equation controlling the convection of the vapor[6-10]. TEM models have similar format but with different source terms. Frikh et al.[11]analyzed the influence of different models on the simulation of cloud cavitation on 2-D foil section, the results showed a large resemblance between most of models and modifying parameters change the cavity shape and structure. Many experiences[12-14]have proved that CFD simulation can be used to analyze the cavitating behavior successfully with coupling suitable cavitation and turbulence models.

    In this paper, the cavitating behavior of the slothydrofoil will be investigated by a homogeneous model on comparison with 791 hydrofoil for 6oattack angle. Furthermore, to achieve good hydraulic and cavitation performances, optimal research of the slot hydrofoil will be conducted with Ansys Workbench12.1, in which the cavitation index is introduced as another optimization goal besides hydraulic parameters.

    Fig.1 Geometry of hydrofoils

    1. Geometry of hydrofoil

    The research object of this work is an optimal slot hydrofoil based on 791 hydrofoil (C =0.158 m). 791 hydrofoil (Fig.1(a)) was verified to have good hydraulic performance and cavitation resistence through production practice, which was proposed by Guan[15]. The slot hydrofoil (Fig.1(b)) was designed by Zhang through optimization for maximum lift-drag ratio with constraint of lift.

    2. Numerical methods

    In order to figure out the cavitation performance of the slot hydrofoil, numerical simulations were carried out. The numerical model solved the unsteady Navier-Stokes equations, coupled with SST turbulence model and the Bakir[16]Rayleigh Plesset cavitation model with automatic near-wall treatment which can automatically switch from wall functions to a low-Re near wall formulation as the mesh is refined. The saturation pressure was 3 574 Pa. All simulations were done with general purpose CFD code ANSYS CFX 12.1. Equations were discretized on the element-based finite-volume, the second-order high resolution scheme and second-order backward Euler scheme were used separately for the advection term and transient term. Unsteady simulations were carried out with the initial values of corresponding steady simulation results.

    2.1 Validation of the numerical methods

    Leroux et al.[17]had taken researches on NACA 66 mod hydrofoil by both experimental and numerical means. To verify the validity of numerical methods, the adopted numerical methods were used to simulate the cavitation flow around NACA66 mod hydrofoil at two same conditions to experiments done by Leroux. Geometry was simplified to 2-D problem witho>6 attack angle, and the grid was generated with structured grid with 27 006 nodes (Fig.2). Figure 3 shows the predicted pressure distribution on the suction side of the hydrofoil for σ=1.41, in which the pressure distribution agrees well with the experimental data. For =1.25σ, the calculation results display that the cavity undergoes the growth and shedding process with main frequency of 3.57 Hz, and the experimental value is 3.625 Hz. From the above, it can be concluded that the numerical methods adopted in this paper can correctly simulate the cavitation flow around hydrofoil.

    Fig.2 General view of the grid around NACA 66 mod foil

    Fig.3 Pressure distribution on suction side of NACA 66 (α= 6o, σ=1.41)

    Fig.4 General view of the grid around foils

    2.2 Boundary condition , grid and time resolution

    The geometry was simplified to 2-D problem, which is fixed within a 11C long and 4C wide square cross test section. The slot foil was designed to improving the hydraulic performance at low flow rate, so the angle of incidence of the foil in this research is setto beo6. The mesh were generated with H type structured grids, show in Fig.4. The boundary conditions for incompressible flows were applied: fixed inlet velocity and specified outlet pressure according to the cavitation number, the non-slip wall was set for the wall boundary condition, free stream velocity was 6 m/s.

    Table1 Grid discretization error estimation of hydrofoil

    Fig.5 Drag and lift coefficients, lift-drag ratio for various cavitation number α=6o

    In order to get grid-convergent results, a criterion based on the Richardson Extrapolation Technique[18]was used to improve the grid resolution, in which the truncation error and accuracy were systematically evaluated. Three sets of grids were generated, the drag coefficient and lift coefficient were chosen as the key variables. The values were based on the steady simulation at a non-cavitation condition, showed in Table 1. The grid monotonic convergence results were obtained according to the key variables’ variation. Both relative errors were below 0.5%, and the grid convergence index was estimated to be less than 0.5%. Thus grid N1 was used as the final computation which was referenced as the base of the grid generation of the slot hydrofoil.

    Fig.6 Pressure distribution around the hydrofois =2.5σ

    Fig.7 The contour of void fraction on two hydrofoils versus various σ

    Fig.8 Instantaneous void fraction evolution during one cycle for 791 hydrofoil =0.8σ

    Fig.9 Instantaneous void fraction evolution during one cycle for slot hydrofoil =0.8σ

    In transient simulation, the time duration and time step were referenced based on the NACA66 hydrofoil. The time step was 2×10-4s, the total time was 60Tref, where Tref=Lref/Vrefwith Lref=0.158 m being the chord length and Vref=6 m/s being the inlet flow velocity.

    3. Cavitation performance comparison

    Figure 5 shows the lift, drag coefficient and liftdrag ratio varying with cavitation number. Before cavitation occurring, the lift-drag ratio of the slot hydrofoil is over 20% higher than the original 791 hydrofoil, with lift coefficient lower less than 4%. Figure 6 shows that the pressure difference between the two sides of the slot hydrofoil is a little less than that of the 791 hydrofoil, so the lift force decrease slightly. But the drag force decreases notablely because of the attack angle and position of the vice hydrofoil.

    The contour of void fraction on two type hydrofoils at different cavitation number are showed in Fig.7. For 791 hydrofoil, cavitation occurred at the leading edge of the suction side from σ=1.25, and both the lift force and drag force decrease slightly, which induces the increasing of the lift-drag ratio in a narrow range. With σ decreasing, cavitation develops, the lift force remains steady and the drag force increases slightly, which results in little reduce of the lift-drag ratio. For σ=1.6-1.2the cavity generated on the suction side grows bigger, both the lift and drag force increase simultaneously, the lift-drag ratio remains constant. For σ=2.15-1.2cavity length is less than 0.5C, the closure of the cavity experienced small variations, but the general length varies little and the cavity can be stated as stable. For =1.0σ the cavity grows larger than 0.5C, the length of vapor varies and vapor cloud sheds periodically, and the lift and drag force deteriorate sharply. Figure 8 displays a periodical vapor evolution process for =0.8σ. It is found that a cavity generates at the leading edge of the suction side of foil, when the cavity length reaches up to about 0.6C, the reentrant jet appears which cuts the cavity partially from the bottom. With the reentrant flow developed, the vapor break off completely and causes shedding vapor cloud, then the reentrant flow begins to spread forward upstream which causes the residual vapor to contract and when it crosses the limit of the cavity, the residual cavity collapse. The vapor cloud sheds at a frequency of 5.57 Hz.

    For slot hydrofoil, cavitation occurs for =1.9σ,since then the lift and drag force deteriorate rapidly. When σ deduced from 1.9-1.2, cavitation developed quickly, the cavity grows larger and keeps so called“stable”. From 1.2σ≤, the lift and drag force degrades sharply. For 1.0σ≤, cavitating behavior gets unstable and cycle cavity developing can be observed. Figure 9 displays the vapor clouds shedding process for =0.8σ. Results show that the reverse flow occurs at nearly 0.5C from the trailing edge which cuts the cavity partially from the bottom either, then followed by the growing of both two parts. With the reentrant flow continuously developing, two parts connecting to top of each other break off and vapor cloud shedding occurs, when the reentrant flow begins to flow upstream forward which results in the contraction of the residual vapor and collapse finally. The frequency of periodical vapor cloud shedding is 8.626 Hz, higher than that of 791 hydrofoil.

    From above, it shows that when cavitation occurs, even the cavity is much thinner and smaller on the slot hydrofoil than that on 791 hydrofoil at the same cavitation number, the performances of slot hydrofoil deteriorate sharply(Fig.7) yet. For 791 hydrofoil, performances doesn’t get worse until the cavity length is greater than 0.5C and the cavity area extends to the downstream section (negative slope) of the suction side, when cavitating behavior became unstable with reentrant flow and vortex occurring. For slot hydrofoil, the low pressure area and cavity locates in the downstream area of the suction side and the performance damage appears from the beginning of cavitation. So analysis supports that the bigger upstream slope of the main foil of slot hydrofoil accounts for the bad cavitation inhibition, that is small upstream slop of suction side would suppress the hydraulic performance loss for cavitation.

    4. Optimization research of slot hydrofoil

    According to above results, it’s obvious that the form of splitting curve is critical to cavitation performance. To improve the hydraulic and cavitation performance, the curve will be ameliorated, and optimization research will be conducted to find an optimum position of the vice foil.

    Fig.10 The sketch of new slot hydrofoil

    4.1 Geometry and optimization problem

    A new slot hydrofoil is displayed in Fig.10, with smaller upstream slope of main hydrofoil. Numerical optimization calculation was carried out on Workbench of Ansys 12.1 by transferring the vice hydrofoil relative to the main one. The design variables are x, y, θ referenced, where x was the horizonal distance, y was the vertical distance, θ was the rotating angle relative to the horizontal direction. The

    objective functions were lift-drag ratio (Cl/Cd), lift coefficient (Cl) and cavitation index at cavitating condition. Wherein cavitation index is the volume average of water vapor of a specific domain, which is consisted of negative slope area (downstream) of the suction side of the main foil, because the cavity on upstream part of the suction side doesn’t damage the performance until it extends to the downstream section.

    The optimization problem reads:

    Multiple objective functions

    Wherein the importance of Min (Cav-index) is set higher, the importance Max (Cl/Cd) is set lower, and the value of lC was set not less than791lC as hard constraint.

    Fig.11 Geometry of the optimized slot hydrofoil

    Fig.12 Drag and lift coefficients, Lift-Drag ratio for various cavitation number α=6o

    Fig.13 Contrast figures of streamline and void fraction isosurface (α=0.1) around hydrofoil

    The constraint condition

    4.2 Optimization method and results

    Custom plus sampling type was used in design of experiments with total 100 samples, standard response-full 2-nd order polynomials type was set for response surface, and screening optimization method was adopted in the Goal Driven Optimization. The final optimized design result is displayed in Fig.11 (x=-0.043825 m , y=-0.004735 m , θ=4.6).

    4.3 The cavitation behavior of the optimized slot hydrofoil

    Numerical simulations had been conducted from non-cavitating condition to cavitating condition for several σ ato6 attack angle. Figure 12 shows that for the optimized foil, the lift-drag ratio is 40% higher, the lift coefficient is 2% higher and the drag coefficient is 29.3% lower than those of 791 foil at non-cavitating condition.

    Figure 13 displays the streamlines around the main foil and the vapor isosurface (αv=0.1), it shows that the streamline is much more fitted because of the guidance of the vice foil. So even great vapor cavity generates for 791 hydrofoil when =1.2σ, no vapor occurs on the slot hydrofoil. When =1.0σ, cavitating behavior around 791 hydrofoil is unstable and vapor cloud shedding occurred, instead a little steady vapor cavity generates on the downstream of suction side of the slot hydrofoil. But even steady and relative weak cavitation on the negative section of the suction side of optimal slot foil destroys the performance. Comparing to the slot foil by Zhang, the lift-drag ratio is 16% higher, the lift coefficient is 5% higher and the drag coefficient is 10% lower at non-cavitating condition, and the cavitation occurs at much lower σ. In general, not only the lift, drag and the lift-drag ratio are more superior, but also the cavitation inhibition is more excellent.

    5. Conclusion

    Numerical researches were carried out on the performances of a slot hydrofoil ato6 attack angle. Computations indicates that the hydraulic performance of the slot hydrofoil is better than 791 hydrofoil at non-cavitating condition, however when small cavity occurs, the hydraulic performances deteriorated sharply. Instead, for 791 hydrofoil the cavity always locates on the upstream part of the suction side, only when cavity length developing up to over 0.5C and extending to the negative slope section of the foil, the hydraulic performance starts to decline. It can be deduced that the big upstream slope of the suction side of the main hydrofoil accounts for the damage of performance when the cavity generating at the negative slope of the suction side. To improve the performance of this slot hydrofoil, new splitting curve was designed, and computational optimization of vice foil location was carried out on the Workbench of Ansys 12.1. Through numerical simulation, it’s verified thatthe optimized slot hydrofoil achieves better hydraulic and cavitation performances at certain incident angle.

    [1] Chen Hong-xun, HUO Cong-cong and LIU Wen-mei. Study on control of multi-element airfoil based on CFD[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 20(5): 513-516(in Chinese).

    [2] ZHANG Rui. Research on the stall and cavitation flow characteristics and the performance improvement of Axial-flow pump[D]. Doctral Thesis, Shanghai, China: Shanghai University, 2014(in Chinese).

    [3] VENTIKOS Y., TZABIRAS G. A numerical method for the simulation of steady and unsteady cavitating flows[J]. Computers and Fluids, 2000, 29(1): 63-88.

    [4] WANG Guo-yu, FANG Tao and CAO Shu-liang et al. Numerical modeling of unsteady viscous cavitation flows[J]. Journal of Engineering Thermophysics, 2004, 25(5): 783-789(in Chinese).

    [5] EDWARDS J. R., FRANKLIN R. K. Low-diffusion flux-splitting method for real fluid flows with phase transitions[J]. AIAA Journal, 2000, 38(9): 1624-1633.

    [6] SINGHAL A. K., ATHAVALE M. M. and LI H. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.

    [7] ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. The Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    [8] SCHNERR G. H., SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]. The Fourth International Conference on Multiphase Flow. New Orland, USA, 2001.

    [9] KUNZ R. F., BOGERA D. A. and TINEBRINGA D. R. et al. A preconditioned Navier-Stokes method for twophase flows with application to cavitation prediction[J]. Computers and Fluids, 2000, 29(8): 849-875.

    [10] SENOCAK I., SHYY W. Interfacial dynamics-based modeling of turbulent cavitating flows, Part I: Model development and steady-state computations[J]. International Journal for Numerical Methods of Fluids, 2004, 44(9): 975-995.

    [11] FRIKHA S., COUTIER-DELGOSHA O. and ASTOLFIJ. A. Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section[J]. International Journal of Rotating Machinery, 2009, 2008: 146234.

    [12] ZHAO Jing, WEI Ying-jie and ZHANG Jia-zhong et al. Effect of various turbulence models on simulated results of cavitating flow[J]. Engineering Mechanics, 2009, 26(8): 233-238(in Chinese).

    [13] HUANG Biao, WANG Guo-yu and ZHANG Bo et al. Assessment of cavitation models for computation of unsteady cavitating flows[J]. Journal of Ship Mechanics, 2011, 15(11): 1195-1202(in Chinese).

    [14] HAO Zong-rui, WANG Le-qin and WU Da-zhuan. Numerical simulation of unsteady cavitating flow on hydrofoil[J]. Journal of Zhejiang University: Engineering Science, 2010, 44(5): 1043-1048(in Chinese).

    [15] GUAN Fan-xing. Modern pump technical manuals[M]. Beijing, China: Aerospace press. 1998(in Chinese).

    [16] BAKIR F., REY R. and GERBER A. G. et al. Numerical and experimental investigations of the cavitating behavior of an inducer[J]. International Journal of Rotating Machinery, 2004, 10(1): 15-25.

    [17] LEROUX J. B., ASTOLFI J. A. and BILLARD J. Y. An experimental study of unsteady partial cavitation[J]. Journal of Fluids Engineering, 2004, 126(1): 94-101.

    [18] CELIK B. I., GHIA U. and ROACHE P. J. et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7): 078001.

    10.1016/S1001-6058(15)60462-0

    * Project supported by the National Natural Science Foundation of China (Grant No. 51379120), the Science and Technology Plan of Zhejiang Province (Grant No. 2011C11068), and the Shanghai Program for Innovative Research Team in University.

    Biography: WEI Qun (1978-), Female, Ph. D., Lecturer

    CHEN Hong-xun, E-mail: chenhx@shu.edu.cn

    6. Results indicate that the performance of this slot hydrofoil is better than the original hydrofoil at non-cavitation condition, but deteriorates sharply once cavitation occurred. To improve the performance, a new splitting scheme was put forward and optimization research was carried out at the same indicent angle, numerical results show that the optimized slot hydrofoil achieves better hydraulic and cavitation performances.

    猜你喜歡
    張睿
    A Lost Ball
    I ’m a Dog Lover
    廣播操比賽
    爺爺?shù)膼?ài)
    The dilemma and development of industrial design in contemporary life
    Gravity and Spin Forces in Gravitational Quantum Field Theory?
    秋天到了
    Wechat, life in our Palm
    張睿 主宰人生, 睿不可當(dāng)
    我的新發(fā)現(xiàn)
    欧美成人一区二区免费高清观看| 色视频www国产| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 最好的美女福利视频网| 此物有八面人人有两片| 一区福利在线观看| 中文字幕人成人乱码亚洲影| 波多野结衣高清无吗| 精品人妻1区二区| 日韩成人在线观看一区二区三区| 久久国产乱子伦精品免费另类| 国产亚洲欧美在线一区二区| 午夜激情欧美在线| 18+在线观看网站| 精品一区二区三区视频在线观看免费| 日本精品一区二区三区蜜桃| 国产亚洲精品久久久com| 老司机午夜福利在线观看视频| 99久久99久久久精品蜜桃| 亚洲第一区二区三区不卡| 久久这里只有精品中国| 欧美成人a在线观看| 欧美xxxx性猛交bbbb| 国产色婷婷99| 日本免费一区二区三区高清不卡| 成人特级av手机在线观看| 亚洲欧美清纯卡通| 国产色婷婷99| 国产三级中文精品| 极品教师在线免费播放| 欧美3d第一页| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av在线| 99在线人妻在线中文字幕| 禁无遮挡网站| av专区在线播放| 身体一侧抽搐| 亚洲18禁久久av| 亚洲欧美清纯卡通| 窝窝影院91人妻| 日韩欧美 国产精品| 久久精品国产清高在天天线| 给我免费播放毛片高清在线观看| 国产在线精品亚洲第一网站| 悠悠久久av| 欧美黑人欧美精品刺激| 国产美女午夜福利| 在线观看舔阴道视频| 久久久久久九九精品二区国产| av国产免费在线观看| 亚洲熟妇熟女久久| 嫩草影院入口| 别揉我奶头 嗯啊视频| 日韩国内少妇激情av| 最好的美女福利视频网| 亚洲av熟女| 如何舔出高潮| 国产视频一区二区在线看| 精品国产三级普通话版| 99国产精品一区二区蜜桃av| 久99久视频精品免费| 97超级碰碰碰精品色视频在线观看| 国产日本99.免费观看| 97超级碰碰碰精品色视频在线观看| 亚洲av电影不卡..在线观看| 日韩大尺度精品在线看网址| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲色图av天堂| h日本视频在线播放| 老熟妇乱子伦视频在线观看| 国产爱豆传媒在线观看| 欧美性猛交╳xxx乱大交人| x7x7x7水蜜桃| 成人高潮视频无遮挡免费网站| 婷婷色综合大香蕉| 99国产精品一区二区蜜桃av| 日韩欧美在线二视频| 婷婷精品国产亚洲av| 热99在线观看视频| 日韩亚洲欧美综合| 欧美日本视频| 男人舔女人下体高潮全视频| 国产成人影院久久av| 亚洲av成人精品一区久久| 成年女人看的毛片在线观看| 午夜福利免费观看在线| 亚洲一区高清亚洲精品| 免费无遮挡裸体视频| 少妇丰满av| 亚洲欧美日韩卡通动漫| 国产在视频线在精品| 日本成人三级电影网站| 亚洲熟妇中文字幕五十中出| 国产成人av教育| 9191精品国产免费久久| 一区福利在线观看| 久9热在线精品视频| 国产精品电影一区二区三区| 悠悠久久av| 国产黄a三级三级三级人| 亚洲成av人片免费观看| 免费av观看视频| 亚洲真实伦在线观看| 国产精品女同一区二区软件 | 亚洲美女搞黄在线观看 | 99国产综合亚洲精品| 最近最新免费中文字幕在线| 久久久国产成人免费| 午夜福利成人在线免费观看| 午夜视频国产福利| 白带黄色成豆腐渣| 国语自产精品视频在线第100页| 国产午夜福利久久久久久| 国产男靠女视频免费网站| 男女做爰动态图高潮gif福利片| 亚洲av电影在线进入| 久久久久国内视频| 欧美3d第一页| 夜夜躁狠狠躁天天躁| 午夜视频国产福利| 亚洲中文字幕日韩| eeuss影院久久| 国产精品爽爽va在线观看网站| 久久久色成人| 黄色丝袜av网址大全| 国产探花在线观看一区二区| 在线播放无遮挡| 又黄又爽又免费观看的视频| 人妻夜夜爽99麻豆av| 久久这里只有精品中国| 制服丝袜大香蕉在线| xxxwww97欧美| 中文字幕av在线有码专区| 国产免费一级a男人的天堂| 日韩中字成人| 国产精品日韩av在线免费观看| 97热精品久久久久久| 女人被狂操c到高潮| 国产欧美日韩精品一区二区| 午夜两性在线视频| 一a级毛片在线观看| 久久久精品欧美日韩精品| 精品欧美国产一区二区三| 精品久久久久久成人av| 色综合婷婷激情| 欧美日韩黄片免| 亚洲激情在线av| 桃红色精品国产亚洲av| 十八禁国产超污无遮挡网站| 亚洲专区国产一区二区| 亚洲av电影在线进入| 色av中文字幕| 久久精品91蜜桃| 成人特级av手机在线观看| 欧美3d第一页| 精品一区二区三区视频在线观看免费| 搡老妇女老女人老熟妇| 看免费av毛片| 少妇丰满av| 欧美乱妇无乱码| 色综合婷婷激情| 一a级毛片在线观看| 美女cb高潮喷水在线观看| 国产精品电影一区二区三区| 一区福利在线观看| 无人区码免费观看不卡| 婷婷精品国产亚洲av| 黄片小视频在线播放| 亚洲国产色片| 伦理电影大哥的女人| www.色视频.com| 99在线视频只有这里精品首页| 看黄色毛片网站| 97人妻精品一区二区三区麻豆| 日本 欧美在线| 亚洲欧美日韩高清在线视频| 丁香欧美五月| 最近在线观看免费完整版| 国产成+人综合+亚洲专区| 国产精品久久久久久精品电影| 国产欧美日韩一区二区精品| 日韩国内少妇激情av| 亚洲,欧美精品.| 99热6这里只有精品| 成人高潮视频无遮挡免费网站| 国产91精品成人一区二区三区| 精品熟女少妇八av免费久了| 麻豆成人av在线观看| 女生性感内裤真人,穿戴方法视频| 欧美3d第一页| 成年女人看的毛片在线观看| 一级毛片久久久久久久久女| 国内精品久久久久精免费| 2021天堂中文幕一二区在线观| 免费搜索国产男女视频| 中文字幕av在线有码专区| 五月伊人婷婷丁香| 国产麻豆成人av免费视频| 成人高潮视频无遮挡免费网站| 日韩欧美三级三区| 免费看日本二区| 亚洲成人免费电影在线观看| 国产三级黄色录像| 欧洲精品卡2卡3卡4卡5卡区| 日韩免费av在线播放| 91在线精品国自产拍蜜月| 国产精品一区二区免费欧美| 久久精品夜夜夜夜夜久久蜜豆| 天美传媒精品一区二区| 国产69精品久久久久777片| 国产毛片a区久久久久| 欧美日本亚洲视频在线播放| www.www免费av| 成人精品一区二区免费| 免费av毛片视频| 热99re8久久精品国产| 99久久九九国产精品国产免费| 精品午夜福利在线看| 国产单亲对白刺激| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品成人综合色| 99久久精品一区二区三区| 午夜福利欧美成人| 精品无人区乱码1区二区| h日本视频在线播放| 有码 亚洲区| 国产成人啪精品午夜网站| 国产精品综合久久久久久久免费| 一区二区三区四区激情视频 | 有码 亚洲区| 欧美极品一区二区三区四区| 成人av一区二区三区在线看| 欧美xxxx黑人xx丫x性爽| 真人做人爱边吃奶动态| 亚洲激情在线av| 在线看三级毛片| 国产精品1区2区在线观看.| 哪里可以看免费的av片| 日本三级黄在线观看| 成人毛片a级毛片在线播放| 性色av乱码一区二区三区2| 九色国产91popny在线| 人人妻,人人澡人人爽秒播| 欧美黑人巨大hd| 真人做人爱边吃奶动态| 免费av毛片视频| 色视频www国产| 国产一区二区三区视频了| 国产黄色小视频在线观看| 九色国产91popny在线| 日韩欧美精品v在线| 免费观看的影片在线观看| 别揉我奶头~嗯~啊~动态视频| 脱女人内裤的视频| www日本黄色视频网| 欧美色视频一区免费| 伊人久久精品亚洲午夜| 日日摸夜夜添夜夜添av毛片 | 日韩欧美免费精品| 国产精品电影一区二区三区| 久久久成人免费电影| 美女 人体艺术 gogo| 婷婷精品国产亚洲av| a级毛片a级免费在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩无卡精品| 可以在线观看的亚洲视频| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 真人做人爱边吃奶动态| 少妇的逼好多水| 亚洲国产精品久久男人天堂| 午夜福利欧美成人| 国产日本99.免费观看| 身体一侧抽搐| 久久九九热精品免费| 伦理电影大哥的女人| 国产精品精品国产色婷婷| 天堂网av新在线| 精品国产三级普通话版| 精品日产1卡2卡| 婷婷精品国产亚洲av在线| 亚洲欧美日韩高清专用| 夜夜看夜夜爽夜夜摸| 丝袜美腿在线中文| 99国产精品一区二区三区| 国产亚洲欧美在线一区二区| 成人一区二区视频在线观看| 深夜精品福利| 老女人水多毛片| 午夜a级毛片| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区人妻视频| 日韩高清综合在线| 三级男女做爰猛烈吃奶摸视频| 黄色视频,在线免费观看| 欧美一级a爱片免费观看看| 黄色女人牲交| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av在线| 亚洲国产色片| 人妻夜夜爽99麻豆av| 性色avwww在线观看| 久久久久国产精品人妻aⅴ院| 午夜福利免费观看在线| 亚洲中文日韩欧美视频| 成人特级av手机在线观看| 日韩大尺度精品在线看网址| 亚洲国产欧洲综合997久久,| 日本一本二区三区精品| 久久精品国产清高在天天线| 中文字幕人妻熟人妻熟丝袜美| 18禁黄网站禁片免费观看直播| aaaaa片日本免费| 1000部很黄的大片| 精品欧美国产一区二区三| 亚洲成人免费电影在线观看| 嫁个100分男人电影在线观看| 99久久九九国产精品国产免费| 少妇裸体淫交视频免费看高清| 久久久久久久久中文| 变态另类丝袜制服| 日韩大尺度精品在线看网址| 一二三四社区在线视频社区8| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 亚洲国产精品久久男人天堂| 九九久久精品国产亚洲av麻豆| 久久精品国产99精品国产亚洲性色| 又粗又爽又猛毛片免费看| 好男人在线观看高清免费视频| 又紧又爽又黄一区二区| 亚洲五月天丁香| 亚洲最大成人中文| 亚洲av美国av| 男女视频在线观看网站免费| 香蕉av资源在线| 中文字幕精品亚洲无线码一区| 国产精品亚洲美女久久久| 一a级毛片在线观看| 久久性视频一级片| 国产午夜精品论理片| 丰满的人妻完整版| 少妇人妻精品综合一区二区 | 一边摸一边抽搐一进一小说| 欧美性猛交╳xxx乱大交人| 色视频www国产| 亚洲色图av天堂| 亚洲内射少妇av| 校园春色视频在线观看| ponron亚洲| 午夜亚洲福利在线播放| 亚洲人成网站在线播| 欧美日韩综合久久久久久 | 无遮挡黄片免费观看| 午夜福利在线观看吧| 天堂av国产一区二区熟女人妻| 国产精品av视频在线免费观看| 成人性生交大片免费视频hd| 黄色配什么色好看| 久久精品影院6| 欧美日韩亚洲国产一区二区在线观看| 不卡一级毛片| 国产精品女同一区二区软件 | 9191精品国产免费久久| 国产精品免费一区二区三区在线| 欧美黄色淫秽网站| 永久网站在线| 青草久久国产| 亚洲自偷自拍三级| 很黄的视频免费| 一级黄色大片毛片| 一个人看视频在线观看www免费| www.色视频.com| 婷婷丁香在线五月| 久久久久亚洲av毛片大全| a在线观看视频网站| 赤兔流量卡办理| 一二三四社区在线视频社区8| 午夜福利成人在线免费观看| 免费看a级黄色片| 男人和女人高潮做爰伦理| 99久久九九国产精品国产免费| 欧美性猛交╳xxx乱大交人| 国产色婷婷99| 我的女老师完整版在线观看| 国内精品久久久久久久电影| 全区人妻精品视频| 国内毛片毛片毛片毛片毛片| 国产精品野战在线观看| 91麻豆精品激情在线观看国产| 欧美另类亚洲清纯唯美| 成年女人看的毛片在线观看| 午夜福利在线观看吧| 白带黄色成豆腐渣| 51午夜福利影视在线观看| 欧美日本视频| 久久99热这里只有精品18| 免费观看的影片在线观看| 中文字幕久久专区| 九九久久精品国产亚洲av麻豆| 校园春色视频在线观看| 亚洲欧美日韩无卡精品| 免费在线观看成人毛片| 久久香蕉精品热| 麻豆国产97在线/欧美| 国产精品久久电影中文字幕| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 老女人水多毛片| 午夜a级毛片| 两人在一起打扑克的视频| 看十八女毛片水多多多| or卡值多少钱| av黄色大香蕉| 国产精品综合久久久久久久免费| 搡老妇女老女人老熟妇| 美女被艹到高潮喷水动态| 亚洲av免费在线观看| 很黄的视频免费| 国产乱人伦免费视频| 观看美女的网站| 久久久精品大字幕| av在线蜜桃| 性插视频无遮挡在线免费观看| 最近最新中文字幕大全电影3| 日韩人妻高清精品专区| 性色av乱码一区二区三区2| 亚洲av电影不卡..在线观看| 老熟妇仑乱视频hdxx| 偷拍熟女少妇极品色| 人妻丰满熟妇av一区二区三区| 91av网一区二区| x7x7x7水蜜桃| 12—13女人毛片做爰片一| 夜夜爽天天搞| 内地一区二区视频在线| 亚洲av二区三区四区| 精品乱码久久久久久99久播| 一级黄片播放器| 久久国产精品影院| 97热精品久久久久久| av天堂中文字幕网| 男女之事视频高清在线观看| 别揉我奶头 嗯啊视频| 激情在线观看视频在线高清| 亚洲片人在线观看| 99久久精品国产亚洲精品| 999久久久精品免费观看国产| 97热精品久久久久久| 人妻制服诱惑在线中文字幕| 久久精品综合一区二区三区| 久久国产精品人妻蜜桃| 男女做爰动态图高潮gif福利片| 亚洲国产色片| 国产极品精品免费视频能看的| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片 | 美女免费视频网站| 午夜精品久久久久久毛片777| 午夜福利在线观看免费完整高清在 | 亚洲一区二区三区色噜噜| 国产精品人妻久久久久久| 一进一出抽搐gif免费好疼| 国产成人影院久久av| 变态另类成人亚洲欧美熟女| 露出奶头的视频| 天堂网av新在线| 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 国产探花极品一区二区| 最近视频中文字幕2019在线8| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 乱码一卡2卡4卡精品| 国产伦精品一区二区三区视频9| 亚洲不卡免费看| 国产主播在线观看一区二区| 91麻豆av在线| 欧美日本亚洲视频在线播放| 国产精品嫩草影院av在线观看 | 怎么达到女性高潮| 午夜免费成人在线视频| 能在线免费观看的黄片| 在线观看免费视频日本深夜| 成人午夜高清在线视频| 丁香六月欧美| 香蕉av资源在线| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 少妇人妻精品综合一区二区 | 一区二区三区高清视频在线| 一级作爱视频免费观看| 成人av一区二区三区在线看| 久久久国产成人免费| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| h日本视频在线播放| 久久亚洲真实| 91狼人影院| 免费看美女性在线毛片视频| 日日摸夜夜添夜夜添av毛片 | 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 国产一区二区在线av高清观看| 亚洲欧美日韩高清在线视频| 亚洲精品日韩av片在线观看| 成人鲁丝片一二三区免费| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产 | 亚洲精品亚洲一区二区| 日韩高清综合在线| 99国产精品一区二区三区| 国产欧美日韩精品亚洲av| 欧美高清性xxxxhd video| 久久精品人妻少妇| 51国产日韩欧美| 此物有八面人人有两片| 精品熟女少妇八av免费久了| 老熟妇仑乱视频hdxx| 男插女下体视频免费在线播放| 久久精品91蜜桃| 真人一进一出gif抽搐免费| 三级国产精品欧美在线观看| 国产精品嫩草影院av在线观看 | 如何舔出高潮| 一区福利在线观看| 蜜桃久久精品国产亚洲av| www.色视频.com| 国产在线精品亚洲第一网站| 久久久久久久久大av| 久久伊人香网站| av国产免费在线观看| 性欧美人与动物交配| 国产午夜精品久久久久久一区二区三区 | 久久久久性生活片| 两个人的视频大全免费| 一区二区三区免费毛片| 欧美绝顶高潮抽搐喷水| 成人午夜高清在线视频| netflix在线观看网站| 亚洲熟妇熟女久久| 午夜久久久久精精品| 欧美在线黄色| 性欧美人与动物交配| 精华霜和精华液先用哪个| 色尼玛亚洲综合影院| 亚洲精品色激情综合| 老女人水多毛片| 国产三级黄色录像| 国产伦在线观看视频一区| 搡老妇女老女人老熟妇| av福利片在线观看| 久久性视频一级片| 大型黄色视频在线免费观看| 免费在线观看成人毛片| 久久人人精品亚洲av| 国产精品伦人一区二区| 搡老岳熟女国产| 直男gayav资源| 亚洲熟妇熟女久久| 真人做人爱边吃奶动态| 性色av乱码一区二区三区2| 免费av不卡在线播放| 国产av不卡久久| 国产精品永久免费网站| 天堂动漫精品| 精品午夜福利视频在线观看一区| 婷婷六月久久综合丁香| 高潮久久久久久久久久久不卡| 久久人人爽人人爽人人片va | 人人妻人人看人人澡| or卡值多少钱| 国产亚洲精品av在线| 女生性感内裤真人,穿戴方法视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 丰满乱子伦码专区| 757午夜福利合集在线观看| 最近最新免费中文字幕在线| 成人高潮视频无遮挡免费网站| 久久天躁狠狠躁夜夜2o2o| 亚洲电影在线观看av| 给我免费播放毛片高清在线观看| 精品一区二区三区人妻视频| 国产成人aa在线观看| 亚洲精品亚洲一区二区| 久久精品国产99精品国产亚洲性色| 精品人妻偷拍中文字幕| 欧美3d第一页| 久久精品国产亚洲av香蕉五月| 国内久久婷婷六月综合欲色啪| 他把我摸到了高潮在线观看| 亚洲不卡免费看| 国产欧美日韩一区二区三| 在线播放国产精品三级| 一进一出好大好爽视频| 真实男女啪啪啪动态图| 亚洲18禁久久av| 美女被艹到高潮喷水动态| 欧美一区二区亚洲| 伊人久久精品亚洲午夜| 啪啪无遮挡十八禁网站| 亚洲精品在线美女| aaaaa片日本免费| 国产精品av视频在线免费观看| 国产 一区 欧美 日韩| 麻豆国产97在线/欧美| 欧美精品啪啪一区二区三区| 国产亚洲精品久久久com| 人人妻,人人澡人人爽秒播| 国产精品久久久久久久久免 | 我要搜黄色片| 免费av不卡在线播放| 好男人在线观看高清免费视频| 免费看a级黄色片|