楊再?gòu)?qiáng),侯夢(mèng)媛,張曼義
?
水分脅迫對(duì)設(shè)施甜椒結(jié)果期葉面積擴(kuò)展及果實(shí)發(fā)育的影響
楊再?gòu)?qiáng)1,2,侯夢(mèng)媛1,張曼義1
(1. 南京信息工程大學(xué)氣象災(zāi)害預(yù)報(bào)預(yù)警與評(píng)估協(xié)同創(chuàng)新中心,南京210044;2. 江蘇省農(nóng)業(yè)氣象重點(diǎn)實(shí)驗(yàn)室,南京210044)
為了研究土壤水分脅迫對(duì)設(shè)施甜椒結(jié)果期葉面積擴(kuò)展及果實(shí)發(fā)育動(dòng)態(tài)的影響,以品種“凱瑟琳”(Catherine)為試材,于2016年在南京信息工程大學(xué)Venlo型玻璃溫室內(nèi)對(duì)甜椒植株進(jìn)行全生育期土壤水分脅迫試驗(yàn),設(shè)置正常灌溉CK(田間持水率的70%~80%)、輕度脅迫(田間持水率的60%~70%)、中度脅迫(田間持水率的50%~60%)、重度脅迫(田間持水率的40%~50%)4個(gè)土壤水分處理,采用土壤水分傳感器EM50監(jiān)測(cè)土壤含水率,于結(jié)果期測(cè)定甜椒單葉葉面積擴(kuò)展動(dòng)態(tài)、果實(shí)發(fā)育動(dòng)態(tài)和產(chǎn)量。結(jié)果表明:1)甜椒植株葉片和果實(shí)發(fā)育均經(jīng)歷了緩慢生長(zhǎng)、線性生長(zhǎng)和穩(wěn)定生長(zhǎng)3個(gè)階段。隨水分脅迫程度的加劇,葉面積和果徑明顯減小,重度脅迫處理的單葉葉面積、果實(shí)橫徑、果實(shí)縱徑的最大值分別比CK顯著減小57.48%、38.83%、52.85%(<0.05)。2)水分脅迫降低了甜椒葉片、果徑的最大生長(zhǎng)速率,且葉片和果實(shí)的生長(zhǎng)速率峰值出現(xiàn)時(shí)間隨土壤水分脅迫程度的加劇而明顯提前,輕度脅迫下的果徑生長(zhǎng)速率和葉片相對(duì)擴(kuò)展速率均在果實(shí)或葉片發(fā)育的后期高于其他處理,但差異并不顯著(>0.05)。3)水分脅迫延長(zhǎng)了葉片和果實(shí)橫徑的迅速生長(zhǎng)時(shí)間,輕度、中度和重度脅迫下的葉片迅速生長(zhǎng)時(shí)間分別比CK延遲1.18 d、1.18 d、1.46 d(<0.05)。4)中度和重度水分脅迫顯著降低了甜椒單株果實(shí)數(shù)、平均單果質(zhì)量和產(chǎn)量(<0.05),但輕度脅迫下單株果實(shí)數(shù)較CK增加了23.61%,且產(chǎn)量與CK無(wú)顯著差異(>0.05)。研究認(rèn)為土壤水分脅迫致使甜椒葉面積和果徑減小,但輕度水分脅迫能夠鍛煉甜椒對(duì)干旱逆境的耐受性,有利于葉片及果實(shí)的后期發(fā)育和果實(shí)數(shù)量的增加。研究結(jié)果為設(shè)施甜椒環(huán)境優(yōu)化控制提供參考。
脅迫;土壤含水率;果實(shí);甜椒;葉面積;果徑
甜椒(L.)又稱燈籠椒,其果實(shí)營(yíng)養(yǎng)豐富、經(jīng)濟(jì)價(jià)值高,是中國(guó)主要的設(shè)施作物之一,近年來(lái)栽培面積不斷增大[1-2]。土壤水分是影響甜椒生長(zhǎng)發(fā)育的主要因子[3-4],水分過(guò)多會(huì)造成空氣濕度大,植株病害嚴(yán)重,土壤水分過(guò)少又會(huì)造成植株形態(tài)結(jié)構(gòu)及生理特性發(fā)生改變[3,5],嚴(yán)重影響植株產(chǎn)量和果實(shí)品質(zhì),因此作物生長(zhǎng)發(fā)育對(duì)不同水分條件的響應(yīng)規(guī)律成為當(dāng)前研究的熱點(diǎn)之一。探討不同水分脅迫處理下作物生長(zhǎng)發(fā)育規(guī)律及其形態(tài)結(jié)構(gòu)特征,可為水分管理提供有效決策支持[6]。
國(guó)內(nèi)外關(guān)于土壤水分脅迫對(duì)作物生長(zhǎng)的影響有大量報(bào)道。前人研究認(rèn)為干旱脅迫使植物地上部分及根系的生長(zhǎng)受限[7-8],從而引起光合速率的變化及同化物分配的改變[9-10],進(jìn)而對(duì)果實(shí)品質(zhì)和產(chǎn)量帶來(lái)影響[11]。葉片是植物同化物制造和供應(yīng)的代謝源,果實(shí)是同化物存儲(chǔ)和消耗的主要代謝庫(kù),兩者均對(duì)水分脅迫較為敏感。厲廣輝等[12]研究表明,在結(jié)莢期進(jìn)行干旱脅迫,花生的葉片性狀會(huì)發(fā)生明顯改變,葉片厚度降低,葉面積減小。陳金平等[13]研究證實(shí),開花期水分脅迫能顯著影響黃瓜葉片生長(zhǎng)速率和葉面積相對(duì)擴(kuò)展速率。李雅善等[14]認(rèn)為在葡萄轉(zhuǎn)色前進(jìn)行水分脅迫會(huì)對(duì)果實(shí)橫徑與縱徑發(fā)展造成阻礙,導(dǎo)致果實(shí)體積減小,產(chǎn)量下降。Dorji 等(2005)研究發(fā)現(xiàn)[15],全生育期虧缺灌溉(灌水量為正常灌溉量的1/2)致使鮮椒產(chǎn)量降低34.7%。目前研究多集中于單一生育期或單一干旱水平對(duì)作物生長(zhǎng)的影響,而關(guān)于全生育期不同程度土壤水分脅迫對(duì)設(shè)施甜椒葉片和果實(shí)發(fā)育動(dòng)態(tài)的研究較為少見,生長(zhǎng)規(guī)律仍不清楚。為此,本研究利用溫室水分控制試驗(yàn),探討結(jié)果期甜椒葉片及果實(shí)的動(dòng)態(tài)發(fā)育對(duì)不同土壤水分虧缺程度的響應(yīng)規(guī)律,以期為理解甜椒植株的抗旱機(jī)制及優(yōu)化設(shè)施生產(chǎn)的灌溉管理模式提供科學(xué)依據(jù)。
1.1 試驗(yàn)設(shè)計(jì)
試驗(yàn)于2016年4月11日—6月10日在南京信息工程大學(xué)Venlo型玻璃溫室內(nèi)進(jìn)行。溫室頂高5.0 m,長(zhǎng)30.0 m, 寬9.6 m,肩高4.5 m。供試甜椒品種為“凱瑟琳”(Catherine),待甜椒植株長(zhǎng)至3葉1心期時(shí),選取長(zhǎng)勢(shì)一致的幼苗,定植于不同苗床中,苗床長(zhǎng)8 m,寬1 m,深0.5 m。每個(gè)苗床種植18株,行距0.3 m,株距0.3 m。供試土壤為中壤土,容重1.19 g/cm3,田間持水率為32.45%(體積含水率)。主要土壤理化性質(zhì)為:pH值為6.75,有機(jī)碳12 g/kg,有效氮69 mg/kg,有效磷32 mg/kg,有效鉀180 mg/kg。定植緩苗兩周后進(jìn)行水分脅迫試驗(yàn)。每苗床每生育期施復(fù)合肥(N∶P∶K=15∶4.8∶10.8)12 g。試驗(yàn)設(shè)置4個(gè)水分處理[16],即:田間持水率的70%~80%為正常灌溉(CK);田間持水率的60%~70%為輕度脅迫;田間持水率的50%~60%為中度脅迫;田間持水率的40%~50%為重度脅迫。每個(gè)處理設(shè)3個(gè)小區(qū)(每個(gè)苗床為1個(gè)小區(qū)),每個(gè)小區(qū)面積為8 m2。水分?jǐn)?shù)據(jù)采集器為EM50(Decagon Device,USA),將土壤濕度傳感器ECH2O(Decagon Device,USA)埋在不同處理距土層15 cm深度處,采集土壤水分?jǐn)?shù)據(jù),采集頻率為30 min,存儲(chǔ)每天的平均值。每處理灌水時(shí)間由實(shí)測(cè)土壤含水率確定,當(dāng)各處理土壤含水率降低至設(shè)計(jì)下限時(shí),由自主研制的計(jì)算機(jī)水分管理系統(tǒng)(主要測(cè)定:土層15 cm和30 cm含水率,測(cè)定范圍為0±0.5%~100%±0.5%;地表、土層15 cm和30 cm溫度,測(cè)定范圍為?20 ℃±0.5 ℃~80 ℃±0.5 ℃;空氣相對(duì)濕度,測(cè)定范圍為0±0.5%~100%±0.5%)自動(dòng)控制電磁閥進(jìn)行定量滴灌(圖1),滴管管道與植株平行,滴頭間距為30 cm,流量為1.5 L/h。計(jì)劃濕潤(rùn)層深度為15 cm,灌水定額按下式計(jì)算[17]:
=··(β?β) (1)
式中為灌水定額,m3/m2;為土壤容重,t/m3;為計(jì)劃濕潤(rùn)層深度,m;ββ分別為設(shè)計(jì)土壤水分上限、下限,以田間持水率的相對(duì)百分比表示。
圖1 土壤水分管理系統(tǒng)界面
1.2 項(xiàng)目測(cè)定及方法
1.2.1 溫室環(huán)境因子
試驗(yàn)期間,用數(shù)據(jù)采集器HOBO(U30NRC,Onset HOBO,USA)采集溫室內(nèi)氣象數(shù)據(jù),要素為溫室內(nèi)1.5 m高度處相對(duì)濕度、溫度和光合有效輻射值。采集頻率為10 s,存儲(chǔ)每30 min的平均值。用數(shù)據(jù)采集器EM50 (Decagon Device,USA)采集土壤水分?jǐn)?shù)據(jù),采集頻率為30 min,存儲(chǔ)每天的平均值。
1.2.2 葉片生長(zhǎng)指標(biāo)
甜椒進(jìn)入結(jié)果期后,每個(gè)處理選取3株長(zhǎng)勢(shì)一致的植株,取主莖頂部的初展葉片掛牌標(biāo)記,當(dāng)葉長(zhǎng)約2 cm時(shí)[18]開始測(cè)定標(biāo)記葉片的葉長(zhǎng)、葉寬,每2 d測(cè)定1次,至所有標(biāo)記葉片的葉面積不再變化為止。根據(jù)葉片乘積回歸模型[19]計(jì)算得到甜椒單葉葉面積。其中,葉片生長(zhǎng)速率按下式計(jì)算[13]:
LGR= (Q?Q)/(D?D) (2)
式中LGR為葉片生長(zhǎng)速率,cm2/d;Q、Q分別為相鄰兩次測(cè)量的葉面積,cm2;D、D分別為相鄰兩次測(cè)定的時(shí)間,d。葉面積相對(duì)擴(kuò)展速率的計(jì)算公式為[20]:
RER= d (ln)/dt (3)
式中RER為葉面積相對(duì)擴(kuò)展速率,cm2/(cm2·d);為葉面積,cm2;為時(shí)間,d。
1.2.3 果實(shí)形態(tài)
每個(gè)處理選取3株長(zhǎng)勢(shì)一致的植株,待甜椒坐果后,取主徑中部相同坐果日期且果實(shí)形態(tài)大小一致、長(zhǎng)勢(shì)良好的甜椒掛牌標(biāo)記。從甜椒坐果后第2天開始,用游標(biāo)卡尺每2 d測(cè)定1次果實(shí)的橫徑(甜椒最寬處長(zhǎng)度)和縱徑(甜椒果柄到果基的長(zhǎng)度),至所有標(biāo)記果實(shí)大小不再變化為止。果徑生長(zhǎng)速率的計(jì)算公式為[21]:
FGR= (L?L)/(D?D) (4)
式中FGR為果徑生長(zhǎng)速率,mm/d;L、L分別為相鄰兩次時(shí)間測(cè)量的果徑,mm;D、D分別為相鄰兩次測(cè)定的時(shí)間,d。
1.2.4 產(chǎn)量
每個(gè)處理選取6株長(zhǎng)勢(shì)一致的植株,待甜椒成熟時(shí)每株隨機(jī)選取10個(gè)果實(shí)統(tǒng)計(jì)平均單果質(zhì)量,一次性收獲后統(tǒng)計(jì)單株果實(shí)數(shù)量和單株產(chǎn)量。
1.3 甜椒葉片和果實(shí)的Logistic生長(zhǎng)曲線方程
應(yīng)用Logistic模型模擬甜椒葉片和果實(shí)生長(zhǎng)動(dòng)態(tài),Logistic方程為[22]:
=/(1e-bx) (5)
式中,為各項(xiàng)指標(biāo)生長(zhǎng)量的模擬值(當(dāng)模擬葉片生長(zhǎng)動(dòng)態(tài)時(shí)單位為cm2,當(dāng)模擬果實(shí)生長(zhǎng)動(dòng)態(tài)時(shí)單位為mm);為葉片或果實(shí)的發(fā)育時(shí)間(本試驗(yàn)中取葉片出葉后或果實(shí)坐果后天數(shù)),d;為葉片或果徑生長(zhǎng)的極限值,計(jì)算公式為[22]:
式中,1144分別為實(shí)測(cè)數(shù)列的起點(diǎn)、終點(diǎn),2、2,3、3則為實(shí)測(cè)數(shù)據(jù)序列中間2個(gè)點(diǎn)。、為參數(shù),e為自然對(duì)數(shù)的底數(shù)。對(duì)方程(5)求一階導(dǎo)數(shù),可求得生長(zhǎng)速率(當(dāng)模擬葉片生長(zhǎng)動(dòng)態(tài)時(shí)單位為cm2/d,當(dāng)模擬果實(shí)生長(zhǎng)動(dòng)態(tài)時(shí)單位為mm/d):
(7)
當(dāng)=ln/,=/2時(shí),得到最大生長(zhǎng)速率V:
max= 0.25(8)
對(duì)方程(5)求三階導(dǎo)數(shù),并令其為0,可得:
x= (ln-1.317)/,x= (ln)/,x= (ln+1.317)/
x、x、x分別對(duì)應(yīng)甜椒葉片或果徑發(fā)育過(guò)程中的開始迅速生長(zhǎng)時(shí)間(始盛點(diǎn))、生長(zhǎng)高峰時(shí)間(高峰點(diǎn))、終止迅速生長(zhǎng)時(shí)間(盛末點(diǎn))[23]。葉片和果實(shí)的迅速生長(zhǎng)時(shí)間定義為從始盛點(diǎn)至盛末點(diǎn)的時(shí)間。
1.4 數(shù)據(jù)分析
試驗(yàn)數(shù)據(jù)運(yùn)用Excel 2010軟件繪圖,SPSS16.0軟件進(jìn)行相關(guān)統(tǒng)計(jì)分析。
2.1 試驗(yàn)期間溫室環(huán)境
由圖2可見,甜椒生育期間15 cm土壤水分雖有所波動(dòng),但均在各水分梯度范圍之內(nèi)。溫室內(nèi)日平均溫度最低為17.31 ℃,最高為30.10 ℃,整體日平均氣溫呈上升趨勢(shì);相對(duì)濕度最低為47.04%,最高為95.83%,基本滿足甜椒正常生長(zhǎng)條件。光合有效輻射值最低為 0.27 MJ/m2,最高為6.14 MJ/m2,波動(dòng)較大。4月26日—6月10日,為果實(shí)坐果后的10~45 d,日平均溫度及光合有效輻射波動(dòng)較大,會(huì)對(duì)葉片擴(kuò)展和果實(shí)發(fā)育造成影響,這也是葉片生長(zhǎng)速率和果徑生長(zhǎng)速率產(chǎn)生波動(dòng)的原因。
2.2 水分脅迫對(duì)葉面積擴(kuò)展動(dòng)態(tài)的影響
2.2.1 水分脅迫對(duì)葉面積擴(kuò)展的影響
由圖3a可以看出,不同水分處理下,甜椒單葉葉面積生長(zhǎng)曲線均呈S型,并可大致分為3個(gè)階段,第一階段為出葉后0~6 d,葉面積初期緩慢增加,為緩慢生長(zhǎng)階段;第二階段為出葉后6~18 d,葉面積呈線性快速增加趨勢(shì),為線性生長(zhǎng)階段;第三階段為出葉后18 d之后,葉面積增加趨勢(shì)明顯減慢,并逐漸趨于穩(wěn)定,為穩(wěn)定生長(zhǎng)階段。不同水分處理的葉面積均在緩慢生長(zhǎng)階段與CK無(wú)顯著差異,在穩(wěn)定生長(zhǎng)和線性生長(zhǎng)階段與CK差異顯著(<0.05)。不同水分處理下甜椒單葉葉面積均隨水分脅迫程度的加劇而減小,在出葉后第30 天,輕度、中度和重度脅迫處理的單葉面積分別為50.67、44.18和28.33 cm2,分別比CK(66.63 cm2)下降23.96%、33.69%和57.48%(<0.05)。
圖3 水分脅迫對(duì)結(jié)果期甜椒葉面積、葉片生長(zhǎng)速率和葉片相對(duì)擴(kuò)展速率的影響
2.2.2 水分脅迫對(duì)葉片生長(zhǎng)速率的影響
圖3b為不同水分處理下的甜椒葉片生長(zhǎng)速率變化曲線。從圖中可以看出,葉片生長(zhǎng)速率的最大值隨土壤水分的減少而減小,輕度、中度和重度脅迫下葉片生長(zhǎng)速率峰值分別為8.09、7.45、4.00 cm2/d,占CK(10.46 cm2/d)的77.34%、71.22%、38.24%,且均與CK差異顯著 (<0.05)。由此可知,干旱脅迫顯著影響了葉片的生長(zhǎng)速率。
2.2.3 水分脅迫對(duì)葉片相對(duì)擴(kuò)展速率的影響
不同水分處理下的葉片相對(duì)擴(kuò)展速率為單峰曲線(圖3c)。不同水分處理下,甜椒葉片相對(duì)擴(kuò)展速率均在出葉后第6天達(dá)到最大值,此時(shí)重度脅迫處理的葉片相對(duì)擴(kuò)展速率與CK相差最大(<0.05),僅為0.24 cm2/(cm2·d)。進(jìn)入線性生長(zhǎng)階段后,不同水分處理的葉片相對(duì)擴(kuò)展速率逐漸減小,在出葉后第22天之后,輕度和中度脅迫的葉片相對(duì)擴(kuò)展速率稍大于CK,但與CK差異不顯著,而重度脅迫下的葉片相對(duì)擴(kuò)展速率在葉片生長(zhǎng)過(guò)程中始終低于CK,且差異達(dá)到顯著性水平(<0.05)。可見,低程度的水分脅迫能夠在一定程度上鍛煉葉片對(duì)干旱逆境的耐受力,而超出甜椒的耐受水平則會(huì)對(duì)其造成傷害。
2.3 水分脅迫對(duì)果實(shí)發(fā)育動(dòng)態(tài)的影響
2.3.1 水分脅迫對(duì)果徑發(fā)育的影響
圖4a、4b分別表示不同土壤水分處理下甜椒果實(shí)橫徑和縱徑的發(fā)育動(dòng)態(tài)。從圖中可以看出,不同水分處理下甜椒的果實(shí)生長(zhǎng)過(guò)程可分為緩慢生長(zhǎng)(坐果后0~8 d)、線性生長(zhǎng)(坐果后8~20 d)與穩(wěn)定生長(zhǎng)(坐果后20 d后)3個(gè)階段。甜椒果實(shí)橫徑和縱徑均隨土壤水分含量的降低而減小,在坐果后第44天,重度脅迫下的果實(shí)橫徑和縱徑分別為58.11 mm、46.49 mm,較CK顯著下降38.83%、52.85%(<0.05);中度、重度脅迫下甜椒果實(shí)的縱徑顯著小于橫徑(<0.05)。這說(shuō)明干旱脅迫較重會(huì)導(dǎo)致甜椒果實(shí)外觀品質(zhì)的變化。
2.3.2 水分脅迫對(duì)果徑生長(zhǎng)速率的影響
不同水分處理下的甜椒果實(shí)橫徑生長(zhǎng)速率和縱徑生長(zhǎng)速率分別見圖4c和4d。可以看出在線性生長(zhǎng)階段,果徑的生長(zhǎng)速率隨水分脅迫程度的加劇而越小;進(jìn)入穩(wěn)定生長(zhǎng)階段后,輕度水分脅迫下果徑的生長(zhǎng)速率稍大于CK,但差異不顯著(>0.05)。這說(shuō)明輕度水分脅迫能在一定程度上鍛煉甜椒對(duì)干旱逆境的耐受性,有利于果實(shí)中后期的發(fā)育。
2.4 水分脅迫對(duì)甜椒產(chǎn)量的影響
不同水分處理對(duì)甜椒單株果實(shí)數(shù)、平均單果質(zhì)量和單株產(chǎn)量的影響見表1。可以看出,輕度脅迫下甜椒的單株果實(shí)數(shù)較CK增加了23.61%(<0.05),而中度、重度脅迫下的單株果實(shí)數(shù)則分別比CK減少16.67%、36.13%(<0.05)。甜椒平均單果質(zhì)量隨脅迫程度的加劇而不斷降低,輕度、中度、重度脅迫下平均單果質(zhì)量分別較CK下降14.94%、26.24%、35.45%(<0.05)。中度、重度脅迫處理的單株產(chǎn)量分別比CK減少40.83%、57.67%(<0.05),但輕度脅迫下的單株產(chǎn)量與CK沒(méi)有顯著差異。
2.5 不同水分處理下甜椒葉片和果實(shí)的Logistic生長(zhǎng)模型
對(duì)不同水分處理下甜椒葉面積和果徑進(jìn)行Logistic生長(zhǎng)曲線擬合(<0.01),得到模型特征參數(shù)見表2和表3??梢钥闯?,重度水分脅迫使甜椒葉片和果徑生長(zhǎng)速率的始盛點(diǎn)、高峰點(diǎn)和盛末點(diǎn)顯著提前,其中重度脅迫下葉片生長(zhǎng)速率、果實(shí)橫徑生長(zhǎng)速率和果實(shí)縱徑生長(zhǎng)速率的始盛點(diǎn)分別比CK提前1.87 d、4.57 d、3.00 d(<0.05)。葉片生長(zhǎng)速率的高峰點(diǎn)和盛末點(diǎn)在輕度和中度脅迫下均較CK有不同程度的推遲(<0.05),但果徑生長(zhǎng)速率的高峰點(diǎn)和盛末點(diǎn)則在輕度脅迫下較CK延遲(<0.05),而中度脅迫下則較CK提前(<0.05)。水分脅迫顯著延長(zhǎng)甜椒葉片和果實(shí)橫徑的迅速生長(zhǎng)時(shí)間,輕度、中度和重度脅迫下的葉片迅速生長(zhǎng)時(shí)間分別比CK延遲1.18 d、1.18 d、1.46 d(<0.05),但果實(shí)縱徑的迅速生長(zhǎng)時(shí)間與CK并無(wú)顯著差異。
圖4 水分脅迫對(duì)結(jié)果期甜椒果實(shí)橫徑、果實(shí)縱徑、果實(shí)橫徑生長(zhǎng)速率、果實(shí)縱徑生長(zhǎng)速率的影響
表1 不同水分處理對(duì)甜椒單株果實(shí)數(shù)、單株平均單果質(zhì)量和單株產(chǎn)量的影響
表2 不同土壤水分處理下甜椒葉片的Logistic生長(zhǎng)模型及特征值
注:*表示在0.05水平上顯著相關(guān),**表示在0.01水平上顯著相關(guān),下同。為葉面積的模擬值,cm2;為出葉后的天數(shù),d。
Note: *, **mean significant relationship at 0.05 and 0.01 levels, respectively, the same below.is the simulated value of leaf area, cm2;is the days after leaf expansion, d.
表3 不同土壤水分處理下甜椒果實(shí)的Logistic生長(zhǎng)模型及特征值
注:為果徑的模擬值,mm;為坐果后的天數(shù),d。
Note:is the simulated value of fruit diameter, mm;is the days after setting fruit, d.
葉片是作物有機(jī)物同化和水分蒸騰的主要器官,其面積大小能夠反映作物對(duì)環(huán)境的適應(yīng)能力。本研究表明,甜椒葉面積隨干旱程度的加劇而減小,這與白刺花[6]、花生[12]、杠柳[24]等的研究是一致的。水分脅迫下甜椒葉片生長(zhǎng)速率和葉面積相對(duì)擴(kuò)展速率的最大值均隨水分脅迫程度的加重而減小,這是因?yàn)槿~片生長(zhǎng)中大部分的細(xì)胞分裂主要集中在葉面積擴(kuò)展的初始階段[25],水分虧缺條件下,甜椒葉片細(xì)胞分裂的數(shù)目減少,細(xì)胞延展受到抑制[26],從而影響葉面積擴(kuò)展。在葉片生長(zhǎng)的后期,輕度和中度水分脅迫下的葉面積相對(duì)擴(kuò)展速率大于CK,而重度脅迫下的葉片相對(duì)擴(kuò)展速率在生長(zhǎng)過(guò)程中始終小于CK,這與前人研究并不一致[13],主要是植株抗旱性的差異引起的。水分脅迫顯著延長(zhǎng)甜椒葉片的迅速生長(zhǎng)時(shí)間;輕度和中度脅迫下,甜椒葉片生長(zhǎng)速率的始盛點(diǎn)、高峰點(diǎn)和盛末點(diǎn)出現(xiàn)不同程度的推遲,但在重度脅迫下提前,這表明甜椒能對(duì)低程度的干旱逆境做出適應(yīng)性調(diào)節(jié),但在重度干旱環(huán)境下受到嚴(yán)重脅迫,不能較好適應(yīng),需將快速發(fā)育的進(jìn)程提前以此減輕水分消耗。
就果實(shí)發(fā)育而言,大部分學(xué)者認(rèn)為隨著干旱強(qiáng)度的增加,果徑減小[14,27]。但也有學(xué)者認(rèn)為輕度干旱脅迫下的果徑高于無(wú)干旱處理[28]。本研究表明,甜椒果徑隨脅迫程度的加重而顯著降低(<0.05),這一方面是因?yàn)樗痔澣庇绊懠?xì)胞伸長(zhǎng)與分裂而抑制果實(shí)生長(zhǎng)[29],另一方面是由于干旱條件下植株同化物供應(yīng)降低導(dǎo)致的[30]。進(jìn)入穩(wěn)定生長(zhǎng)階段后,輕度干旱脅迫下的果徑生長(zhǎng)速率大于CK,這是因?yàn)樘鸾穼?duì)輕度干旱適應(yīng)后光合速率提高,源供應(yīng)增加[31-32],表明輕度水分脅迫能鍛煉甜椒對(duì)干旱逆境的耐受性,有利于果實(shí)中后期的發(fā)育。吳桂林和王克勤[33]研究發(fā)現(xiàn),水分供應(yīng)越充足果實(shí)成熟越早,這和本研究結(jié)論并不一致,這種差異與其他環(huán)境條件、遺傳調(diào)控因子等眾多因素的共同作用有關(guān)[34]。在本研究中,甜椒平均單果質(zhì)量隨水分脅迫程度的加劇而不斷降低,這種變化不僅在于果實(shí)體積的減小,更重要的原因可能是由于作物在自身水分供應(yīng)不足時(shí)果實(shí)中積累的水分也相應(yīng)減少[15]。中度和重度干旱脅迫致使甜椒單株果實(shí)數(shù)量及平均單果質(zhì)量顯著減少(<0.05),從而造成單株產(chǎn)量的明顯下降(<0.05),這與Showemimo & Olarewaju[11]的研究是一致的。但輕度脅迫下甜椒單株產(chǎn)量與CK差異并不顯著,這是因?yàn)樘鸾吩谳p度脅迫條件下形成了一定的耐旱機(jī)制,且與CK相比擁有更為良好的根系通氣條件[35],因此落花落果數(shù)減少,果實(shí)數(shù)量增加,從而并未顯著影響產(chǎn)量。
本研究在溫室內(nèi)空氣溫度、空氣相對(duì)濕度、輻射一致的情況下進(jìn)行,僅研究土壤水分脅迫對(duì)甜椒葉片和果實(shí)擴(kuò)展動(dòng)態(tài)的影響,但由于不同土壤水分可能導(dǎo)致土壤蒸發(fā)量和植株蒸騰量不一致,引起土壤溫度有所差異,今后應(yīng)該進(jìn)一步控制土壤溫度,減少因水分處理引起地溫差異導(dǎo)致試驗(yàn)誤差。
本研究利用溫室水分控制試驗(yàn)研究了干旱脅迫對(duì)甜椒結(jié)果期葉面積擴(kuò)展和果實(shí)動(dòng)態(tài)發(fā)育的影響,研究認(rèn)為: 1)隨土壤水分脅迫程度的增加,甜椒葉面積和果徑顯著減小,葉片和果徑的最大生長(zhǎng)速率顯著降低,生長(zhǎng)速率峰值的出現(xiàn)時(shí)間顯著提前,而葉片和果實(shí)橫徑的迅速生長(zhǎng)時(shí)間延長(zhǎng)(<0.05)。2)土壤含水率為田間持水率的60%~70%能夠鍛煉甜椒對(duì)干旱逆境的耐受性,使果徑生長(zhǎng)速率和葉片相對(duì)擴(kuò)展速率在果實(shí)或葉片生長(zhǎng)的后期高于其他處理,較CK果實(shí)數(shù)量增加23.61%(<0.05),且產(chǎn)量不受影響。研究證實(shí)了甜椒在適宜生長(zhǎng)水分范圍內(nèi),適當(dāng)減少灌溉量,有助于甜椒形成一定的耐旱機(jī)制,利于葉片及果實(shí)的后期發(fā)育及果實(shí)數(shù)量的增加,該研究為設(shè)施甜椒環(huán)境優(yōu)化控制提供重要支持。
[1] 孫克香,楊莎,郭峰,等. 高溫強(qiáng)光脅迫下外源鈣對(duì)甜椒(L.)幼苗光合生理特性的影響[J]. 植物生理學(xué)報(bào),2015,51(3):280-286. Sun Kexiang, Yang Sha, Guo Feng, et al. Effects of exogenous calcium on photosynthetic characteristics of sweet pepper (L.) seedlings[J]. Plant Physiology Journal Plant Physiology Journal, 2015, 51(3): 280-286. (in Chinese with English abstract)
[2] 王林闖,賀超興,張志斌. 不同灌水量及畦面覆蓋物影響溫室甜椒產(chǎn)量的生理機(jī)制研究[J]. 華北農(nóng)學(xué)報(bào),2010,25(S2):196-199. Wang Linchuang, He Chaoxing, Zhang Zhibin. Physiological study on different irrigation quantity and soil mulches to yield of sweet pepper in greenhouse[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(S2): 196-199. (in Chinese with English abstract)
[3] Chen Kaili, Li Jianming, He Huiqiang, et al. Effects of water on photosynthesis in different age of tomato leaves[J]. Acta Ecologica Sinica, 2013, 33(16): 4919-4929.
[4] Mostafa H, Amir G. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (L.)[J]. Journal of the Saudi Society of Agricultural Sciences, 2012, 11(1): 57-61.
[5] Dias P C, Araujo W L, Moraes G, et al. Morphological and physiological responses of two coffee progenies to soil water availability[J]. Journal of Plant Physiology, 2007, 164(12): 1639-1647.
[6] 李芳蘭,包維楷,吳寧. 白刺花幼苗對(duì)不同強(qiáng)度干旱脅迫的形態(tài)與生理響應(yīng)[J]. 生態(tài)學(xué)報(bào),2009,29(10):5406-5416. Li Fanglan, Bao Weikai, Wu Ning. Morphological and physiological responses of currentseedlings to drought stress[J]. Acta Ecologica Sinica, 2009, 29 (10): 5406-5416. (in Chinese with English abstract)
[7] Niinemets ü, Díaz-Espejo A, Flexas J,. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field[J]. Journal of Experimental Botany, 2009, 60(8): 2249-2270.
[8] Jia W, Zhang J. Stomatal movements and long-distance signaling in plants[J]. Plant Signaling and Behavior, 2008, 3(10): 772-777.
[9] álvarez S, Navarro A, Emilio Nicolás, et al. Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in callistemon plants during drought conditions[J]. Scientia Horticulturae, 2011, 129(16): 306-312.
[10] Li Fanglan, Bao Weikai, Wu Ning. Morphological, anatomical and physiological responses of(Franch.). seedlings to progressive water stress. Scientia Horticulturae, 2011, 127(23): 436-443.
[11] Showemimo F A, Olarewaju J D. Drought tolerance indices in sweet pepper (L.)[J].International Journal of Plant Breeding and Genetics, 2007, 1(1): 29-33.
[12] 厲廣輝,張昆,劉風(fēng)珍,等. 不同抗旱性花生品種的葉片形態(tài)及生理特性[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(4):644-654. Li Guanghui, Zhang Kun, Liu Fengzhen, et al. Morphological and physiological traits of leaf in different drought resistant peanut cultivars[J]. Scientia Agricultura Sinica, 2014, 47(4): 644-654. (in Chinese with English abstract)
[13] 陳金平,劉祖貴,段愛(ài)旺,等. 溫室黃瓜葉面積擴(kuò)展與光合特性對(duì)土壤水分的響應(yīng)研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2007,15(1):91-95. Chen Jinping, Liu Zugui, Duan Aiwang, et al. response of leaf area expansion and photosynthetic characteristics of cucumber to soil water status in greenhouse[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 91-95. (in Chinese with English abstract)
[14] 李雅善,李華,王華,等. 設(shè)施栽培下不同灌溉處理對(duì)‘希姆勞特’植株生長(zhǎng)及果實(shí)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(9):1784-1792. Li Yashan, Li Hua, Wang Hua, et al. Effects of different irrigation treatments on the growth and fruit quality ofin protected cultivation[J]. Scientia Agricultura Sinica, 2014, 47(9): 1784-1792. (in Chinese with English abstract)
[15] Dorji K, Behboudian M H, Zegbe D J A. Water relations growth yield and fruit quality of hot pepper under deficit irrigation and partial root zone drying[J]. Sci. Hortic, 2005, 104(2): 137-149.
[16] 劉明,呂愛(ài)鋒,武建軍,等. 干旱對(duì)農(nóng)業(yè)生態(tài)系統(tǒng)影響研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào),2014,30(32):165-171. Liu Ming, Lü Aifeng, Wu Jianjun, et al. A review of impacts of drought on agro-ecosystem[J]. Chinese Agricultural Science Bulletin, 2014, 30(32): 165-171. (in Chinese with English abstract)
[17] 張學(xué),王寶英. 農(nóng)田灌水定額的確定[J]. 西北水資源與水工程,1994,5(4):18-24. Zhang Xue, Wang Baoying. Determination of irrigating water quota of crops[J]. Water Resources & Water Engineering, 1994, 5(4): 18-24. (in Chinese with English abstract)
[18] 刁明,戴劍鋒,羅衛(wèi)紅,等. 溫室甜椒葉面積指數(shù)形成模擬模型[J]. 應(yīng)用生態(tài)學(xué)報(bào),2008,19(10):2277-2283. Diao Ming, Dai Jianfeng, Luo Weihong, et al. Simulation model on the formation of greenhouse sweet pepper leaf area index[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2277-2283. (in Chinese with English abstract)
[19] 劉浩,孫景生,段愛(ài)旺,等. 基于Auto CAD軟件確定番茄與青椒葉面積的簡(jiǎn)易方法[J]. 中國(guó)農(nóng)學(xué)通報(bào),2009,25(5):287-293. Liu Hao, Sun Jingsheng, Duan Aiwang, et al. Simple model for tomato and green pepper leaf area based on auto CAD software[J]. Chinese Agricultural Science Bulletin, 2009, 25(5): 287-293. (in Chinese with English abstract)
[20] Granier C, Tardieu F. Spatial and temporal analyses of expansion and cell cycle in sunflower leaves: A common pattern of development for all zones of a leaf and different leaves of a plant[J]. Plant Physiology, 1998, 116(3): 991-1001.
[21] 張芮,成自勇,王旺田,等. 水分脅迫對(duì)延后栽培葡萄果實(shí)生長(zhǎng)的影響[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,36(6):47-54. Zhang Rui, Cheng Ziyong, Wang Wangtian, et al. Effect of water stress on grape fruit growth under delayed cultivation[J]. Journal of South China Agricultural University, 2015, 36(6): 47-54. (in Chinese with English abstract)
[22] 吳俊文,何茜,李吉躍,等. 不同氮素指數(shù)施肥下楸樹無(wú)性系葉片發(fā)育動(dòng)態(tài)變化[J]. 北京林業(yè)大學(xué)學(xué)報(bào),2015,37(07):19-28.Wu Junwen, He Qian, Li Jiyue, et al. Dynamic changes of foliage growth ofclones under different nitrogen exponential fertilizations[J]. Journal of Beijing Forestry University, 2015, 37(07): 19-28. (in Chinese with English abstract)
[23] 崔黨群. Logistic曲線方程的解析與擬合優(yōu)度測(cè)驗(yàn)[J]. 數(shù)理統(tǒng)計(jì)與管理,2005,24(1):112-115. Cui Dangqun. Analysis and making good fitting degree test for logistic curve regression equation[J]. Application of Statistics and Management, 2005, 24(1): 112-115. (in Chinese with English abstract)
[24] 安玉艷,梁宗鎖,郝文芳. 杠柳幼苗對(duì)不同強(qiáng)度干旱脅迫的生長(zhǎng)與生理響應(yīng)[J]. 生態(tài)學(xué)報(bào),2011,31(3):0716-0725. An Yuyan, Liang Zongsuo, Hao Wenfang. Growth and physiological responses of thebunge seedlings to drought stress[J]. Acta Ecologica Sinica, 2011, 31(3): 0716-0725. (in Chinese with English abstract)
[25] Maksymowych R. Analysis of leaf development[M]. Cambridge: Cambridge Univ. Press, 1973: 51-57.
[26] Griffeths H, Parry M A J. Plant responses to water stress[J]. Annals of Botany, 2002, 89(7): 801-802.
[27] 趙建華,李浩霞,周旋,等. 干旱脅迫對(duì)寧夏枸杞生長(zhǎng)及果實(shí)糖分積累的影響[J]. 植物生理學(xué)報(bào),2012,48(11):1063-1068. Zhao Jianhua, Li Haoxia, Zhou Xuan, et al. Influence of drought stress on plant growth and sugar accumulation in fruit ofL.[J]. Plant Physiology Journal, 2012, 48(11): 1063-1068. (in Chinese with English abstract)
[28] 王瑞輝,鐘飛霞,廖文婷,等. 土壤水分對(duì)油茶果實(shí)生長(zhǎng)的影響[J]. 林業(yè)科學(xué),2014,50(12):40-46. Wang Ruihui, Zhong Feixia, Liao Wenting, et al. Effects of soil moisture on fruit growth of[J]. Scientia Silvae Sinicae, 2014, 50(12): 40-46. (in Chinese with English abstract)
[29] Hsiao T C. Plant responses to water stress[J]. Ann Rev. Plant Physiol, 1973, 24(1): 519-570.
[30] Pinheiro C, Chaves M M. Photosynthesis and drought: can we make metabolic connections from available data?[J]. Journal of Experimental Botany, 2011, 62(3): 869-882.
[31] 原保忠,千晶晶,別之龍,等. 虧缺灌溉對(duì)大棚甜瓜果實(shí)發(fā)育及品質(zhì)的影響[J]. 生態(tài)學(xué)雜志,2014,33(8):2053-2059. Yuan Baozhong, Qian Jingjing, Bie Zhilong, et al. Effect of deficit irrigation on development and quality of muskmelon in plastic greenhouse[J]. Chinese Journal of Ecology, 2014, 33(8): 2053-2059. (in Chinese with English abstract)
[32] 戴良香,劉孟娟,成波,等. 干旱脅迫對(duì)花生生長(zhǎng)發(fā)育和光合產(chǎn)物積累的影響[J]. 花生學(xué)報(bào),2014,43(2):12-17. Dai Lingxiang, Liu Mengjuan, Cheng Bo, et al. Effect of drought on development and photosynthate accumulation of peanut[J]. Journal of Peanut Science, 2014, 43(2): 12-17. (in Chinese with English abstract)
[33] 吳桂林,王克勤. 不同水分供應(yīng)對(duì)西瓜營(yíng)養(yǎng)和果實(shí)生長(zhǎng)及果實(shí)品質(zhì)的影響[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,31(2): 37-41. Wu Guilin, Wang Keqin. Effect of water treatment on vegetative and fruit growth and fruit quality of watermelon[J]. Journal of Agricultural University of HeBei, 2008, 31(2): 37-41. (in Chinese with English abstract)
[34] Costa F, Alba R, Schouten H, et al. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening[J]. BMC Plant Biology, 2010, 10(1): 229.
[35] 楊再?gòu)?qiáng),邱譯萱,劉朝霞,等. 土壤水分脅迫對(duì)設(shè)施番茄根系及地上部生長(zhǎng)的影響[J]. 生態(tài)學(xué)報(bào),2016,36(3): 748-757. Yang Zaiqiang, Qiu Yixuan, Liu Zhaoxia, et al. The effects of soil moisture stress on the growth of root and above-ground parts of greenhouse tomato crops[J]. Acta Ecologica Sinica, 2016, 36(3): 748-757. (in Chinese with English abstract)
Effects of soil water stress on expansion of leaf area and development of fruit in fruiting period of greenhouse sweet pepper
Yang Zaiqiang1,2, Hou Mengyuan1, Zhang Manyi1
(1.210044,; 2.210044,)
TakingCatherine that was one variety ofL. as test materials, the experiment with 4 soil moisture contents was conducted to investigate the effect of different soil water on the expansion of leaf area and the fruit dynamic development of greenhouse sweet pepper in Venlo greenhouse of Nanjing University of Information Science & Technology in 2016. The 4 treatments in the experiment included field water holding capacity of 70%-80% (CK), 60%-70% (light stress), 50%-60% (moderate stress) and 40%-50% (severe stress). Soil water sensor EM50 was used to monitor soil water content. The leaf area expansion dynamics, the fruit development dynamics and the yield of sweet pepper were determined in fruiting period. The results showed that: 1) Leaf and fruit development of sweet pepper experienced 3 stages including slow growth, linear scale growth and stable constant growth stage. With the increase of the water stress, the leaf area and fruit diameter were evidently reduced. Compared with CK, the maximum leaf area, fruit equatorial diameter and longitudinal diameter under severe stress treatment were reduced by 57.48%, 38.83% and 52.85% (<0.05), respectively. 2) Soil water stress reduced the maximum growth rate of leaf and the fruit diameter of sweet pepper. The maximum of leaf and the fruit growth rate appeared obviously earlier with the increase of soil water stress. The growth rate of fruit equatorial diameter, the growth rate of fruit longitudinal diameter and the leaf relative expansion rate in the late development stage of leave or fruit under light stress were higher than other treatments, but the difference was not significant (>0.05). 3) Soil water stress prolonged the rapid growth time of leaf and fruit equatorial diameter significantly. Compared with CK, the leaf rapid growth time under light stress, moderate stress and severe stress delayed by 1.18, 1.18 and 1.46 d (<0.05), respectively. 4) The total number of fruit per plant, the mean fresh weight of individual fruit per plant and the yield per plant were significantly reduced under moderate and severe stress (<0.05), but the fruit number per plant increased by 23.61% compared with CK under light stress, and the yield was not significantly different from CK (>0.05). This study indicated that soil water stress decreased the leaf area and the fruit diameter, but light water stress treatment could improve the tolerance to drought stress, promote the late development of leaves or fruits and increase the fruit number of greenhouse sweet peppers.The results provide a reference for the optimal control of the greenhouse sweet pepper environment.
stresses; soil moisture; fruits; sweet pepper; leaf area; fruit diameter
10.11975/j.issn.1002-6819.2017.12.022
P49;S152.7
A
1002-6819(2017)-12-0170-08
2016-11-14
2017-02-25
公益性行業(yè)(氣象)科研專項(xiàng)(重大專項(xiàng))(GYHY201506001-6)。
楊再?gòu)?qiáng),男(漢族),四川安岳人,博士,教授,博士生導(dǎo)師,主要從事設(shè)施園藝作物環(huán)境調(diào)控研究。南京 南京信息工程大學(xué)江蘇省農(nóng)業(yè)氣象重點(diǎn)實(shí)驗(yàn)室,210044。Email:yzq@nuist.edu.cn
楊再?gòu)?qiáng),侯夢(mèng)媛,張曼義.水分脅迫對(duì)設(shè)施甜椒結(jié)果期葉面積擴(kuò)展及果實(shí)發(fā)育的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):170-177. doi:10.11975/j.issn.1002-6819.2017.12.022 http://www.tcsae.org
Yang Zaiqiang, Hou Mengyuan, Zhang Manyi. Effects of soil water stress on expansion of leaf area and development of fruit in fruiting period of greenhouse sweet pepper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 170-177. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.022 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2017年12期