• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analyses of Multiple Factors Affecting Residents′ Walking to rail Transit Stations in Los Angeles Metropolitan, United States

    2017-07-18 11:15:52XUJunping
    關(guān)鍵詞:大都市步行站點(diǎn)

    XU Junping

    ( College of Architecture, Huaqiao University, Xiamen 361021, China )

    Analyses of Multiple Factors Affecting Residents′ Walking to rail Transit Stations in Los Angeles Metropolitan, United States

    XU Junping

    ( College of Architecture, Huaqiao University, Xiamen 361021, China )

    Taking Los Angeles Metropolitan, United States as the case study, depending on the data from the regional household travel survey conducted during 2011-2013 by the Southern California Association of Governments, the logistic regression models is used to find significant factors that affect residents′ walking to the rail transit stations. Results show that the distance to stations, the continuity of sidewalks, density of street lights, density of street trees, station parking and land use mix are the significant environment factors; meanwhile, the travel destinations, household income, the number of household vehicles and ethnicity are also significantly factors influencing residents′ walking to rail transit stations.

    walking; rail transit oriented development; metropolitan; multiple factors analysis; logistic regression models; Los Angeles City

    Car dependence can have detrimental effects on the environment and public health, such as increasing green house gas (GHG) emissions, traffic congestion, oil price vulnerability, and physical inactivity[1-2]. Reliant on public transit is one of the success policies toreduce car travel and car dependence[3]. Public transit is generallynot a point-to-point mode of travel, which may incorporate regular physical activities into daily life. A large body of cross-sectional studies found that transit users have higher levels of walking compared to those who do not use transit[4-7]. Numerous studies have found that people are more likely to walk in the neighborhoods with certain environmental characteris tics, especially for transportation purpose[6-9]. Walkable neighborhoods are often characterized by medium-to-high population density, a mix of land uses, high connectivity, and presence of pedestrian in frastructure[10-14].

    With more concerns on the transit orient development (TOD), walking to transit also get more attention than before[15-19]. There were very few researches of examining walking to transit, and most of them have involved the similar conceptual models as other travel behavior research[20-23]. To fill in the research gap, this study would introduce groups of predictors, including socioeconomic factors of station areas, built environment factors of station areas and socio-demographic factors of individuals, as well as other factors to predict walking to transit.Meanwhile, not as most previous studies using subjective recall questionnaires, this study employed the travel data that were collected through time diaries, which could avoid recall bias and social-desirability bias[24-25]. The results from this study would provide meaningful suggestions for future TOD practice in metropolitan areas not only limited in the North America, but for worldwide.

    Fig.1 Metro rail system in Los Angeles City圖1 洛杉磯市地鐵軌道系統(tǒng)

    1 Research Design

    1.1 Study Area

    The study area is the city of Los Angeles, which is the most populous city in the state of California and the second largest city in the United States with a population of 3 792 621 from the 2010 census[26]. Based on the number of daily riders, the city′s subway system is the ninth busiest in the United States and its light rail system is the country′s second busiest[22]. The rail system includes the subway lines (red and purple) and the light rail lines (gold, blue, expo, and green)[22](Figure 1).

    As one of the most economically and ethnically diverse regions in the country, Los Angeles′s transit station areas encompass a wide range of demographic, physical, and economic characteristics[16]. The transit network of Los Angeles City extends to various neighborhoods with different household income levels, different rates of car ownership and diverse ethnic populations[16]. Table 1 illustrates the demographic characteristics among regions, cities and transit station areas (half-mile buffers of stations). (Source:CenterforTransit-OrientedDevelopment, 2011). It indicates that households with lower incomes and lower rates of car ownership tend to live closer to transit stations and take more transit trips or other non-motorized trips than other households.

    Tab.1 Regional, city and station area demographic characteristics of Los Angeles City in 2010表1 2010年洛杉磯市的區(qū)域、城市和車(chē)站地區(qū)的人口特征

    1.2 Unit of Analysis and Data Source

    Most previous researches used 400 meters (0.25 miles) or 800 meters (0.5 miles) as the walking distance to rapid transit stations, which means that the unit of analysis is often centered by the station with 400 meters or 800 meters as the radius[8,21,23,27]. Based on the literature review and the characteristics of data source, this research defines 400 meters (0.25 mile) radius buffer centered by each station as the spatial unit of analysis.

    The socioeconomic variables and socio-demographic variables were obtained through regional household travel survey conducted from 2011 to 2013 by the Southern California Association of Governments (SCAG) survey and census data. The other variable was achieved through SCAG survey. The built environment variables were all objective ones and measured using geography information system (GIS), which were gotten through multiple data sources, including Los Angeles County GIS portal, Los Angeles County sheriff, City of Los Angeles Department of Transportation (LADOT), and U.S. Geological Survey (USGS). The network analyst tool would be employed to measure the connectivity of streets; the proximity tool (buffer) and extract tool (clip) extract the attributes in 400 meter/quarter mile buffers; and the summarize function in the attribute table get the results we need.

    1.3 Research Method

    There are four groups of predictors in the analysis, including built environment attributes (both continuous and categorical variables), individuals′ socio-demographic attributes (both continuous and categorical variables), socioeconomic attributes of station areas (continuous variables) and other variable (travel destination) (categorical variable). Here, one group of predictors was added in the new model in a stepwise approach and finally four logistic regression models were produced. The models (1), (2), (3) and (4) would be stated as follow.

    (1)

    (2)

    (3)

    (4)

    In here,Nmean walking to transit,Ameans other variable (travel destination),Bmeans built environment variables,Cmeans socioeconomic variables of units of spatial analysis,Smeans socio-demographic variables of individuals,μ=regression error term.

    The first model only has other variable, the second model has both other variable and socioeconomic attributes of station areas, the third one has three groups of predictors while adding the socio-demographic factors of individuals in, and the final model adds the group of built environment predictors. In the final model, walking to transit is regressed on four groups of independent variables.

    2 Data Analysis and Results

    2.1 Descriptive Analysis

    Total number of 745 individuals′ records in the Southern California Association of Governments (SCAG) household travel survey are completed and valid for this research and total 55 transit stations are involved for the records above. Descriptive analysis is performed for the spatial unit of analysis (400 meters distance from the rail stations). Mean and standard deviation (SD) are calculated for the 20 independent variables and they are displayed in Table 2. In table 2, “(c)” means categorical variables,N=745 is total number of individuals,N=55 is transit stations involved.

    2.2 Results

    To determine the significant factors that impact the walking behavior to transit stations, four binary logistic regression models were employed to do the analysis (see table 3). In table 3, “(c)”

    Tab.2 Descriptive statistics of independent variables表2 自變量的描述性統(tǒng)計(jì)表

    means categorical variables, OR representing odd ratio, Coeff. representing coefficient. The first model only has travel destination as the predictor, which is significant to predict the walking behavior to stations. Traveling to utilitarian destinations decreased the likelihood of walking to stations by

    0.260 times compared with traveling to recreational destinations. Traveling destination maintained statistical significance in all of the four models.

    The socioeconomic variables of station areas include black percentage, Hispanic percentage and median household income. While adding the socioeconomic variables of station areas in the second model, none of them were significant. The median household income variable turned into significance in model 3 and one level increased in the median household income would increase the likelihood of walking to stations by 1.313 times. It became more significant in the final model, with a one level increasing the median household income increasing the likelihood of walking to stations by 1.636 times. However, the percentage of black and percentage of Hispanic was not significant in the following models.

    Tab.3 Results of four logistic regression models predicting walking to transit stations表3 4個(gè)邏輯回歸模型預(yù)測(cè)步行到站點(diǎn)的結(jié)果

    *:P<0.05;**:P<0.01;***:P<0.001.

    In model 3, vehicle number of household, household income, and ethnicity are the significant indicators to impact walking behavior to stations. Here the ethnicity was a dummy variable (white=1).

    While one vehicle increased in the household, the likelihood of the individual walking to stations decreased by 0.714 times. The availability of cars in household had been tested as an important variable for encouraging driving and decreasing walking in early studies.

    There are total six significant built environment factors to predict walking to stations. The distance and percentage of sidewalk completeness were the two most significant ones. The distance is the spatial distance from the departure origin to the station destination and the unit in this analysis is 100 feet. With one hundred feet increasing distance, it decreased the likelihood of walking to stations by 0.922 times. While one percentage increased in the sidewalk completeness, the likelihood of walking to stations increased by 1.020 times. Consistent with previous findings, the availability of sidewalks to stations decided the possibility of walking to stations.

    The street lights density, trees coverage density, transit station parking and land use mix were other four built environment factors that impact the walking to stations significantly. Street lights are essential street facilities for the safety of walkers at night and trees shade is essential for walking in summer. While adding one street light per mile, the likelihood of walking to stations could increase by 1.028 times. While adding one street tree per mile, the likelihood of walking to stations could increase by 1.007 times. Land use mix was reported as a critical indicator in a great number of previous studies for encouraging walking, the same findings in this study. Every 0.1 increase in the land use mix index (0-1), it increased the likelihood of walking to stations by 1.145 times. Transit station parking was indicated as a significant negative indicator in early researches and it is also a negative significant factor in this analysis. The stations with parking would decrease the likelihood of walking to stations by

    0.588 times compared with the stations without parking.

    Generally, under model summary, -2 log likelihood statistic measures how poorly the model predicts the decisions, the smaller the value the better the model. In model 1, -2 log likelihood statistics is 942.61, and it decreased in model 2 (916.402) after adding socioeconomic factors of station areas. It continually decreased in model 3 (859.704) while adding socio-demographic variables of individuals. When added the built environment attributes in model 4, the -2 Log Likelihood decreased to 751.809. It is obvious that the models are continually improving the predictive power for the dependent variable.

    The maximum value of NagelkerkeR-square is equal to 1.0. Overall, high values are better than low values, higher values suggesting that the model fits increasingly well. In model 1, NagelkerkeR-square is 0.081, which means that 8.1% of the variation in dependent variable (walking to stations) could be explained by travel destination. In model 2, NagelkerkeR-square is increasing to 0.125, which means that after adding in socioeconomic predictors of station areas, the variations of dependent variable (walking to stations) could be explained 12.5% by the model 2 and increased 4.4% compared with model 1. The NagelkerkeR-square in model 3 is 0.216, which explained 21.6% of the variations of dependent variable (walking to stations) after adding socio-demographic factors of individuals and increased 9.1% compared with model 2. In the final model (model 4), NagelkerkeR-square is 0.370. The final model incorporated built environment predictors in and explained 37% variation of the dependent variable, which increased 15.4% compared with model 3.

    3 Discussions and Conclusions

    3.1 Limitations of This Study

    The survey population for the present survey was households with telephones in the Southern California Association of Governments (SCAG) region; however, Census 2010 data indicates that

    1.6% of occupied housing units in the SCAG region are without telephones. This survey has conducted through phone, thus some potential respondents were ignored. Meanwhile,the overall response rate was low, only 25 percent, which is primarily due to the complex of interview processes. An important determinant of data quality is the accuracy of the reported trips. To enhance reporting accuracy,this survey relied on diary instruments in which respondents are asked to record each trip for a specific time period (e.g., 24-hours, 48-hours), however, the accuracy of the records are case by case. The NagelkerkeR-square of final model is 0.37, which means that the model can explain 37% variation of the dependent variable. The value is not so high due to other reasons, such as self-selection of residents, which do not matter if they have walkable environment but their preferences.

    3.2 Conclusion

    The findings of this study indicate that the built environment of station areas has significantly impact on residents′ walking to transit. Improving the pedestrian environment of station areas could increase the likelihood of walking to transit, such as increasing sidewalk completeness to make walking possible, adding more street lights for walking safely at night, adding more street trees for walking comfortably in summer, increasing mixed land use for convenient shopping and decreasing parking lots around stations to avoid driving. These findings would be the potential suggestions for policy makers to enhance transit oriented development in future. This research highlights not only built environment indicators, but emphasizes that some variables of socioeconomic characteristics of station areas and socio-demographic variables of individuals also influence walking to transit. It is interesting to find that the households with higher income would have less opportunity walking to stations due to owning the cars, however, the station areas with higher average household income would have more walkable environment. Although the households with high income intend to live in a livable neighborhood, most of them still prefer to using a car instead of walking. Thus, self-selection is very important for individuals if they can afford cars, and the walkable environment is not sufficient for them to choose walking to transit. There need more policies to encourage walking plus taking transit, such as economic incentives.

    [1] FRANK L D,SCHMID T L,SALLIS JF,etal.Linking objectively measured physical activity with objectively measured urban form: Findings from SMARTRAQ[J].American Journal of Preventive Medicine,2005,28(Suppl 2):117-125.

    [2] SALLIS J F.Measuring physical activity environments: A brief history[J].American Journal of Preventive Medicine,2009,36(4):S86-S92.

    [3] SALLIS J F,F(xiàn)RANK L D,SAELENS B E,etal.Active transportation and physical activity: Opportunities for collaboration on transportation and public opportunities health research[J].Transportation Research Part A: Policy and Practice,2004,38(4):249-268.

    [4] BOARNET M,CRANE R.Travel by design: The influence of urban form on travel[M].New York: Oxford University Press,2001.

    [5] BROWN B B,WERNER C M.A new rail stop-tracking moderate physical activity bouts and ridership[J].American Journal of Preventive Medicine,2007,33(4):306-309.

    [6] CERVERO R B.Walk-and-ride: Factors influencing pedestrian access to transit[J].Journal of Public Transportation,2001,3(4):1-23.

    [7] MACDONALD J M,STOKES R J,COHEN D A,etal.The effect of light rail transit on body mass index and physical activity[J].American Journal of Preventive Medicine,2010,39(2):105-112.

    [8] DURAND C P,TANG X,GABRIEL K P,etal.The association of trip distance with walking to reach public transit: Data from the California household travel survey[J].Journal of Transport and Health,2016,3(2):154-160.

    [9] EWING R,CERVERO R.Travel and the built environment: A synthesis[J].Transportation Research Record,2001,1780(1):87-114.

    [10] EWING R,CERVERO R.Travel and the built environment[J].J Am Plan Assoc,2010,76(3):265-294.

    [11] FRANK L D,ENGELKE PO.The built environment and human activity patterns: Exploring the impacts of urban form on public health[J].Journal of Planning Literature,2001,16(2):202-218.

    [12] HANDY S L,BOARNET M G,EWING R,etal.How the built environment affects physical activity: Views from urban planning[J].American Journal of Preventive Medicine,2002,23(2):64-73.

    [13] MOUDON A V,LEE C.Walking and bicycling: An evaluation of environmental audit instruments[J].American Journal of Health Promotion,2003,18(1):21-37.

    [14] SAELENS B E,HANDY S L.Built environment correlates of walking: A review[J].Medicine and Science in Sports and Exercise,2008,40(Suppl 7):S550-S566.

    [15] BOARNET M,SARMIENTO S.Can land-use policy really affect travel behavior: A study of the link between non-work travel and land-use characteristics[J].Urban Studies,1998,35(7):1155-1169.

    [16] LOO B P Y,CHEN C,CHAN E T H.Rail-based transit-oriented development: Lessons from New York City and Hong Kong[J].Landscape and Urban Planning,2010,97(3):202-212.

    [17] FRANK L D,SALLIS J F,SAELENS B E,etal.The development of a walkability index: Application to the neighborhood quality of life study[J].British Journal of Sports Medicine,2010,44(13):924-933.

    [18] MILLWARD H,SPINNEY J,SCOTT D.Active-transport walking behavior: Destinations, durations, distances[J].J Transp Geogr,2013,28:101-110.

    [19] SAELENS B E,SALLIS J F,BLACK J B,etal.Neighborhood-based differences in physical activity: An environment scale evaluation[J].American Journal of Public Health,2003,93(9):1552-1558.

    [20] HOBACK A,ANDERSON S,DUTTA U.True walking distance to transit[J].Transportation Planning and Technology,2008,31(6):681-692.

    [21] LACHAPELLE U,NOLAND R B.Does the commute mode affect the frequency of walking behavior: The public transit link[J].Transport Policy,2012,21(4):26-36.

    [22] WIKIPEDIA.Los Angeles County metropolitan transportation authority[EB/OL].(2014-03-12)[2016-02-12].https://en.wikipedia.org/wiki/Los_Angeles_County_Metropolitan_Transportation_Authority.

    [23] PARK S.Defining, measuring, and evaluating path walkability, and testing its impacts on transit users′ mode choice and walking distance to the station[D].[S.l.]:University of California,2008.

    [24] FRANK L D,BRADLEY M,KAVAGE S,etal.Urban form, travel time, and cost relationships with tour complexity and mode choice[J].Transportation,2008,35(1):37-54.

    [25] MARSHALL J D,BRAUER M,FRANK L D.Healthy neighborhoods: Walkability and air pollution[J].Environ Health Perspect,2009,117(11):1752-1759.

    [26] WIKIPEDIA.2010 United States census[EB/OL].(2011-03-12)[2014-09-23].https://en.wikipedia.org/wiki/2010_United_States_Census.

    [27] MAGHELAL P K.Healthy transportation, healthy communities: Developing objective measures of built-environment using GIS and testing significance of pedestrian variables on walking to transit[D].[S.l.]:Texas A and M University,2007.

    (責(zé)任編輯: 黃仲一 英文審校:方德平)

    2017-04-20

    許俊萍(1980-),女,高級(jí)教員,博士,主要從事低碳城市的研究.E-mail:ggxxxu@126.com.

    國(guó)家自然科學(xué)基金青年基金資助項(xiàng)目(51508208); 福建省自然科學(xué)基金面上資助項(xiàng)目(2015J01637)

    美國(guó)洛杉磯大都市影響居民步行到軌道交通站點(diǎn)的多因素分析(英文)

    許俊萍

    (華僑大學(xué) 建筑學(xué)院, 福建 廈門(mén) 361021)

    以美國(guó)加利福尼亞州的洛杉磯市為例,根據(jù)2011-2013年美國(guó)南加州政府聯(lián)盟提供的居民出行數(shù)據(jù),應(yīng)用邏輯回歸模型尋找影響居民步行到快速公交站點(diǎn)的顯著因子.結(jié)果表明:到達(dá)站點(diǎn)的距離和人行道的連續(xù)性、路燈密度、行道樹(shù)密度、站點(diǎn)周邊停車(chē)和土地混合度是顯著影響的居民步行到站點(diǎn)的環(huán)境因子;而出行目的地、家庭收入、家庭擁有私家車(chē)數(shù)量,以及種族等其他因子也顯著影響到居民是否步行到站點(diǎn).

    步行; 公交導(dǎo)向型發(fā)展; 大都市; 多因素分析; 邏輯回歸模型; 洛杉磯市

    10.11830/ISSN.1000-5013.201704009

    U 491.17 Document Code: A Article Number: 1000-5013(2017)04-0489-08

    猜你喜歡
    大都市步行站點(diǎn)
    Battle for Bohemia
    BATTLE FOR BOHEMIA
    2020國(guó)際大都市數(shù)學(xué)奧林匹克
    步行回家
    攀山擅離步行道自拍,不幸墜落身亡誰(shuí)擔(dān)責(zé)?
    大都市
    基于Web站點(diǎn)的SQL注入分析與防范
    電子制作(2019年14期)2019-08-20 05:43:42
    2017~2018年冬季西北地區(qū)某站點(diǎn)流感流行特征分析
    從步行到奔跑
    首屆歐洲自行車(chē)共享站點(diǎn)協(xié)商會(huì)召開(kāi)
    日韩免费av在线播放| 97碰自拍视频| 黄色女人牲交| 久久亚洲真实| 日本在线视频免费播放| 757午夜福利合集在线观看| ponron亚洲| 国产欧美日韩一区二区三| 亚洲av第一区精品v没综合| 日韩有码中文字幕| 国产av麻豆久久久久久久| 国语自产精品视频在线第100页| 又粗又爽又猛毛片免费看| 97超视频在线观看视频| 亚洲成av人片免费观看| 精品一区二区三区av网在线观看| 精品国产亚洲在线| 一二三四社区在线视频社区8| 日韩av在线大香蕉| 99热这里只有精品一区| 免费无遮挡裸体视频| 美女大奶头视频| 舔av片在线| bbb黄色大片| 国产 一区 欧美 日韩| 99久久九九国产精品国产免费| 亚洲美女黄片视频| 一个人免费在线观看电影| 老司机午夜十八禁免费视频| 亚洲国产日韩欧美精品在线观看 | 欧美日韩乱码在线| xxxwww97欧美| 欧美乱码精品一区二区三区| 亚洲自拍偷在线| 90打野战视频偷拍视频| 亚洲人成伊人成综合网2020| 午夜免费男女啪啪视频观看 | 三级毛片av免费| 国产在线精品亚洲第一网站| 日韩中文字幕欧美一区二区| 岛国视频午夜一区免费看| 国产精品久久视频播放| 久久久久精品国产欧美久久久| 欧美日韩精品网址| 国产精品香港三级国产av潘金莲| 亚洲av第一区精品v没综合| 性欧美人与动物交配| 久久精品国产综合久久久| 成人国产一区最新在线观看| 久久久精品欧美日韩精品| 狂野欧美白嫩少妇大欣赏| 国产av麻豆久久久久久久| 久久久久久人人人人人| 午夜福利免费观看在线| 午夜激情福利司机影院| 色综合婷婷激情| 91字幕亚洲| 亚洲精品粉嫩美女一区| 国产中年淑女户外野战色| 免费人成在线观看视频色| 1000部很黄的大片| 嫩草影院精品99| 少妇人妻精品综合一区二区 | 中文资源天堂在线| 免费看a级黄色片| 国产精品自产拍在线观看55亚洲| 亚洲精品456在线播放app | 国产高清三级在线| 午夜福利在线观看免费完整高清在 | 欧美av亚洲av综合av国产av| 亚洲欧美日韩卡通动漫| 一本精品99久久精品77| 国产精品综合久久久久久久免费| 一个人免费在线观看的高清视频| 中出人妻视频一区二区| 欧美激情久久久久久爽电影| 高清日韩中文字幕在线| 一级作爱视频免费观看| 在线播放无遮挡| 2021天堂中文幕一二区在线观| 欧美性感艳星| 一卡2卡三卡四卡精品乱码亚洲| 免费无遮挡裸体视频| 久久精品国产亚洲av香蕉五月| 亚洲黑人精品在线| 真实男女啪啪啪动态图| 日本免费一区二区三区高清不卡| 久久久久久国产a免费观看| bbb黄色大片| 人人妻人人看人人澡| 嫩草影视91久久| 久久久久久大精品| 亚洲欧美激情综合另类| 老司机在亚洲福利影院| www.999成人在线观看| 国模一区二区三区四区视频| 一级毛片高清免费大全| 丁香欧美五月| 免费人成视频x8x8入口观看| 国产精品久久电影中文字幕| 午夜福利在线观看免费完整高清在 | 国产高清视频在线观看网站| 99久久精品国产亚洲精品| 亚洲国产日韩欧美精品在线观看 | 级片在线观看| 悠悠久久av| 国产精品日韩av在线免费观看| 美女 人体艺术 gogo| 99久久99久久久精品蜜桃| 国产男靠女视频免费网站| 国产伦人伦偷精品视频| 日韩欧美国产在线观看| 国产三级中文精品| 欧美在线一区亚洲| 国产色婷婷99| 国产成人系列免费观看| 18禁裸乳无遮挡免费网站照片| 在线a可以看的网站| 波多野结衣高清无吗| 极品教师在线免费播放| 欧美国产日韩亚洲一区| 国产极品精品免费视频能看的| 九色成人免费人妻av| x7x7x7水蜜桃| 欧美日韩精品网址| 国产精品免费一区二区三区在线| 少妇人妻精品综合一区二区 | 亚洲最大成人中文| 丰满的人妻完整版| 欧美乱妇无乱码| 少妇的逼水好多| 免费看a级黄色片| 亚洲欧美日韩卡通动漫| 免费人成在线观看视频色| 国产精品影院久久| 久久久久国内视频| 亚洲国产日韩欧美精品在线观看 | 黑人欧美特级aaaaaa片| 婷婷精品国产亚洲av在线| 我要搜黄色片| 精品人妻一区二区三区麻豆 | av中文乱码字幕在线| 欧美又色又爽又黄视频| 国产精品av视频在线免费观看| 麻豆国产97在线/欧美| 国内毛片毛片毛片毛片毛片| tocl精华| 国产成人啪精品午夜网站| 国产亚洲精品av在线| 麻豆久久精品国产亚洲av| 久久亚洲精品不卡| 一个人免费在线观看的高清视频| 好男人在线观看高清免费视频| 成人18禁在线播放| 亚洲国产精品合色在线| 久久精品人妻少妇| 男女床上黄色一级片免费看| 亚洲精华国产精华精| 亚洲不卡免费看| 不卡一级毛片| 日韩欧美免费精品| 欧美国产日韩亚洲一区| 婷婷精品国产亚洲av在线| 一夜夜www| 欧美中文综合在线视频| 成人特级黄色片久久久久久久| 免费高清视频大片| av片东京热男人的天堂| 色老头精品视频在线观看| 最新中文字幕久久久久| 夜夜爽天天搞| 中文字幕高清在线视频| 91麻豆精品激情在线观看国产| 欧美色视频一区免费| 亚洲无线观看免费| 亚洲精品美女久久久久99蜜臀| av女优亚洲男人天堂| 无限看片的www在线观看| 国产免费av片在线观看野外av| 精品熟女少妇八av免费久了| 国产精品99久久99久久久不卡| АⅤ资源中文在线天堂| 日本黄色片子视频| 老汉色∧v一级毛片| 叶爱在线成人免费视频播放| 国产色婷婷99| 男女做爰动态图高潮gif福利片| 久久午夜亚洲精品久久| 久久久久国产精品人妻aⅴ院| 亚洲av免费在线观看| 97超级碰碰碰精品色视频在线观看| 国语自产精品视频在线第100页| 天堂√8在线中文| 欧美丝袜亚洲另类 | 免费观看精品视频网站| 午夜a级毛片| 男人和女人高潮做爰伦理| 国产伦一二天堂av在线观看| 国产私拍福利视频在线观看| 色视频www国产| 熟女电影av网| 搡老妇女老女人老熟妇| a级一级毛片免费在线观看| 亚洲美女黄片视频| 在线观看免费午夜福利视频| 国产乱人伦免费视频| 床上黄色一级片| 狂野欧美激情性xxxx| 又紧又爽又黄一区二区| 舔av片在线| 天堂影院成人在线观看| 亚洲美女黄片视频| 操出白浆在线播放| 日韩中文字幕欧美一区二区| 亚洲av熟女| 国内精品久久久久精免费| 国产成人系列免费观看| 日韩亚洲欧美综合| 在线a可以看的网站| 嫩草影院精品99| 欧洲精品卡2卡3卡4卡5卡区| 在线视频色国产色| 少妇人妻精品综合一区二区 | 日韩中文字幕欧美一区二区| 69av精品久久久久久| 99热精品在线国产| 久久久久久久久大av| e午夜精品久久久久久久| 国产乱人伦免费视频| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 伊人久久大香线蕉亚洲五| 久久亚洲真实| 特级一级黄色大片| 少妇的逼好多水| 亚洲av不卡在线观看| 成人av一区二区三区在线看| 黄片大片在线免费观看| 国产乱人伦免费视频| a级毛片a级免费在线| 高清在线国产一区| 国产不卡一卡二| 熟女人妻精品中文字幕| 亚洲精品在线美女| 欧美成人一区二区免费高清观看| 日本熟妇午夜| av在线天堂中文字幕| 久久人妻av系列| 国产午夜精品久久久久久一区二区三区 | 国产69精品久久久久777片| 午夜福利在线观看免费完整高清在 | 日韩大尺度精品在线看网址| 日韩欧美一区二区三区在线观看| 老司机福利观看| 欧美一区二区精品小视频在线| 欧美zozozo另类| 成人精品一区二区免费| 久久精品影院6| 老司机福利观看| 日韩精品青青久久久久久| 18禁裸乳无遮挡免费网站照片| 韩国av一区二区三区四区| 97超视频在线观看视频| 国产av一区在线观看免费| av中文乱码字幕在线| 成年人黄色毛片网站| 欧美精品啪啪一区二区三区| 色综合站精品国产| 国产 一区 欧美 日韩| 精华霜和精华液先用哪个| 黄色片一级片一级黄色片| 变态另类成人亚洲欧美熟女| 69人妻影院| 日日摸夜夜添夜夜添小说| 久久久成人免费电影| 夜夜夜夜夜久久久久| 亚洲成人久久性| 亚洲精品影视一区二区三区av| 欧美日韩国产亚洲二区| 成年女人永久免费观看视频| 淫妇啪啪啪对白视频| 亚洲欧美日韩无卡精品| 天美传媒精品一区二区| 欧美中文日本在线观看视频| 18+在线观看网站| 99久久久亚洲精品蜜臀av| 日韩欧美一区二区三区在线观看| 十八禁人妻一区二区| 精品人妻一区二区三区麻豆 | 国产激情偷乱视频一区二区| 婷婷精品国产亚洲av在线| 精品免费久久久久久久清纯| 国产精品久久久久久久久免 | 麻豆一二三区av精品| 一进一出抽搐gif免费好疼| 欧美一区二区国产精品久久精品| 老司机午夜十八禁免费视频| 亚洲va日本ⅴa欧美va伊人久久| 精品国产美女av久久久久小说| 成年女人毛片免费观看观看9| 麻豆久久精品国产亚洲av| 母亲3免费完整高清在线观看| 免费av观看视频| 国产私拍福利视频在线观看| 亚洲第一电影网av| 亚洲精品一区av在线观看| 国产真实乱freesex| 亚洲成人免费电影在线观看| 午夜福利在线观看吧| 国产午夜精品论理片| 国产av不卡久久| 色尼玛亚洲综合影院| 亚洲欧美日韩无卡精品| xxxwww97欧美| av天堂在线播放| av女优亚洲男人天堂| 国产精品久久久久久久电影 | 日韩中文字幕欧美一区二区| 最后的刺客免费高清国语| 老司机深夜福利视频在线观看| 国产精品日韩av在线免费观看| 久久人妻av系列| 日韩 欧美 亚洲 中文字幕| 日韩有码中文字幕| 一区二区三区高清视频在线| 欧美日韩福利视频一区二区| 日本免费一区二区三区高清不卡| 欧美日韩福利视频一区二区| 亚洲专区中文字幕在线| 国产麻豆成人av免费视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品影视一区二区三区av| 欧美日韩瑟瑟在线播放| 欧美zozozo另类| 一个人看视频在线观看www免费 | 国产精品久久久久久久电影 | 午夜福利高清视频| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 嫩草影院入口| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 国产成+人综合+亚洲专区| 午夜福利免费观看在线| 亚洲午夜理论影院| 欧美性感艳星| 欧美绝顶高潮抽搐喷水| 两个人视频免费观看高清| 内射极品少妇av片p| av在线天堂中文字幕| 免费av观看视频| 亚洲av日韩精品久久久久久密| 日日夜夜操网爽| 一二三四社区在线视频社区8| 男女那种视频在线观看| www.999成人在线观看| 亚洲av成人精品一区久久| 国产91精品成人一区二区三区| 欧美国产日韩亚洲一区| 18禁国产床啪视频网站| 精品一区二区三区av网在线观看| 久久精品影院6| 怎么达到女性高潮| 成年女人永久免费观看视频| 亚洲国产欧美网| 露出奶头的视频| 天堂av国产一区二区熟女人妻| 久久精品国产清高在天天线| 亚洲国产精品久久男人天堂| www.色视频.com| 99热这里只有精品一区| 色综合亚洲欧美另类图片| 首页视频小说图片口味搜索| 在线视频色国产色| 欧美一级毛片孕妇| 亚洲美女视频黄频| svipshipincom国产片| 国产精品av视频在线免费观看| 蜜桃久久精品国产亚洲av| 最新中文字幕久久久久| 久久久久精品国产欧美久久久| 国产精品久久久人人做人人爽| 高清在线国产一区| 岛国视频午夜一区免费看| 国产高清三级在线| 哪里可以看免费的av片| 小蜜桃在线观看免费完整版高清| 极品教师在线免费播放| 日本熟妇午夜| 亚洲五月天丁香| 欧美日韩瑟瑟在线播放| 国产精品 国内视频| 韩国av一区二区三区四区| 精品久久久久久久毛片微露脸| netflix在线观看网站| 99国产综合亚洲精品| 欧美乱码精品一区二区三区| 一夜夜www| 欧美激情久久久久久爽电影| 国模一区二区三区四区视频| 欧美日韩黄片免| 好男人在线观看高清免费视频| 12—13女人毛片做爰片一| 欧美日韩福利视频一区二区| 亚洲精品一区av在线观看| 国产精品亚洲av一区麻豆| 丁香欧美五月| 高清在线国产一区| 亚洲熟妇中文字幕五十中出| 亚洲中文日韩欧美视频| 性色av乱码一区二区三区2| 欧美日韩瑟瑟在线播放| 在线观看午夜福利视频| av在线蜜桃| 久99久视频精品免费| 此物有八面人人有两片| 国产单亲对白刺激| avwww免费| 亚洲不卡免费看| 香蕉av资源在线| 精品一区二区三区av网在线观看| 久久久久久久午夜电影| 内射极品少妇av片p| 亚洲欧美日韩卡通动漫| 国产亚洲精品久久久久久毛片| 99热这里只有是精品50| 九色成人免费人妻av| 亚洲中文日韩欧美视频| 亚洲欧美一区二区三区黑人| 国产精品1区2区在线观看.| 亚洲精品久久国产高清桃花| 亚洲成人久久性| 热99re8久久精品国产| 免费看a级黄色片| 99久久综合精品五月天人人| 香蕉av资源在线| 国内精品久久久久精免费| 丰满乱子伦码专区| 国产免费男女视频| 最近最新免费中文字幕在线| 成年女人看的毛片在线观看| 51国产日韩欧美| 亚洲乱码一区二区免费版| 精品日产1卡2卡| 他把我摸到了高潮在线观看| 国产探花在线观看一区二区| 俄罗斯特黄特色一大片| 欧美激情久久久久久爽电影| 男人的好看免费观看在线视频| 亚洲午夜理论影院| 精品免费久久久久久久清纯| 欧美日韩综合久久久久久 | 午夜免费观看网址| 日日摸夜夜添夜夜添小说| 俄罗斯特黄特色一大片| 国语自产精品视频在线第100页| 午夜福利视频1000在线观看| 日韩人妻高清精品专区| 性欧美人与动物交配| 一区福利在线观看| 亚洲在线自拍视频| a级毛片a级免费在线| 日韩国内少妇激情av| 欧美成人一区二区免费高清观看| 日韩欧美 国产精品| 一级黄片播放器| 成人三级黄色视频| 在线播放国产精品三级| 亚洲精品国产精品久久久不卡| 国产午夜精品论理片| 一个人观看的视频www高清免费观看| 日韩中文字幕欧美一区二区| 非洲黑人性xxxx精品又粗又长| 18禁黄网站禁片免费观看直播| 欧洲精品卡2卡3卡4卡5卡区| 长腿黑丝高跟| 国产亚洲精品一区二区www| 久久亚洲真实| 一区二区三区高清视频在线| 免费看日本二区| 国产伦精品一区二区三区视频9 | 香蕉av资源在线| av专区在线播放| 日韩欧美免费精品| 久久香蕉精品热| 欧美日韩一级在线毛片| 美女免费视频网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 色综合站精品国产| 婷婷亚洲欧美| 亚洲欧美日韩高清专用| 国产真实伦视频高清在线观看 | 国产97色在线日韩免费| 久久久成人免费电影| 国产激情欧美一区二区| 精品免费久久久久久久清纯| 动漫黄色视频在线观看| 国产亚洲欧美98| 日韩欧美一区二区三区在线观看| 国产伦精品一区二区三区四那| 一夜夜www| 亚洲电影在线观看av| 久9热在线精品视频| 国产午夜精品久久久久久一区二区三区 | 国产午夜精品论理片| 色精品久久人妻99蜜桃| 91字幕亚洲| 精品99又大又爽又粗少妇毛片 | 国产精品香港三级国产av潘金莲| 淫妇啪啪啪对白视频| 18禁在线播放成人免费| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 午夜影院日韩av| 天堂影院成人在线观看| 中文字幕熟女人妻在线| 黄色成人免费大全| 黄色片一级片一级黄色片| 少妇丰满av| 99热精品在线国产| 亚洲av熟女| 1000部很黄的大片| 老司机福利观看| 亚洲av成人av| 成人高潮视频无遮挡免费网站| 午夜免费激情av| 婷婷精品国产亚洲av在线| 高清在线国产一区| 中文字幕熟女人妻在线| 精品不卡国产一区二区三区| 久久久久性生活片| 午夜免费观看网址| 亚洲无线观看免费| 桃红色精品国产亚洲av| 亚洲自拍偷在线| 日本一本二区三区精品| 99国产综合亚洲精品| 熟女电影av网| 性欧美人与动物交配| 88av欧美| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱妇无乱码| 国产成人系列免费观看| 国内精品久久久久精免费| 51午夜福利影视在线观看| 精品国产超薄肉色丝袜足j| 国产精品亚洲av一区麻豆| 久久久久久久久久黄片| 欧美绝顶高潮抽搐喷水| 国产欧美日韩一区二区精品| 国产真人三级小视频在线观看| 看免费av毛片| 欧美zozozo另类| 国内少妇人妻偷人精品xxx网站| 亚洲人成网站在线播| 少妇的逼好多水| 手机成人av网站| 欧美日韩一级在线毛片| 国产精品av视频在线免费观看| 一级毛片高清免费大全| 免费看十八禁软件| 亚洲乱码一区二区免费版| 国产精品一区二区免费欧美| 超碰av人人做人人爽久久 | 夜夜爽天天搞| 男人舔奶头视频| 午夜久久久久精精品| av在线天堂中文字幕| 亚洲精品在线美女| 色综合欧美亚洲国产小说| 19禁男女啪啪无遮挡网站| 国产黄片美女视频| 亚洲欧美激情综合另类| 黄片小视频在线播放| 久久精品国产亚洲av涩爱 | 国产在线精品亚洲第一网站| а√天堂www在线а√下载| 1000部很黄的大片| 欧美中文综合在线视频| 国产一区二区三区在线臀色熟女| 全区人妻精品视频| 99久国产av精品| 麻豆国产97在线/欧美| 免费av不卡在线播放| 国产亚洲欧美98| 亚洲av成人av| 亚洲av二区三区四区| 亚洲欧美激情综合另类| 99精品欧美一区二区三区四区| 少妇熟女aⅴ在线视频| 国产淫片久久久久久久久 | 长腿黑丝高跟| 婷婷精品国产亚洲av| 99热6这里只有精品| 97超视频在线观看视频| 又黄又爽又免费观看的视频| 欧美日韩福利视频一区二区| 丰满的人妻完整版| 老司机深夜福利视频在线观看| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三| 欧美绝顶高潮抽搐喷水| 操出白浆在线播放| 高清日韩中文字幕在线| 日韩国内少妇激情av| bbb黄色大片| 在线免费观看的www视频| 天天一区二区日本电影三级| 狂野欧美白嫩少妇大欣赏| 精品乱码久久久久久99久播| 久久久久国产精品人妻aⅴ院| 女警被强在线播放| 在线免费观看的www视频| 国产毛片a区久久久久| 三级毛片av免费|