• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    M icroscopic M echanism on the Incipient Pyrolysis of Insulation Paper

    2017-07-19 12:07:46WANGXueleiWANGShuoZHUWenbingZHOUJiabinXUWei
    山東電力技術(shù) 2017年6期
    關(guān)鍵詞:絕緣紙微觀機(jī)理

    WANG Xuelei,WANG Shuo,ZHUWenbing,ZHOU Jiabin,XUWei

    (State Grid Shandong Electric Power Research Institute,Jinan 250003,China)

    M icroscopic M echanism on the Incipient Pyrolysis of Insulation Paper

    WANG Xuelei,WANG Shuo,ZHUWenbing,ZHOU Jiabin,XUWei

    (State Grid Shandong Electric Power Research Institute,Jinan 250003,China)

    By investigating the microscopic pyrolysismechanism of the insulation paper,especially on the incipient pyrolysis stage,it can reveal potential guiding values,such as further understanding on the pyrolysis process in internal insulation system of a transformer undergoing overheating defects and early evaluations of insulation deterioration and life expectancy.To this end,the way of experiment combined with simulation was adopted in this article.Firstly,the GC/MS experiment on cellulose under 350~900℃ was conducted,and it is found that allose was the product of the highest ration and it is also the most important product for diagnosing the degree of deterioration on the incipient stage.For further clarification of the formation mechanism and the following rules of the pyrolysis of allose,the high temperature reactive molecular dynamics simulation for the pyrolysis of cellobiose which is the constitutional unit of the paper cellulose was investigated and discussed in this article. By tracking the visual decomposition process of the cellulose and observing the splitting and forming rules of the bonds at different time,it is found that allose was generated by the split of C′4-O glucosidic bond and C1-O5bond at the 1-pyranoid ring.The small molecules generated during pyrolysis are measured by velocitron and can be used as micro-features in diagnosing thermal faults of the power transformers.

    insulation paper;incipient pyrolysis;reactivemolecular dynamics;microscopicmechanism;allose

    0 Introduction

    With the rapid development of our power industry,electrical power transformer as a key element among the power transmission and transformation equipment,is developing towards the direction of the ultra-h(huán)igh voltage and large capacity.Once the transformer fails to work,it will ravage the electricity grid and cause huge economic losses.Oil and paper are the main insulating materials for oil-immersed transformers.When the transformer undergoes some partial defects,such as a local overheating defect,it will generate heat high enough to endanger the stability of the oil/paper insulating structure.If not dispatched in time,the heat is able to rise the local temperature to a high level in the transformer and cause oil/paper fastpyrolysis[1-2].The transformer oil/paper cracking is a very complicated process of chemical change,involving electrical,material,chemical,and many other disciplines.The existingmacroscopic experimental study on insulation defects is not sufficient to explain the indepth mechanism of the pyrolysis process of oil/paper insulation from the microscopic mechanism point of view.

    For the past few years,with the quantum mechanics theory gradually improving,continuous development and update of the force field and the popularity of the computing speed and capacity promotion of the computers,the theory and methods ofmolecular simulation was developing rapidly.In the physical,chemical,material and life science and many other fields,it plays an increasingly important role,and has gradually formed a specialdiscipline-themolecularsimulation[3-5]. Simulation of the molecular structures and behaviors based on molecular model on the atomic level,it can not only precisely calculate the micro parameters of the insulatingmaterial,but also help analyzing themicroscopic mechanism of all kinds of complicated phenomenon,so as to explain the relationship betweenmicrostructure and macro properties for insulating material.

    For themicroscopic degradationmechanism of the transformer oil/paper insulation,some explorations are already invested.The molecular dynamics simulation is carried out to investigate the thermal degradation process of cellulose molecules in insulation paper in paper[6-7].It is found that joint ofβ-1-4 glycosidic bond on the main chain of the cellulose molecules is mostly prone to rupture and lead to reduction the degree of polymerization.Thermal stability of cellulose molecular is studied in paper[8]and it is found that the stability of the structure and machinery of the insulation paper are significantly affected by cellulose internal hydrogen bond.Themolecular simulation of the oil conformation in the cellulosemolecules on different surfaces is analyzed in paper[9]and it is found that the oilmolecular on the surface of cellulose amorphous region appreciate vertical conformation and are most likely to produce charge at the interface.In paper[10],aided by Material Studio software and COMPASS force field,the effects of oxygen,water and hydronium on insulation paper aging degradation are analyzed from cellulose chain conformation,flexibility,and small molecule diffusion coefficient and other parameters.All the above studiesmainly focused on the physics calculations ofmolecular dynamics,and have not involved the chemical reactionmechanism of cellulose pyrolysis process.In paper[11],the cellulose pyrolysis process at high tem perature is simulated.To reduce the time consumption on the simulation,the temperature is set to 1 900 K in the simulation,in which,the cracking reaction is so fast that it is unable to elaborate pyrolysis law for early cracking.So it will be useful if a further study on themicro crackingmechanism of cellulose,especially the early cracking mechanism is carried out.This study will provide further understanding on the pyrolysis process of the transformer’s internal insulating system under overheating defects,potentially valuable in the early evaluation of insulation cracking and insulation life assessment.

    To this end,this paper combines the experiment and simulation method.Firstly,cellulose pyrolysis experiment at 350~900℃ is carried out to analyze the cracking process,especially the main product at the early stage.Then,based on the experimental study,the targeted pyrolysis simulation of cellulose is carried out. Through tracing the paths of themain products during the early stage,the law of cellulose pyrolysis is analyzed and detailed in this paper.

    1 Insulation Paper Pyrolysis Experim ent Based on Py-GC/MS Technology

    In the recent few years,pyrolysis chromatography mass spectrometry(Py-GC/MS)is an effective tech nology to study the pyrolysismechanism[12-13].Py technology has the advantage of ultra-fast heating of the sample to the specified temperature and low speed of the continuous decomposition in the process of heating.Meanwhile,the technology of GC/MS can analyze the components of the pyrolysis products more accurately and obtain the semi-quantitative data.Therefore,using Py-GC/MS to analyze the components and relative contents of the transformer insulation paper’s thermal cracking products can not only verify the effectiveness of the previous simulation of reaction kinetic thermal cracking in paper[11],butalso have great significance for further exploring insulation paper’s thermal cracking mechanism.

    1.1 Experimentalequipments and materials

    The Py-GC/MSused in this experiment is generated by CDS 5000 pyrolysis apparatus manufactured by CDS Company and Agilent 7890A-5975C gas chroma tograph-mass spectrometer made by Agilent Company in the United States.The equipment and lab setup is shown in Figure 1.The wire cracking is used in CDS 5000 pyrolysis apparatus for fast pyrolysis. Pyrolysis probe on the platinum filament can be quickly heated to the specified temperature for thermal cracking,up to the highest temperature of 1 500℃. The pyrolysis products are analyzed on line through HP-5MS elastic capillary column(60m×0.25 mm× 0.25 m)in Agilent 7890A-5975C GC/MS.The temperature of the connector between chromatography and mass spectrum is 300℃.The mass-to-charge ratio in mass spectrometer is 35~400 amu.The sampling frequency is 4 Hz.NIST database is used for production determination.

    Figure 1.Pyrolysis-GC/MS analysis meter

    The insulation paper used in this experiment is from transformer made by Weidmann.The thickness of the paper is 0.5mm.Main components in the insulation paper includeα-cellulose mass fraction 89%~91%,hemicellulose 6%~7%and lignin 3%~4%.

    1.2 Experiment procedure

    During the experiment,about 5 mg of insulation paper powder was placed in a quartz tube,and both ends of the tubewere fixed by quartz cotton.The quartz tube filled with insulation paper was placed in platinum coil,as shown in Figure 2.And then start the thermal crack ing test under high-purity nitrogen(99.999% )environment in the cracking chamber. Comparisons among the insulation paper’s cracking products at different temperatures are made in this experiment.The cracking temperature is holding at 350℃,500℃,700℃ and 900℃ on different stage during the test.The initial temperature of the plat inum wire is 150℃ and then rising to 350℃,500℃,700℃ and 900℃ with the rising rate 10℃/ms,holding for 12 s at each target temperature.The insulation paper begins to crack at the target temperature and forms fugitive constituent.The product will first enter the adsorption vessel and then be desorbed until the cracking reaction is completed.Then all the cracking fugitive constituent are moved into the connected chromatographic mass spectrometer to analyze the products,the whole process shown in Figure 3.To prevent the cracking product from condensing,the temperature of the external transfer line is maintained at 250℃.

    Figure 2.The pyrolysis probe

    Figure 3.Experimental flow diagram

    1.3 Thermal cracking products analysis of insulation paper

    The GC/MS spectrum of the pyrolysis products for the insulation paper at the set temperature is shown in Figure 4.The X-axis represents the retention time correspondent with the products,in which the heavier the relative molecular mass of the products is,the longer retention time.The Y-axis represents relative value of ion current which is proportional to the content of related product.Since the relative peak area is linearly related to the gas production,in this paper,the relative peak area is used to characterize the change of the product composition during the pyrolysis.At first,area normalization method is used to calculate the peak area of each component and then sum them,and calculate its percentage in total peak area,which can contribute to the qualitative analysis of the pyrolysis products’GC/MS spectrum.

    Itcan be seen from Figure4 that the decomposition is insignificant when the temperature is 350 ℃ . However when the temperature rises to 500℃,the amount of pyrolysis product is evidently more than that in 350℃.During temperature rising from 500℃to 900℃,the amount ofmicromolecule pyrolysis product is increasing significantly and the amount of macromolecule is reducing gradually.

    As shown in Figure 4,the main products from insulation paper pyrolysis include allose,CO2,glycolic aldehyde,formic acid,furfural,1-Hydroxy-2-butanone,5-hydroxymethylfurfural,which are marked at the corresponding peak position in Figure 4.As the main production,CO2,glycolic aldehyde and formic acid are analyzed inpaper[11]bymoleculardynamicssimulation and their generating paths are traced.None of these is the focuse in this paper.From the statistics obtained from the experiment,it is found that allose is the highestquantity of products in the experiments,but the content declines rapidly with the temperature increasing especially after 700℃.This indicates that allose is extremely unstable at high temperature and break down into smallermolecules quickly.This is why it is not found in the previous researches of high temperature simulations[11].

    Figure 4.GC/MS spectrogram for insulation paper pyrolysis

    For the early evaluation of insulation cracking,it isofvital importance to clarify thegeneratingmechanism of allose and explore the early stage cracking law of cellulose.To this end,reaction molecular dynamics simulation method is used in this research to simulate the early stage cracking of cellulose under high temperature,aiming at exploring the generating ways of allose and the initial crackingmechanism of insulation paper at the atomic level.

    2 Molecular Dynam ics Simulation of Cellulose Pyrolysis at High Temperature

    2.1 Molecularmodel construction

    The main component of insulation paper in the transformer is cellulose,which is a linear polymer compound combined withβ-glycosyl group and D-glycosyl group under the help of 1-glycosidic bond and 4-glycosidic bond.Its repeating unit is cellobiose. After using different length of cellulose chains for simulations,it is found that amorphous area models composed with different lengths have no significant difference regardless the molecular conformation,physical and chemical properties[14-18].As cellobiose is the repeating unit of cellulose and for the time sake,cellobiose is used for themodel as shown in Figure 5(a).For easy understanding,this paper is going to name each atom of cellobiose using the method introduced in[19].As shown in the figure,in order to distinguish the two pyran rings of cellobiose,on the right side of the figure is 4-pyran ring which is connected with glycosidic bond’s O atoms via C′4,on the left side is 1-pyran ring which is connected with glycosidic bond’s O atoms via C1.Builder Model in the ADF software package is used to build the molecular model.The molecular model of cellobiose is shown in Figure 5(b),in which the white atoms represent H,the red atoms representO,and the gray atoms represent C.

    2.2 Pyrolysis simulation methods and details

    In this paper,ADF software is used to simulate the thermal degradation mechanism of cellulose.After using Builder command establish amorphous cells,the simulation of cracking reaction for cellobiose can be done under the ReaxFF force field.Different force fields are set in ReaxFF according to the differences of simulation elements.And cellobiose includes C,H and O three types of atoms,so CHO.ff force field is chosen in this paper.The canonical ensemble with the fixed N(number of particles)V(volume)T(temperature)is used during the simulation process.

    Figure 5.Sturctural formula and moecularmodel

    In order to balance the time and the accuracy of the simulation,and make sure the time consumption of the entire simulation is in a reasonable range,the parameters are set following the guidance of paper[11],in which,the pyrolysis process of the amorphous cells (simulation unit)containing three cellobiose molecules is emulated.The density of the unit is set to 1.599/cm3(actual cellulose density),air pressure is 0.1 MPa,and the temperature is 1 700 K.The simulation is repeated 16 times to ensure the reliability of the simulation results.For each simulation,the pyrolysis time is 100 ps,time step 0.1 fs,and thetrajectory file is saved for each 0.01 ps.

    2.3 Simulation results analysis

    According to the pyrolysis experiment results in chapter 1.3,the percentage of the peak area for each product is calculated,in which the main products at 900℃are shown in table 1,and are compared with the simulation results.

    Table 1.Main products ofinsulation paperpyrolysis in 900℃

    34 Allose C6H12O6 11.82 √32 Pyrocatechol C6H6O2 1.52 √33 5-Hydroxymethy lfurfural C6H6O3 1.62 √30 Phenol C6H6O 1.32 √31 Methyl cyclopentenolone C6H8O2 0.98 √28 1,2-Ring glutaric ketone C5H6O2 1.66 √29 5-Methyl furan aldehyde C6H6O2 1.01 √26 Furfuryl alcohol C5H6O2 0.54 √27 Peroxide acetylacetone C5H8O3 0.47 √N(yùn)umber Name Formula Area ratio/%ReaxFF

    It can be seen from the statistics shown in the table above that 34 main products measured in the experiment,except benzene and toluene,are all observed in the simulations.This indicates that simulation is highly consistent with the experiment results and the simulation is reliable and very accurate.

    From the previous experimental study it is found that allose is the product with the most generation amount during the early pyrolysis of cellulose.In order to clarify its pyrolysis mechanism and the later cracking law,by observing brakeage and generation of glycosidic bond and following the visible decomposition of cellulose,the main generating paths of allose are made clear in this paper,which is shown in Figure 6 and Figure 7.The atoms of the micromolecule products are identified from their colors.The blue ones are C atoms,the pink ones are O atoms,and the green ones are H atoms.Dotted line shows the broken bond’s location during the generating process of the main products.Red subscripts represent the atomic number in the chemical structure.

    Figure 6.Generate path 1 for allose

    Figure 7.Generate path 2 for allose

    As shown in Figure 6 and Figure 7,allose are all generated after glucosidic bond C′4-O breakage (5 ps in Figure 6 and 52.9 ps in Figure 7)and 1-pyranoid ring C1-O5bond breakage(7 ps in Figure 6 and 52.9 ps in Figure 7).As the decomposition continued,the final products are 1,2-dihydroxy ethylene(the generating path is shown in Figure 6:C′5-C′6bond breakage,generate a double bond between C′4and C′5,and C′1-C′2separate from 4-pyranoid ring),CO2(the generation path is shown in Figure 7:C′5-O′5separate from 4-pyranoid ring to creat C′1=O′5).

    In addition,taking the statistics of cellobiose bond rupture at the initial cracking stage,the location data of the bond breakage is shown in Table 2.

    The table above shows that the initial breakage position ismainly at O atoms of glycosidic bond,which shows that the glycosidic bond is a weak point in cellobiose structure.And this is consistent with the theoretical derivation that glycosidic bond is the first breaking point during cellulose’s pyrolysis process,which is mentioned in paper[20].Jiang Yuanye[21]used density functional theory to calculate the thermodynamic energy of cellobiose pyrolysis in different location.His conclusion indicates that glycosidic bonds cracking is superior to other positions in thermodynamics,which is consistent with the simulation results presented in this paper.

    The table also shows that except glycosidic bonds,the oxygen atoms at the two pyran rings are easy to break free from the bond of C′5-O′5and C1-O5. This is also consistent with the conclusion of paper[13]which believes that pyran ring’s C1-O5is a breakage point from bond energy point of view.Because C1-O5on glycosidic bond and pyran rings is easy to break,and allose is generated after the breakage.This also supported the fact of allose’s mass production during the early stage of pyrolysis.

    The research above shows that allose is similar to furfural that they are both the product during the cracking process of the insulation paper.In practical applications,there are two ways to test allose during transformer insulation aging process—off-line and online test.The off-line test requires the oil samples from the site for analysis using mass spectrometer in the laboratory.The on-line test can be realized by installing the built-in sensors for monitoring purposes aiming at specific chemicals.Because of that the producing of allose is at an earlier stage compared to the furfural during insulation paper pyrolysis,it is more accurate to assess the insulating aging process from the trend of the allose production,especially for early stage.

    3 Conclusions

    In this article,the way of experiment combined with simulation was adopted to analyze the cellulose’s initial pyrolysis mechanism,the distributing pattern and generating ways of main products from atomic level.

    Insulation paper pyrolysis experiment shows that the main products include allose,CO2,glycolic aldehyde,formic acid,furfural,1-Hydroxy-2-butanone,5-hydroxymethylfurfural,etc.Among them,allose is the highest generating product but with the temperaturerising,the amount of allo se reduces rapidly.This indicates that allose is the most important product to characterize the degree of the early insulating pyrolysis.

    Table 2.Statisticaloverview of bond initial rupture location for the cellobiose

    Reactive molecular dynamic simulation at high temperature is done for researching the pyrolysis mechanism of cellobiose in insulation paper.Theways of generating allose isanalyzed and detailed by tracing the visible cellulose decomposition process and observing bonds’breakageand generation atdifferent times.

    The micro mechanism of cellulose’s pyrolysis from the atomic level is explored in this paper.It can be a theoretical support for deeper understanding to the pyrolysis process of the insulation paper during overheating defect in transformer and assessment of the insulation aging.

    [1]WU G.N.,CUIY.G.,WANG X.J.“Evaluation of Water Content in Insulation Paper of Different Aging Degrees Using Acid Value in Oil”,High Voltage Engineering,Vol.41,No.1,pp.115-122,2015.

    [2]ZHOU Y.X.,HUANG J.W.,SHA Y.C.“Electrical Properties of Oil-Paper Affected by Water Conductivity During Paper-Making Process”,High VoltageEngineering,Vol.41,No.2,pp.382-387,2015.

    [3]SCHERAGA H A,KHALILI M,LIWO A.“Protein-Folding Dynamics:Overview of Molecular Simulation Techniques”,Annual Review of Physical Chemistry,Vol.58,No.1,pp.57-83,2007.

    [4]CHENOWETH K,VANDUIN A C T,GODDARD W A.“Reaxff Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation”,The Journal of Physical Chemistry A,Vol.112,No.5,pp.1 040-1 053,2008.

    [5]WANG Q D,WANG J B.“Reactive Molecular Dynamics Simulation and Chemical Kinetic Modeling of Pyrolysis and Combustion of N-Dodecane”,Combustion and Flame,Vol.158,No. 2,pp.217-226,2011.

    [6]LU Y.C.“Study on diffusion behavior of gas and mechanics of oilpaper aging using molecular simulation”,Chongqing,Chongqing University,2007.

    [7]YANG L.,LIAO R.,SUN C.“Influence of Vegetable Oil on The Thermal Aging of Transformer Paper and Its Mechanism”,IEEE Transactions on Dielectrics and Electrical Insulation,Vol.18,No. 3,pp.692-700,2011.

    [8]LIAO R.J.,ZHU M.Z.,ZHOU X.“Molecular Dynamics Simulation of the Diffusion Behavior ofWater Molecules in Oil and Cellulose Composite Media”,Acta Physico-Chimica Sinica,Vol.27,No.4,pp.815-824,2011.

    [9]LIAO R.J.,HU J.,YANG L.J.“Molecular Simulation for Thermal Degradative Micromechanism of Power Transformer Insulation Paper”,HighVoltageEngineering,Vol.35,No.7,pp.1565-1570,2009.

    [10]HU J.“Molecular Simulation Studies on Aging Mechanism in Crazing Zone of the Insulation Paper in Power Transformers”,Chongqing,Chongqing University,2009.

    [11]YAN J.,WANG X.,LIQ.“Molecular Dynamics Simulation on the Pyrolysis of Insulation paper”,Proceedings of the CSEE,Vol.35,No.22,pp.5 941-5 949,2015.

    [12]LIAO Y.,LUO Z.,WANG S.“Mechanism of Rapid Pyrolysis of CelloluseⅠ.Experimental Research”,Journal of Fuel Chemistry and Technology,Vol.31,No.2,pp.133-138,2003.

    [13]WANG S.,LIAO Y.,TAN H.“Mechanism of Rapid Pyrolysis of CelloluseⅡ.Mechanism Analysis”,Journal of Fuel Chemistry and Technology,Vol.14,No.31,pp.317-321,2003.

    [14]ZHU M.“Molecular dynamics study of thermal aging of oilimpregnated insulation paper”,Chongqing,Chongqing University,2011.

    [15]ZHANG L.,Zybin S V,van Duin A C T.“Carbon Cluster Formation During Thermal Decomposition of Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine and 1,3,5-Triamino-2,4,6-Trinitrobenzene High Explosives from Reaxff Reactive Molecular Dynamics Simulations”,The Journal of Physical Chemistry A,Vol. 113,No.40,pp.10 619-10 640,2009.

    [16]STRACHAN A,VAN DUIN A C T,CHAKRABORTY D.“Shock Waves in High-Energy Materials:The Initial Chemical Events in Nitramine RDX”,Physical Review Letters,Vol.91,No.9,pp. 10 619-10 640,2003.

    [17]GUO F.,ZHANG H,CHENG X.“Molecular Dynamic Simulations of Solid Nitromethane under High Pressures”,Journal of Theoretical and Computational Chemistry,Vol.9,No.1,pp.315-325,2010.

    [18]CHENOWETH K,DUIN A C T,PERSSON P.“Development and Application of A Reaxff Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts”,The Journal of Physical Chemistry C,Vol.112,No.37,pp.14 645-14 654,2008.

    [19]PEI J.“Chemistry of Plant Fiber”,Beijing:China Light Industry Press,2012.

    [20]RICHARDS G N.“Glycoaldehyde from Pyrolysis of Cellulose”,Journal of Analytical and Applied Pyrolysis,Vol.10,No.2,pp.251-255,1987.

    [21]JIANG Y.,YU H.,F(xiàn)U Y.“Theoretical Study on Thermodynamic Properties of Pyrolysis of Cellulose Dimer Model Compound”,Acta Chimica Sinica,Vol.71,No.12,pp.1 611-1 619,2013.

    Accepted date:2017-04-01

    絕緣紙熱裂解初期微觀機(jī)理研究

    王學(xué)磊,王 碩,朱文兵,周加斌,許 偉

    (國網(wǎng)山東省電力公司電力科學(xué)研究院,山東 濟(jì)南 250003)

    探究絕緣紙的微觀熱裂解機(jī)理,特別是初期裂解機(jī)理,對于深入認(rèn)識變壓器內(nèi)部絕緣系統(tǒng)過熱缺陷下的裂解過程以及絕緣裂化的早期評價與絕緣壽命評估具有潛在的指導(dǎo)價值。為此,采取實(shí)驗(yàn)與仿真相結(jié)合的手段,首先,對纖維素進(jìn)行了350~900℃下的氣相色譜/質(zhì)譜聯(lián)用實(shí)驗(yàn),研究表明,阿洛糖是實(shí)驗(yàn)中生成量最高的產(chǎn)物,是絕緣裂化初期表征裂化程度最重要的產(chǎn)物。為了進(jìn)一步厘清阿洛糖裂解生成機(jī)理以及后續(xù)裂解規(guī)律,對絕緣紙纖維素中的結(jié)構(gòu)單元纖維二糖的裂解進(jìn)行了高溫反應(yīng)分子動力學(xué)模擬。通過跟蹤可視化的纖維素分解過程,觀測不同時刻鍵的斷裂和生成規(guī)律,發(fā)現(xiàn)阿洛糖生成由最易發(fā)生斷裂的糖苷鍵C′4-O鍵斷裂和1-吡喃環(huán)上C1-O5鍵兩化學(xué)鍵斷裂而來。裂解小分子產(chǎn)物作為新的微觀特征量,可通過質(zhì)譜儀測得并進(jìn)行趨勢分析,在變壓器過熱故障診斷中具有潛在應(yīng)用價值。

    絕緣紙;初始裂解;反應(yīng)分子動力學(xué);微觀機(jī)理;阿洛糖

    TM211;TM853

    A

    1007-9904(2017)06-0008-09

    ei(1986)

    the B.S.M.E.and Ph.D.degree in electrical engineering from Shandong University,China,during 2005-2015.He is now working in the State Grid Shan Dong Electric Power Research Institute.His main research interest is transformer fault diagnosis and condition evaluation.

    猜你喜歡
    絕緣紙微觀機(jī)理
    隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
    納米SiO2 改性絕緣紙的機(jī)械老化與電老化性能研究
    絕緣紙耐熱助劑的制備及應(yīng)用研究
    中國造紙(2020年10期)2020-11-04 07:46:14
    絕緣紙的制備及耐熱性能
    煤層氣吸附-解吸機(jī)理再認(rèn)識
    中國煤層氣(2019年2期)2019-08-27 00:59:30
    纖維素納米晶體對變壓器絕緣紙性能的影響
    天津造紙(2019年2期)2019-01-14 21:21:06
    一種新的結(jié)合面微觀接觸模型
    霧霾機(jī)理之問
    微觀的山水
    詩選刊(2015年6期)2015-10-26 09:47:10
    微觀中國
    浙江人大(2014年8期)2014-03-20 16:21:15
    深爱激情五月婷婷| 国产精品久久久久久人妻精品电影| 我的老师免费观看完整版| 久久久久免费精品人妻一区二区| 日本a在线网址| 天美传媒精品一区二区| 性色av乱码一区二区三区2| 日日干狠狠操夜夜爽| 最近最新中文字幕大全免费视频| 日本a在线网址| 淫秽高清视频在线观看| 日韩欧美一区二区三区在线观看| 午夜福利欧美成人| 久久中文看片网| 丰满人妻一区二区三区视频av | 在线十欧美十亚洲十日本专区| 99热这里只有是精品50| 日本撒尿小便嘘嘘汇集6| 在线免费观看不下载黄p国产 | 在线观看免费午夜福利视频| 在线观看一区二区三区| 成人永久免费在线观看视频| 亚洲avbb在线观看| 一进一出好大好爽视频| 色在线成人网| 精品国产超薄肉色丝袜足j| www日本在线高清视频| 法律面前人人平等表现在哪些方面| 亚洲国产精品sss在线观看| a级一级毛片免费在线观看| 老汉色∧v一级毛片| 成年免费大片在线观看| 不卡一级毛片| av视频在线观看入口| 国产午夜福利久久久久久| 桃红色精品国产亚洲av| 国产aⅴ精品一区二区三区波| 长腿黑丝高跟| ponron亚洲| 国产高清三级在线| 亚洲精品影视一区二区三区av| 国产av在哪里看| 国产老妇女一区| 久久久久久九九精品二区国产| 此物有八面人人有两片| 午夜福利欧美成人| 国产91精品成人一区二区三区| 国产欧美日韩精品亚洲av| 久久精品国产自在天天线| 少妇人妻一区二区三区视频| 久久亚洲精品不卡| 国产精品亚洲一级av第二区| 欧美日韩瑟瑟在线播放| 婷婷精品国产亚洲av| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟妇熟女久久| 亚洲自拍偷在线| 国产精品亚洲一级av第二区| 变态另类成人亚洲欧美熟女| 夜夜看夜夜爽夜夜摸| 日韩中文字幕欧美一区二区| 在线观看66精品国产| 欧美不卡视频在线免费观看| 999久久久精品免费观看国产| 国产精品嫩草影院av在线观看 | 99久久精品国产亚洲精品| 琪琪午夜伦伦电影理论片6080| 久久婷婷人人爽人人干人人爱| 少妇丰满av| 此物有八面人人有两片| 国产老妇女一区| 国产亚洲精品av在线| 亚洲男人的天堂狠狠| 国产69精品久久久久777片| 亚洲激情在线av| 国产高潮美女av| 亚洲国产精品合色在线| 人人妻人人看人人澡| 色综合欧美亚洲国产小说| 十八禁人妻一区二区| www.999成人在线观看| 国产一区二区在线观看日韩 | 国产午夜精品久久久久久一区二区三区 | 男女视频在线观看网站免费| 97超视频在线观看视频| 亚洲国产精品999在线| av在线蜜桃| 日韩国内少妇激情av| 看黄色毛片网站| 色尼玛亚洲综合影院| 日韩有码中文字幕| 欧美黑人巨大hd| 色播亚洲综合网| 九九热线精品视视频播放| 日韩欧美一区二区三区在线观看| 一进一出抽搐gif免费好疼| 变态另类成人亚洲欧美熟女| 免费观看精品视频网站| 18+在线观看网站| 亚洲av电影不卡..在线观看| 精品午夜福利视频在线观看一区| 欧美色视频一区免费| 1024手机看黄色片| 欧美日韩福利视频一区二区| 亚洲精品粉嫩美女一区| 香蕉av资源在线| 大型黄色视频在线免费观看| 97碰自拍视频| 国产黄片美女视频| 99国产精品一区二区三区| 日本三级黄在线观看| 国产精品亚洲av一区麻豆| 俺也久久电影网| 91在线观看av| 亚洲内射少妇av| 日韩欧美 国产精品| 天堂av国产一区二区熟女人妻| 精品99又大又爽又粗少妇毛片 | 搞女人的毛片| 黑人欧美特级aaaaaa片| 亚洲一区高清亚洲精品| 日韩亚洲欧美综合| 日韩欧美精品免费久久 | 男女床上黄色一级片免费看| 一区福利在线观看| 波多野结衣高清无吗| 在线观看av片永久免费下载| 亚洲精品一区av在线观看| 动漫黄色视频在线观看| 一本综合久久免费| 亚洲国产日韩欧美精品在线观看 | 神马国产精品三级电影在线观看| 亚洲电影在线观看av| 国产探花在线观看一区二区| 色尼玛亚洲综合影院| 99久国产av精品| 亚洲人成电影免费在线| 日本撒尿小便嘘嘘汇集6| 午夜精品在线福利| 欧美xxxx黑人xx丫x性爽| 91久久精品国产一区二区成人 | 国产精华一区二区三区| 日本a在线网址| 女生性感内裤真人,穿戴方法视频| 香蕉丝袜av| 69人妻影院| 嫩草影院精品99| 欧美zozozo另类| 亚洲狠狠婷婷综合久久图片| 国产黄色小视频在线观看| 国产精品一及| 国产免费av片在线观看野外av| 国产av在哪里看| 老熟妇仑乱视频hdxx| 在线观看免费视频日本深夜| 在线a可以看的网站| 白带黄色成豆腐渣| 免费看光身美女| 天堂网av新在线| 欧美大码av| 日韩欧美在线二视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 色吧在线观看| 亚洲,欧美精品.| 久久精品国产自在天天线| 日韩中文字幕欧美一区二区| 999久久久精品免费观看国产| 一个人看视频在线观看www免费 | www.色视频.com| 久久精品国产自在天天线| 18禁黄网站禁片免费观看直播| 亚洲真实伦在线观看| 小说图片视频综合网站| 又黄又爽又免费观看的视频| 韩国av一区二区三区四区| 国产在线精品亚洲第一网站| 尤物成人国产欧美一区二区三区| 欧美中文综合在线视频| 欧美黄色淫秽网站| 夜夜夜夜夜久久久久| e午夜精品久久久久久久| 亚洲久久久久久中文字幕| 国产在线精品亚洲第一网站| 国产综合懂色| 日日夜夜操网爽| 国产精品99久久久久久久久| 午夜视频国产福利| 少妇的逼水好多| 免费av观看视频| 亚洲国产欧美网| 久久精品国产综合久久久| 亚洲国产欧美网| 老司机在亚洲福利影院| 欧美日韩精品网址| 色哟哟哟哟哟哟| 亚洲精品在线美女| 亚洲美女黄片视频| 亚洲激情在线av| 欧美激情在线99| 女警被强在线播放| 国产在视频线在精品| 美女被艹到高潮喷水动态| 亚洲一区二区三区不卡视频| 少妇丰满av| 高清日韩中文字幕在线| av国产免费在线观看| 国产91精品成人一区二区三区| 香蕉丝袜av| 亚洲欧美日韩高清专用| 人妻久久中文字幕网| 国产精品野战在线观看| 在线观看66精品国产| 日本免费一区二区三区高清不卡| 一a级毛片在线观看| 有码 亚洲区| 母亲3免费完整高清在线观看| 国产中年淑女户外野战色| 色av中文字幕| 国产av麻豆久久久久久久| 国产伦精品一区二区三区四那| 国语自产精品视频在线第100页| 亚洲专区中文字幕在线| 久久精品国产清高在天天线| 亚洲精品色激情综合| www.999成人在线观看| 国产三级黄色录像| 亚洲国产欧美人成| 99riav亚洲国产免费| 成年女人毛片免费观看观看9| 亚洲avbb在线观看| 亚洲欧美日韩高清在线视频| 搞女人的毛片| 日韩中文字幕欧美一区二区| 国产高清视频在线播放一区| 精品久久久久久,| 国产免费av片在线观看野外av| 久久精品影院6| 日韩欧美一区二区三区在线观看| 少妇的逼好多水| 岛国在线免费视频观看| 久久九九热精品免费| 99久国产av精品| 级片在线观看| 91在线观看av| 又紧又爽又黄一区二区| 亚洲乱码一区二区免费版| 91av网一区二区| 哪里可以看免费的av片| av视频在线观看入口| 99久久精品国产亚洲精品| 日本一本二区三区精品| 老司机深夜福利视频在线观看| 国产精品影院久久| 国产高清视频在线观看网站| 亚洲五月婷婷丁香| 最新在线观看一区二区三区| aaaaa片日本免费| 免费看日本二区| 国内久久婷婷六月综合欲色啪| 91在线观看av| 成人特级黄色片久久久久久久| 婷婷六月久久综合丁香| 国产国拍精品亚洲av在线观看 | 最近最新免费中文字幕在线| 国产69精品久久久久777片| 精品久久久久久久久久免费视频| 老司机在亚洲福利影院| 91av网一区二区| 国产精品三级大全| 久久久久九九精品影院| 午夜福利成人在线免费观看| 天堂av国产一区二区熟女人妻| 每晚都被弄得嗷嗷叫到高潮| 亚洲av成人av| 亚洲国产精品成人综合色| 首页视频小说图片口味搜索| 啦啦啦韩国在线观看视频| 在线观看免费视频日本深夜| 在线观看一区二区三区| 国产精品三级大全| 亚洲av免费高清在线观看| 99久久成人亚洲精品观看| 757午夜福利合集在线观看| 91字幕亚洲| 亚洲 欧美 日韩 在线 免费| 1024手机看黄色片| 精品欧美国产一区二区三| 夜夜夜夜夜久久久久| 国产成人欧美在线观看| 校园春色视频在线观看| www.熟女人妻精品国产| 老司机福利观看| 噜噜噜噜噜久久久久久91| 男女午夜视频在线观看| 亚洲欧美日韩无卡精品| 国产精品免费一区二区三区在线| 久久精品影院6| 国产三级黄色录像| 一个人免费在线观看电影| 久久香蕉国产精品| 男人和女人高潮做爰伦理| 久久久久精品国产欧美久久久| 精品久久久久久成人av| 国产在线精品亚洲第一网站| 亚洲成av人片在线播放无| 欧美最新免费一区二区三区 | 久久欧美精品欧美久久欧美| 亚洲精品亚洲一区二区| 日本免费一区二区三区高清不卡| 少妇人妻一区二区三区视频| 亚洲国产欧美人成| 欧美黑人巨大hd| 成人18禁在线播放| 看片在线看免费视频| 午夜日韩欧美国产| h日本视频在线播放| 成年女人看的毛片在线观看| 欧美乱码精品一区二区三区| 中国美女看黄片| 久久久久九九精品影院| 熟女少妇亚洲综合色aaa.| 老汉色∧v一级毛片| 国产精品三级大全| 国产亚洲欧美98| 9191精品国产免费久久| 亚洲成人久久性| 成人特级黄色片久久久久久久| 最好的美女福利视频网| 精品电影一区二区在线| 一区福利在线观看| 日韩欧美免费精品| 在线观看免费午夜福利视频| 午夜久久久久精精品| 香蕉久久夜色| 久久久久亚洲av毛片大全| 亚洲性夜色夜夜综合| 欧美性感艳星| 成人午夜高清在线视频| 亚洲七黄色美女视频| 91麻豆av在线| 天堂网av新在线| 在线观看免费视频日本深夜| 久久这里只有精品中国| 国产黄a三级三级三级人| 日本一二三区视频观看| 国产av麻豆久久久久久久| 成人国产综合亚洲| 亚洲,欧美精品.| 久久久久国内视频| 真人一进一出gif抽搐免费| 亚洲精品乱码久久久v下载方式 | 免费一级毛片在线播放高清视频| 久久精品亚洲精品国产色婷小说| 成人特级黄色片久久久久久久| 夜夜看夜夜爽夜夜摸| 在线观看免费视频日本深夜| 午夜免费成人在线视频| 国产欧美日韩一区二区三| АⅤ资源中文在线天堂| 亚洲精品粉嫩美女一区| 国产一区二区三区在线臀色熟女| 桃红色精品国产亚洲av| 久久草成人影院| 两个人看的免费小视频| 亚洲人成网站高清观看| 国产精品亚洲一级av第二区| 午夜免费观看网址| 男女之事视频高清在线观看| 免费观看精品视频网站| 国产亚洲精品av在线| 小蜜桃在线观看免费完整版高清| 波野结衣二区三区在线 | 最好的美女福利视频网| 久久久久久久精品吃奶| 一本久久中文字幕| 日日摸夜夜添夜夜添小说| 18+在线观看网站| 在线观看av片永久免费下载| 久久精品影院6| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 三级男女做爰猛烈吃奶摸视频| 亚洲自拍偷在线| 国产精品亚洲一级av第二区| 亚洲av成人av| 欧美乱妇无乱码| 一本久久中文字幕| 国产探花在线观看一区二区| 中文资源天堂在线| 精品福利观看| 999久久久精品免费观看国产| 久久精品国产清高在天天线| av欧美777| 俄罗斯特黄特色一大片| 99热6这里只有精品| 成熟少妇高潮喷水视频| 免费av观看视频| 精品国产超薄肉色丝袜足j| 亚洲熟妇中文字幕五十中出| 久久精品国产自在天天线| 成人亚洲精品av一区二区| 久久九九热精品免费| 桃色一区二区三区在线观看| 天堂影院成人在线观看| 国产色爽女视频免费观看| 亚洲av电影不卡..在线观看| 哪里可以看免费的av片| 欧美性猛交╳xxx乱大交人| 综合色av麻豆| 少妇人妻精品综合一区二区 | 嫩草影院精品99| 成年免费大片在线观看| 搞女人的毛片| 国产精品98久久久久久宅男小说| 村上凉子中文字幕在线| 啦啦啦免费观看视频1| АⅤ资源中文在线天堂| 国内毛片毛片毛片毛片毛片| 国产在视频线在精品| 每晚都被弄得嗷嗷叫到高潮| 国产私拍福利视频在线观看| 亚洲五月天丁香| 成人18禁在线播放| 三级男女做爰猛烈吃奶摸视频| 他把我摸到了高潮在线观看| 一个人免费在线观看电影| x7x7x7水蜜桃| 在线天堂最新版资源| 亚洲国产欧美人成| 国产高清三级在线| 一区二区三区高清视频在线| 亚洲黑人精品在线| 国产成人a区在线观看| 精华霜和精华液先用哪个| 高清毛片免费观看视频网站| 又黄又粗又硬又大视频| 亚洲一区二区三区色噜噜| 美女高潮喷水抽搐中文字幕| 夜夜夜夜夜久久久久| 亚洲av电影不卡..在线观看| 日本成人三级电影网站| 久久亚洲精品不卡| 日韩高清综合在线| 色综合欧美亚洲国产小说| 在线观看66精品国产| 亚洲av免费在线观看| 午夜精品久久久久久毛片777| 99热精品在线国产| 草草在线视频免费看| 欧美黑人巨大hd| 亚洲一区二区三区不卡视频| 97碰自拍视频| 午夜免费成人在线视频| 亚洲国产欧美人成| 亚洲成人久久爱视频| 欧美大码av| 成人av一区二区三区在线看| 亚洲乱码一区二区免费版| 欧美成人性av电影在线观看| 美女 人体艺术 gogo| 怎么达到女性高潮| 我要搜黄色片| 日本a在线网址| 久9热在线精品视频| 狂野欧美白嫩少妇大欣赏| 欧美国产日韩亚洲一区| 亚洲欧美日韩东京热| 老熟妇仑乱视频hdxx| 美女被艹到高潮喷水动态| 国产激情偷乱视频一区二区| 日日夜夜操网爽| 日本熟妇午夜| 国产黄片美女视频| 国产av麻豆久久久久久久| 天天一区二区日本电影三级| 欧美日韩黄片免| 制服丝袜大香蕉在线| 三级毛片av免费| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 午夜福利成人在线免费观看| 亚洲精品在线美女| 俄罗斯特黄特色一大片| 欧美日韩亚洲国产一区二区在线观看| 三级国产精品欧美在线观看| 草草在线视频免费看| 午夜精品在线福利| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 黄色片一级片一级黄色片| 免费在线观看日本一区| av天堂中文字幕网| 搡女人真爽免费视频火全软件 | 久久精品91蜜桃| 人妻夜夜爽99麻豆av| 3wmmmm亚洲av在线观看| 欧美日韩乱码在线| 男人和女人高潮做爰伦理| 久久久久性生活片| 亚洲天堂国产精品一区在线| 黄色日韩在线| 成年女人看的毛片在线观看| 99久久久亚洲精品蜜臀av| 久久欧美精品欧美久久欧美| 国产伦精品一区二区三区视频9 | 五月伊人婷婷丁香| 国产精品久久久久久人妻精品电影| 久久久精品大字幕| 国产爱豆传媒在线观看| 国产私拍福利视频在线观看| 99精品久久久久人妻精品| 法律面前人人平等表现在哪些方面| 亚洲午夜理论影院| 神马国产精品三级电影在线观看| 亚洲av免费在线观看| 午夜老司机福利剧场| 成人亚洲精品av一区二区| 99精品在免费线老司机午夜| 久久久久免费精品人妻一区二区| 精品国产亚洲在线| 国产真人三级小视频在线观看| 综合色av麻豆| 在线免费观看不下载黄p国产 | 日本 av在线| 亚洲一区高清亚洲精品| 麻豆一二三区av精品| 日本免费一区二区三区高清不卡| 久久久精品欧美日韩精品| 美女cb高潮喷水在线观看| 午夜福利成人在线免费观看| 在线观看66精品国产| 91久久精品电影网| 午夜福利在线观看免费完整高清在 | 搡老熟女国产l中国老女人| 国产精品亚洲一级av第二区| 亚洲成人精品中文字幕电影| 两个人视频免费观看高清| 99热这里只有精品一区| 日韩有码中文字幕| a级一级毛片免费在线观看| 国产免费一级a男人的天堂| 亚洲美女黄片视频| 最近最新中文字幕大全免费视频| 久久精品国产99精品国产亚洲性色| 怎么达到女性高潮| 99国产极品粉嫩在线观看| 欧美zozozo另类| 欧美+日韩+精品| 亚洲成人精品中文字幕电影| 制服丝袜大香蕉在线| 欧美高清成人免费视频www| 婷婷精品国产亚洲av在线| 91在线精品国自产拍蜜月 | 高清在线国产一区| 久久精品人妻少妇| 啪啪无遮挡十八禁网站| 免费一级毛片在线播放高清视频| 757午夜福利合集在线观看| 久久中文看片网| 日韩av在线大香蕉| 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 国模一区二区三区四区视频| 99久久99久久久精品蜜桃| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 婷婷亚洲欧美| 制服丝袜大香蕉在线| 日本熟妇午夜| 欧美黄色片欧美黄色片| 国产成人av教育| 国内精品美女久久久久久| 国产一区二区亚洲精品在线观看| 久久久久久久亚洲中文字幕 | 黄片小视频在线播放| 美女 人体艺术 gogo| 欧美绝顶高潮抽搐喷水| 在线观看一区二区三区| 一本一本综合久久| 欧美精品啪啪一区二区三区| 久久久精品欧美日韩精品| 法律面前人人平等表现在哪些方面| 欧美乱码精品一区二区三区| 少妇的逼好多水| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩欧美三级三区| 国产69精品久久久久777片| 悠悠久久av| 非洲黑人性xxxx精品又粗又长| 国产午夜福利久久久久久| 成人性生交大片免费视频hd| 亚洲成av人片在线播放无| 麻豆国产97在线/欧美| 国产精品久久电影中文字幕| 搡老岳熟女国产| 成年人黄色毛片网站| 夜夜看夜夜爽夜夜摸| 性色av乱码一区二区三区2| 亚洲国产欧美网| 黄色女人牲交| 成人18禁在线播放| 久久精品国产亚洲av香蕉五月| 免费看日本二区| 搡老岳熟女国产| 老司机午夜福利在线观看视频| 午夜福利18| 亚洲精品乱码久久久v下载方式 | 欧美成人免费av一区二区三区| 久久久久久久久大av| 中文字幕久久专区| 乱人视频在线观看| 99久久九九国产精品国产免费| 亚洲七黄色美女视频| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频|