姜秋香,周智美,王子龍,付 強(qiáng),王 天,趙蚰竹
?
基于水土資源耦合的水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)及優(yōu)化
姜秋香,周智美,王子龍※,付 強(qiáng),王 天,趙蚰竹
(東北農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,哈爾濱 150030)
黑龍江省水資源系統(tǒng)的平衡對(duì)保障區(qū)域工農(nóng)業(yè)發(fā)展至關(guān)重要。由于糧食主產(chǎn)區(qū)發(fā)展過程中水資源存在許多不確定性因素,在追求經(jīng)濟(jì)增長(zhǎng)的同時(shí),黑龍江省水資源也存在著較大的風(fēng)險(xiǎn)。該文以黑龍江省及其13個(gè)地級(jí)市為研究區(qū)域,基于熵權(quán)物元模型評(píng)價(jià)水資源短缺風(fēng)險(xiǎn),利用平均迪氏分解法(logarithmic mean Divisia index, LMDI)分析影響用水量變化的驅(qū)動(dòng)因素,通過耦合協(xié)調(diào)模型和GIS軟件分析影響水資源短缺的因素及其區(qū)域差異性,采用經(jīng)濟(jì)與資源雙重導(dǎo)向的優(yōu)化路徑,解決水資源短缺風(fēng)險(xiǎn)問題。結(jié)果表明,2014年黑龍江省整體水資源短缺處于III級(jí)-中等風(fēng)險(xiǎn),水土資源處于拮抗耦合中度協(xié)調(diào)級(jí)別且土地資源發(fā)展略微滯后;鶴崗、雙鴨山、大慶和佳木斯水資源短缺為V級(jí),其中大慶市水資源發(fā)展明顯滯后。隨著經(jīng)濟(jì)社會(huì)的持續(xù)發(fā)展,應(yīng)結(jié)合區(qū)域資源稟賦和風(fēng)險(xiǎn)特征,制定合理的水資源開發(fā)利用方案。
水資源;因素分解;GIS;熵權(quán)物元;耦合協(xié)調(diào);優(yōu)化路徑;水土資源耦合
全球氣候變暖、社會(huì)經(jīng)濟(jì)發(fā)展、城市化進(jìn)程加快和人口數(shù)量增長(zhǎng)導(dǎo)致了人類對(duì)水資源的需求逐年增加,迫使水資源供需系統(tǒng)不確定性加劇甚至失衡。目前水資源短缺已逐漸成為人類生存與發(fā)展之間的巨額“生態(tài)資源赤字”[1]。因此應(yīng)進(jìn)行水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)與管理的研究,及時(shí)發(fā)現(xiàn)水資源系統(tǒng)存在的不確定性因素,制定安全的風(fēng)險(xiǎn)規(guī)避與管理措施,進(jìn)而促進(jìn)國(guó)民經(jīng)濟(jì)高速發(fā)展和自然生態(tài)環(huán)境的改善,最終實(shí)現(xiàn)人文與水資源系統(tǒng)互相協(xié)作的良性循環(huán)[2]。
目前對(duì)于水資源短缺風(fēng)險(xiǎn)定量評(píng)價(jià)的研究主要有:Haimes提出多目標(biāo)多階段的水資源短缺風(fēng)險(xiǎn)分析法[3];阮本清等選取風(fēng)險(xiǎn)率、脆弱性、可恢復(fù)性、重現(xiàn)期和風(fēng)險(xiǎn)度等指標(biāo),建立水資源短缺風(fēng)險(xiǎn)模糊綜合評(píng)價(jià)模型[4],并提出水資源影子價(jià)格測(cè)算動(dòng)態(tài)模型來(lái)評(píng)價(jià)水資源短缺風(fēng)險(xiǎn)經(jīng)濟(jì)損失,該模型解決了水資源影子價(jià)格隨其數(shù)量變化而難以準(zhǔn)確測(cè)得的問題[5];王紅瑞等考慮到水資源系統(tǒng)具有模糊性和隨機(jī)性,基于Logistic回歸模型模擬預(yù)測(cè)了水資源短缺風(fēng)險(xiǎn)發(fā)生的概率和風(fēng)險(xiǎn)驅(qū)動(dòng)因素[6];黃明聰?shù)葘⒅С窒蛄繖C(jī)引入水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)中,該方法在處理水資源非線性、小樣本及高維模式識(shí)別中有較強(qiáng)優(yōu)勢(shì)[7]。以往學(xué)者多注重水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)的指標(biāo)選取和評(píng)定方法,較少將水資源內(nèi)部因素與土地資源影響綜合考慮。鑒于此,本文在基于熵權(quán)物元模型判定黑龍江省水資源短缺所屬風(fēng)險(xiǎn)等級(jí)基礎(chǔ)上,研究了各指標(biāo)風(fēng)險(xiǎn)等級(jí)對(duì)整體風(fēng)險(xiǎn)的影響,并引入因素分解模型的平均迪氏分解法(logarithmic mean Divisia index,LMDI)篩選影響水資源短缺風(fēng)險(xiǎn)的主要準(zhǔn)則層,同時(shí)鑒于水土資源是一個(gè)復(fù)雜耦合系統(tǒng),利用耦合協(xié)調(diào)模型確定水資源短缺風(fēng)險(xiǎn)滯后因素,并利用地理信息系統(tǒng)GIS進(jìn)行風(fēng)險(xiǎn)區(qū)劃,進(jìn)一步提出不同區(qū)域水資源優(yōu)化路徑,以期為黑龍江省水資源-生態(tài)-社會(huì)經(jīng)濟(jì)平衡發(fā)展提供借鑒。
1.1 研究區(qū)概況
黑龍江省位于中國(guó)最東北部,區(qū)域面積47.3萬(wàn)km2,是世界著名的三大黑土帶之一,行政區(qū)覆蓋13個(gè)地級(jí)市,5大水系。黑龍江省地大物博,土地后備資源豐富,是中國(guó)重要的商品糧基地,2003—2014年其糧食總產(chǎn)量實(shí)現(xiàn)了“十一連增”,且在2011年以來(lái)其耕地面積與糧食生產(chǎn)能力均居中國(guó)首位。黑龍江省近年來(lái)將文化建設(shè)、生態(tài)文明建設(shè)與民生改善結(jié)合起來(lái),其“兩大平原”現(xiàn)代農(nóng)業(yè)綜合配套改革已成為國(guó)家重大發(fā)展戰(zhàn)略,加快了黑龍江省由農(nóng)業(yè)大省向農(nóng)業(yè)強(qiáng)省的轉(zhuǎn)變[8]。然而在經(jīng)濟(jì)飛速發(fā)展的同時(shí),黑龍江省工業(yè)化和城市化發(fā)展擠占水資源的勢(shì)頭難以逆轉(zhuǎn),社會(huì)和農(nóng)業(yè)發(fā)展與水資源之間的矛盾更加尖銳。因此,亟需對(duì)黑龍江省的水資源系統(tǒng)進(jìn)行風(fēng)險(xiǎn)評(píng)價(jià),明確水資源現(xiàn)存問題,尋找最優(yōu)解決方案,提高農(nóng)業(yè)資源的產(chǎn)出效率和社會(huì)經(jīng)濟(jì)支撐能力。
1.2 數(shù)據(jù)來(lái)源
本文以黑龍江省的自然資源稟賦和社會(huì)經(jīng)濟(jì)為基礎(chǔ),開展水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)相關(guān)研究。因此黑龍江省及其13個(gè)地級(jí)市的土地面積、人口、GDP、工業(yè)產(chǎn)值和耕地面積等數(shù)據(jù)均來(lái)源于《黑龍江省統(tǒng)計(jì)年鑒》[9],水資源量、地表水、產(chǎn)水系數(shù)、供水和用水等數(shù)據(jù)均來(lái)源于《黑龍江省水資源公報(bào)》[10]。
2.1 物元模型
鑒于水資源短缺風(fēng)險(xiǎn)評(píng)估中涉及指標(biāo)較多,且單項(xiàng)指標(biāo)之間評(píng)價(jià)結(jié)果具有不相容性[11],選擇蔡文教授提出的適用于求解多因子矛盾問題的物元理論[12]。物元模型評(píng)價(jià)流程見圖1,具體計(jì)算公式參考文獻(xiàn)[12-13],本文采用客觀賦權(quán)的熵權(quán)法確定各評(píng)價(jià)指標(biāo)權(quán)重[14]。
圖1 物元模型評(píng)價(jià)水資源短缺風(fēng)險(xiǎn)流程
2.1.1 確定關(guān)聯(lián)度
(2)
2.1.2 計(jì)算綜合關(guān)聯(lián)度
2.2 LMDI模型
為明確各準(zhǔn)則層對(duì)用水量的影響程度和方向,本文借鑒因素分解法中的LMDI模型[15-17]。Ang[18]提出的LMDI法計(jì)算簡(jiǎn)便且規(guī)避了參數(shù)估計(jì)的主觀與不確定性,適用于分析水資源系統(tǒng)驅(qū)動(dòng)機(jī)理,據(jù)此文中將用水量分解為各準(zhǔn)則層的函數(shù),構(gòu)建用水變化因素分解模型[19]為
式中W為水資源用量的次級(jí)分類指標(biāo),為準(zhǔn)則層數(shù);1,S、2,S、3,S和4,S分別表示水資源稟賦、社會(huì)經(jīng)濟(jì)、水資源利用和水環(huán)境準(zhǔn)則層指標(biāo)。
設(shè)參照用水量為0,時(shí)期用水量為W,則水資源利用變化量可以用加法分解為
LMDI分解的具體計(jì)算公式為
2.3 耦合度模型
1)耦合度:耦合是指2個(gè)以上系統(tǒng)通過互相作用而彼此影響的現(xiàn)象[21]。為探究水資源與土地資源系統(tǒng)各子元素的相互影響的程度,本文借鑒容量耦合概念和容量耦合系數(shù)模型,構(gòu)建水土資源系統(tǒng)耦合模型[22]。
2)耦合協(xié)調(diào)度:每個(gè)區(qū)域的水、土資源都有其交錯(cuò)、動(dòng)態(tài)和不平衡的特性。單純依靠耦合度判別不足以反映出水土資源巨系統(tǒng)的功效與協(xié)同效應(yīng)。為此,選用協(xié)調(diào)發(fā)展模型來(lái)評(píng)判不同區(qū)域水土資源交互耦合的程度[24]。
(9)
式中為耦合協(xié)調(diào)度;為綜合協(xié)調(diào)指數(shù);和分別為水、土資源權(quán)重,因水資源與土地資源同樣重要,故。的分級(jí)標(biāo)準(zhǔn)及意義參考文獻(xiàn)[25]。
3.1 構(gòu)建評(píng)價(jià)指標(biāo)體系
本文遵循評(píng)價(jià)的完備性、獨(dú)立性、離散性、可計(jì)算性和可比性[26],根據(jù)黑龍江省經(jīng)濟(jì)、資源的實(shí)際情況,并借鑒其他學(xué)者相關(guān)研究成果[27-29],選擇4個(gè)準(zhǔn)則層17個(gè)評(píng)價(jià)指標(biāo),構(gòu)建黑龍江省水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)體系(表1)。I~V級(jí)風(fēng)險(xiǎn)分別代表可以忽略的風(fēng)險(xiǎn)、可以接受的風(fēng)險(xiǎn)、邊緣風(fēng)險(xiǎn)、不可接受的風(fēng)險(xiǎn)和災(zāi)變風(fēng)險(xiǎn)。各指標(biāo)經(jīng)典域和節(jié)域的確定依據(jù)胡吉敏[30]提出的評(píng)價(jià)標(biāo)準(zhǔn)。
3.2 黑龍江省水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)
根據(jù)2014年水資源評(píng)價(jià)指標(biāo)量值[9]建立待評(píng)復(fù)合物元矩陣,并計(jì)算各指標(biāo)權(quán)重(表1),利用Matlab2014計(jì)算得出黑龍江省各地區(qū)評(píng)價(jià)指標(biāo)關(guān)聯(lián)度及綜合關(guān)聯(lián)度(表2),并繪制水資源短缺風(fēng)險(xiǎn)區(qū)劃圖(圖2)。由計(jì)算結(jié)果和表2、圖2可知,2014年黑龍江省整體水資源短缺綜合關(guān)聯(lián)度為0.03,處于III級(jí)風(fēng)險(xiǎn)水平,水資源短缺風(fēng)險(xiǎn)空間差異較大,具體表現(xiàn)為“南北較低,東西較高”的特征。13個(gè)地級(jí)市中黑河和大興安嶺處于I級(jí)低風(fēng)險(xiǎn)水平;鶴崗、雙鴨山、大慶和佳木斯處于V級(jí)高風(fēng)險(xiǎn)水平。通過比較分析,水資源短缺風(fēng)險(xiǎn)處于IV、V級(jí)的區(qū)域,其3、3、4、3、4和2指標(biāo)大多表現(xiàn)出高風(fēng)險(xiǎn),這極大影響了地區(qū)水資源短缺綜合風(fēng)險(xiǎn)水平,因此在尋找解決水資源短缺風(fēng)險(xiǎn)方案時(shí)應(yīng)著重考慮。
表1 水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)體系
注:“+”為高優(yōu)指標(biāo),“–”為低優(yōu)指標(biāo)。4地表水系數(shù):表征降水量對(duì)地表水資源量的影響程度,地表水系數(shù)=地表水資源量/降水量[31]。
Note: “+”refers to positive indexes; “–”refers to negative indexes.4surface water coefficient: indicates effect of precipitation on surface water resources,surface water coefficient =surface water resources/precipitation[31].
表2 基于關(guān)聯(lián)度的黑龍江省水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)劃分
3.3 水資源短缺風(fēng)險(xiǎn)影響因素分析及區(qū)域差異
對(duì)水資源短缺問題提出切實(shí)可行的解決方案,其前提與基礎(chǔ)是影響因素的篩選。本研究在確定水資源短缺風(fēng)險(xiǎn)等級(jí)的基礎(chǔ)上,采用因素分解法與耦合協(xié)調(diào)模型對(duì)影響水資源短缺風(fēng)險(xiǎn)的主要因素進(jìn)行定量研究。
3.3.1 水資源短缺風(fēng)險(xiǎn)的用水量驅(qū)動(dòng)力分析
通過前文分析確定了水資源短缺風(fēng)險(xiǎn)的程度,然而對(duì)表1中4個(gè)準(zhǔn)則層所起到的拉動(dòng)或抑制水資源短缺風(fēng)險(xiǎn)的作用還不明確。由于4個(gè)準(zhǔn)則層對(duì)水資源短缺的影響可以直接通過用水量變化表現(xiàn)出來(lái),而實(shí)際的供水量則會(huì)受到區(qū)域水資源量和工程技術(shù)等諸多方面的約束,故本文選取用水量作為衡量各準(zhǔn)則層驅(qū)動(dòng)水資源短缺情況的指標(biāo)。以黑龍江省2010—2014年的用水量均值作為參照值,分別計(jì)算2010—2014年各準(zhǔn)則層用水量變化與參照用水量的差值,并進(jìn)行匯總。利用式(6)求解DW并繪制黑龍江省三次產(chǎn)業(yè)水資源利用變化狀況圖(圖3)。由圖3總效應(yīng)值可以看出,(水資源稟賦)和(水環(huán)境)準(zhǔn)則層為負(fù)值,對(duì)黑龍江省水資源利用起到抑制作用,降低了水資源短缺程度;(社會(huì)經(jīng)濟(jì))和(水資源利用)準(zhǔn)則層為正值,對(duì)黑龍江省水資源利用起促進(jìn)作用,加劇了水資源短缺程度。
黑龍江省不同產(chǎn)業(yè)中,第一產(chǎn)業(yè)對(duì)水資源利用的影響最大,黑龍江省作為農(nóng)業(yè)大省,進(jìn)入21世紀(jì)以來(lái),其農(nóng)作物種植面積增長(zhǎng)了57.6%,糧食產(chǎn)量增加145.2%,其中需水量最大的水稻增長(zhǎng)116%,而且仍有繼續(xù)增長(zhǎng)的趨勢(shì)[9],這導(dǎo)致了用水量的劇增。由于工業(yè)經(jīng)濟(jì)建設(shè)較薄弱,第二、三產(chǎn)業(yè)則對(duì)水資源利用影響較小。而土地資源作為生存和發(fā)展的基礎(chǔ)性資源,和水資源共同決定了區(qū)域的種植結(jié)構(gòu)和生產(chǎn)方式。因此考慮土地資源對(duì)水資源的影響力、優(yōu)化產(chǎn)業(yè)用水結(jié)構(gòu)和布局、減少第一產(chǎn)業(yè)用水并提高其用水效率,是緩解黑龍江省水資源短缺風(fēng)險(xiǎn)的有效方法。
注:A、B、C、D含義見表1。
3.3.2 水土資源耦合度分析
由前述研究可知,和準(zhǔn)則層是加劇水資源短缺程度的因素,同時(shí)水資源短缺程度與土地資源的影響也是密不可分的。為探究土地資源對(duì)水資源短缺風(fēng)險(xiǎn)的影響程度,選取和準(zhǔn)則層與土地資源和準(zhǔn)則層(表3)進(jìn)行耦合度分析。根據(jù)耦合度相關(guān)理論,得出2014年黑龍江各地區(qū)水土資源耦合值(表4),并繪制水土資源耦合程度區(qū)劃圖(圖4)。黑龍江省整體水土資源耦合水平處于拮抗耦合中度協(xié)調(diào)水平,且土地資源略微滯后;水土資源耦合度均為拮抗耦合,可見土地資源與水資源相互制約并阻抑了各自發(fā)展。從耦合協(xié)調(diào)度來(lái)看,除大興安嶺地區(qū)為高度協(xié)調(diào)外,其他地區(qū)均處于中度協(xié)調(diào)。大興安嶺的協(xié)調(diào)等級(jí)為初級(jí)協(xié)調(diào),水土資源匹配度相對(duì)較好;其他地區(qū)屬于調(diào)和協(xié)調(diào)和勉強(qiáng)調(diào)和協(xié)調(diào)級(jí)別。可見黑龍江省各地區(qū)還需要注重水土資源發(fā)展的平衡。
表3 土地資源指標(biāo)
注:除5指標(biāo)外均為正向。1取決于竣工產(chǎn)值與建筑業(yè)總產(chǎn)值兩者的相互關(guān)系,影響了建筑業(yè)經(jīng)濟(jì)增長(zhǎng)方式,產(chǎn)值竣工率=竣工產(chǎn)值/建筑業(yè)總產(chǎn)值×100%[32]。6表征單位面積耕地的水資源量,是水資源量與耕地面積的比值[33]。
Note: All indices are positive except5.1depends on relationship between completed and gross output value of buildings and affects economic growth mode of buildings, and its value is ratio of completed output value to output value of buildings, %[32].6indicates water resources per unit area of cultivated land, and it is ratio of water resources to area of cultivated land[33].
表4 黑龍江省水土資源耦合度評(píng)價(jià)
從耦合類型來(lái)看:1)經(jīng)濟(jì)方面:5個(gè)地區(qū)土地資源滯后,8個(gè)地區(qū)水資源滯后,水資源短缺風(fēng)險(xiǎn)IV級(jí)以上地區(qū)有3個(gè)屬于水資源滯后,且處于V級(jí)水資源短缺的大慶耦合協(xié)調(diào)度最低。2)資源利用:4個(gè)地區(qū)土地資源滯后,9個(gè)地區(qū)水資源滯后,水資源短缺IV級(jí)以上的6個(gè)地區(qū),均為水資源滯后,可見土地資源狀況與水資源狀況極度不協(xié)調(diào)。
圖4 基于水土資源耦合的黑龍江水土資源發(fā)展程度區(qū)劃
3.4 水資源優(yōu)化路徑選擇
由前文研究,2014年黑龍江省13個(gè)地級(jí)市均未達(dá)到最優(yōu)耦合(1=2)水平,因此需對(duì)其進(jìn)行水資源優(yōu)化路徑研究。水資源和土地資源不僅在開發(fā)利用過程中相互影響和制約,而且其數(shù)量、質(zhì)量和空間組合狀態(tài)也存在強(qiáng)烈的耦合性,共同決定著一個(gè)國(guó)家或地區(qū)的社會(huì)經(jīng)濟(jì)發(fā)展程度。故采取“經(jīng)濟(jì)導(dǎo)向”和“資源導(dǎo)向”雙重優(yōu)化路徑(圖5),促進(jìn)水、土資源有效耦合,以期找出緩解水資源短缺的有效方法。
根據(jù)優(yōu)化路徑和指標(biāo)對(duì)評(píng)價(jià)結(jié)果的影響,給出建議:對(duì)于水資源短缺風(fēng)險(xiǎn)處于III級(jí)和I級(jí)的哈爾濱、雞西、伊春、七臺(tái)河、黑河和大興安嶺地區(qū),水資源能基本滿足工農(nóng)業(yè)生產(chǎn)和生活的需求,以防治為主。加大農(nóng)林水投資,在保證生產(chǎn)總值增長(zhǎng)的同時(shí),提高用水效率,擴(kuò)大節(jié)水灌溉面積;平衡城市就業(yè)和農(nóng)村務(wù)農(nóng)人口數(shù)量,提高水庫(kù)蓄水能力、廢物處理廠效率和污水排放達(dá)標(biāo)率。對(duì)處于I級(jí)風(fēng)險(xiǎn)的黑河和大興安嶺地區(qū),可適當(dāng)增加耕地面積和農(nóng)業(yè)灌溉用水量,做到物盡其用。水土資源經(jīng)濟(jì)耦合方面,伊春市水資源稟賦準(zhǔn)則層均在全省平均水平以上,但其水資源卻滯后最為明顯,且萬(wàn)元GDP用水量處于IV級(jí)風(fēng)險(xiǎn),因此應(yīng)首先從提高經(jīng)濟(jì)產(chǎn)出用水率方面著手,以降低其水資源短缺風(fēng)險(xiǎn)。
對(duì)于水資源短缺風(fēng)險(xiǎn)處于IV級(jí)和V級(jí)的齊齊哈爾、鶴崗、雙鴨山、大慶、佳木斯和牡丹江地區(qū):水資源短缺問題較嚴(yán)重,且均為水資源利用滯后。應(yīng)通過加強(qiáng)資源管理,盡快使耗水型經(jīng)濟(jì)結(jié)構(gòu)向節(jié)水型經(jīng)濟(jì)結(jié)構(gòu)轉(zhuǎn)變,根據(jù)地區(qū)特點(diǎn)種植低耗水作物,并采取節(jié)水灌溉措施,同時(shí)提高土地建設(shè)利用效率進(jìn)而降低風(fēng)險(xiǎn)。特別是水資源短缺V級(jí)的大慶市,經(jīng)濟(jì)發(fā)展方面水資源明顯滯后。大慶市屬于重工業(yè)城市,水資源稟賦指標(biāo)明顯低于黑龍江平均水平,在缺水情況下,工業(yè)產(chǎn)值增長(zhǎng)的同時(shí)應(yīng)重視用水效率,同時(shí)節(jié)水灌溉率和耕地機(jī)械動(dòng)力也應(yīng)提高。除去各地區(qū)自身建設(shè)外,還應(yīng)加強(qiáng)區(qū)域間水資源調(diào)配,充分利用其他地區(qū)的豐富水資源。
本文基于熵權(quán)物元模型,構(gòu)建黑龍江省水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)指標(biāo)體系并確定了評(píng)價(jià)標(biāo)準(zhǔn),對(duì)黑龍江省水資源短缺風(fēng)險(xiǎn)等級(jí)進(jìn)行了判別,通過因素分解與耦合協(xié)調(diào)分析了影響水資源短缺的因素,并利用GIS進(jìn)行區(qū)域差異分析,得出以下結(jié)論:
1)本文構(gòu)建的水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)指標(biāo)與分級(jí)標(biāo)準(zhǔn),能夠較好地反映出水資源現(xiàn)狀,評(píng)價(jià)結(jié)果:黑龍江省整體水資源短缺綜合關(guān)聯(lián)度為0.03,處于III級(jí)中等風(fēng)險(xiǎn),各地區(qū)表現(xiàn)為“南北較低,東西較高”,大興安嶺和黑河為I級(jí)低風(fēng)險(xiǎn),水資源條件良好,鶴崗、雙鴨山、大慶和佳木斯處于V級(jí)高風(fēng)險(xiǎn)水平,需要特別引起重視。該評(píng)價(jià)結(jié)果符合實(shí)際情況,為判斷社會(huì)、經(jīng)濟(jì)和生態(tài)對(duì)水資源短缺影響提供參考。熵權(quán)物元模型在評(píng)價(jià)各個(gè)城市水資源短缺級(jí)別的基礎(chǔ)上,能夠清楚反映出各城市每個(gè)指標(biāo)所屬等級(jí)。但本文評(píng)價(jià)中也存在一些不足,水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)側(cè)重于分析各地區(qū)指標(biāo)所屬級(jí)別,缺乏對(duì)13個(gè)地區(qū)風(fēng)險(xiǎn)水平的排序,且缺少對(duì)水土資源風(fēng)險(xiǎn)的評(píng)價(jià),因此后續(xù)研究應(yīng)繼續(xù)完善該方面研究。
2)因素分解法得出社會(huì)經(jīng)濟(jì)與水資源利用是影響水資源短缺風(fēng)險(xiǎn)的主要因素;耦合協(xié)調(diào)模型得出黑龍江省整體水土資源耦合水平處于拮抗耦合中度協(xié)調(diào)水平,據(jù)此提出的雙重優(yōu)化路徑,為尋找緩解水資源短缺方法提供了參考與借鑒。但水土資源耦合方面只分析了加重水資源短缺的經(jīng)濟(jì)與水資源利用指標(biāo)層,沒有分析水資源稟賦與水環(huán)境指標(biāo)層,在今后研究中將進(jìn)行更為全面系統(tǒng)的分析。
[1] 金菊良,王文圣,洪天求,等. 流域水安全智能評(píng)價(jià)方法的理論基礎(chǔ)探討[J]. 水利學(xué)報(bào),2006,37(8):918-925. Jin Juliang, Wang Wensheng, Hong Tianqiu, et al. Theoretical basis of intelligent evaluation methods of watershed water security[J]. Journal of Hydraulic Engineering, 2006, 37(8): 918-925. (in Chinese with English abstract)
[2] 王浩,王建華,秦大庸,等. 基于二元水循環(huán)模式的水資源評(píng)價(jià)理論方法[J]. 水利學(xué)報(bào),2006,37(12):1496-1502. Wang Hao, Wang Jianhua, Qin Dayong, et al. Theory and methodology of water resources assessment based on dualistic water cycle model[J]. Journal of Hydraulic Engineering, 2006, 37(12): 1496-1502. (in Chinese with English abstract)
[3] Haimes Y Y. Risk-Benefit Analysis in a Multiobjective Framework[M]. US: Springer, 1981: 89-122.
[4] 阮本清,韓宇平,王浩,等. 水資源短缺風(fēng)險(xiǎn)的模糊綜合評(píng)價(jià)[J]. 水利學(xué)報(bào),2005,36(8):906-912. Ruan Benqing, Han Yuping, Wang Hao, et al. Fuzzy comprehensive assessment of water shortage risk[J]. Journal of Hydraulic Engineering, 2005, 36(8): 906-912. (in Chinese with English abstract)
[5] 韓宇平,阮本清. 水資源短缺風(fēng)險(xiǎn)經(jīng)濟(jì)損失評(píng)估研究[J]. 水利學(xué)報(bào),2007,38(10):1253-1257. Han Yuping, Ruan Benqing. Economic loss assessment of shortage risk of water resources[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1253-1257. (in Chinese with English abstract)
[6] 王紅瑞,錢龍霞,許新宜,等. 基于模糊概率的水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)模型及其應(yīng)用[J]. 水利學(xué)報(bào),2009,40(7):813-821. Wang Hongrui, Qian Longxia, Xu Xinyi, et al. Model for evaluating water shortage risk based on fuzzy probability and its application[J]. Journal of Hydraulic Engineering, 2009, 40(7): 813-821. (in Chinese with English abstract)
[7] 黃明聰,解建倉(cāng),阮本清,等. 基于支持向量機(jī)的水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)模型及應(yīng)用[J]. 水利學(xué)報(bào),2007,38(3):255-259. Huang Mingcong, Xie Jiancang, Ruan Benqing, et al. Model for assessing water shortage risk based on support vector machine[J]. Journal of Hydraulic Engineering, 2007, 38(3): 255-259. (in Chinese with English abstract)
[8] 黑龍江省統(tǒng)計(jì)局. 黑龍江省年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2015.
[9] 黑龍江省統(tǒng)計(jì)局. 黑龍江省統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2015.
[10] 黑龍江省水利廳. 黑龍江省水資源公報(bào)[M]. 哈爾濱:黑龍江人民出版社,2015.
[11] Pan Feng, Zhao Lin. AHP comprehensive evaluation on sustainable utilization of water resources in Hengshui city, China[J]. Transactions of Tianjin University, 2015, 21(2): 178-182.
[12] 蔡文. 物元模型及其應(yīng)用[M]. 北京:科學(xué)技術(shù)文獻(xiàn)出版社, 1994:10-27.
[13] 范樹平,劉友兆,張紅梅,等. 基于層次模糊物元模型的承接產(chǎn)業(yè)用地空間適宜評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015, 31(6):266-276. Fan Shuping, Liu Youzhao, Zhang Hongmei et al. Undertaking industrial land spatial suitability evaluation based on hierarchical fuzzy matter element model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 266-276. (in Chinese with English abstract)
[14] Zhou Keping, Yun Lin, Deng Hongwei, et al. Prediction of rock burst classification using cloud model with entropy weight[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1995-2002.
[15] 張禮兵,徐勇俊,金菊良,等. 安徽省工業(yè)用水量變化影響因素分析[J]. 水利學(xué)報(bào), 2014, 45(7): 837-843. Zhang Libing, Xu Yongjun, Jin Juliang, et al. Analysis of influence factors of regional industry water use in Anhui province[J]. Journal of Hydraulic Engineering, 2014, 45(7): 837-843. (in Chinese with English abstract)
[16] 劉玉,高秉博,潘瑜春,等. 基于LMDI模型的黃淮海地區(qū)縣域糧食生產(chǎn)影響因素分解[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(21): 1-10. Liu Yu, Gao Bingbo, Pan Yuchun, et al. Influencing factor decomposition of grain production at county level in Huang-Huai-Hai region based on LMDI[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 1-10. (in Chinese with English abstract)
[17] Ang B W. The LMDI Approach to decomposition analysis: a practical guide[J]. Energy Policy, 2005, 33(7): 867-871.
[18] Ang B W. Decomposition analysis for policymaking in energy: which is the preferred method?[J]. Energy Policy, 2004, 32(9): 1131-1139.
[19] 陳東景. 我國(guó)工農(nóng)業(yè)水資源使用強(qiáng)度變動(dòng)的區(qū)域因素分解與差異分析[J]. 自然資源學(xué)報(bào),2012,27(2):332-343. Chen Dongjing. Regional factor decompositions and difference of the change in agricultural and industrial water intensity in China [J].Journal of Natural Resources, 2012, 27(2): 332-343. (in Chinese with English abstract)
[20] Zhang Li, Lei Jun, Zhou Xuan, et al. Changes in carbon dioxide emissions and LMDI-based impact factor decomposition: The Xinjiang Uygur Autonomous Region as a case[J]. Journal of Arid Land, 2014, 6(2): 145-155.
[21] 韓德軍,朱道林. 貴州省土地利用與區(qū)域經(jīng)濟(jì)耦合關(guān)系分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(15):1-8. Han Dejun, Zhu Daolin. Coupling relationship analysis of land use and regional economy in Guizhou province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 1-8. (in Chinese with English abstract)
[22] Ma Li, Jin Fengjun, Song Zhouying, et al. Spatial coupling analysis of regional economic development and environmental pollution in China[J]. Journal of Geographical Sciences, 2013, 23(3): 525-537.
[23] 張曉東,池天河. 90年代中國(guó)省級(jí)區(qū)域經(jīng)濟(jì)與環(huán)境協(xié)調(diào)度分析[J]. 地理研究,2001,20(4):506-515. Zhang Xiaodong, Chi Tianhe. Differentiating and analysis of the coordination degree between economic development and environment of provinces (regions) in China[J].Geographical Research, 2001, 20(4): 506-515. (in Chinese with English abstract)
[24] 廖重斌. 環(huán)境與經(jīng)濟(jì)協(xié)調(diào)發(fā)展的定量評(píng)判及其分類體系:以珠江三角洲城市群為例[J]. 熱帶地理, 1999, 19(2): 171-177. Liao Zhongbin. Quantitaitve judgement and classification system for coordinated development of environment amd economy: A case study of the city group in the Pearl River delta[J].Tropical Geography, 1999, 19(2): 171-177. (in Chinese with English abstract)
[25] 呂添貴,吳次芳,游和遠(yuǎn). 鄱陽(yáng)湖生態(tài)經(jīng)濟(jì)區(qū)水土資源與經(jīng)濟(jì)發(fā)展耦合分析及優(yōu)化路徑[J]. 中國(guó)土地科學(xué),2013, 27(9):3-10. Lü Tiangui, Wu Cifang, You Heyuan. Study on the coupling degree and optimizing path between land-water resources and economic development in the ecological economical zone of Poyang Lake[J].China Land Sciences, 2013, 27(9): 3-10. (in Chinese with English abstract)
[26] 姜秋香,付強(qiáng),王子龍. 三江平原水資源承載力評(píng)價(jià)及區(qū)域差異[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(9):184-190. Jiang Qiuxiang, Fu Qiang, Wang Zilong. Evaluation and regional differences of water resources carrying capacity in Sanjiang plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(9): 184-190. (in Chinese with English abstract)
[27] 宋松柏,蔡煥杰. 區(qū)域水資源可持續(xù)利用的綜合評(píng)價(jià)方法[J]. 水科學(xué)進(jìn)展,2005,16(2):244-249. Song Songbai, Cai Huanjie. Comprehensive assessment method for region sustainable water resources[J]. Advances In Water Science, 2005, 16(2): 244-249. (in Chinese with English abstract)
[28] 宋松柏,蔡煥杰,徐良芳. 水資源可持續(xù)利用指標(biāo)體系及評(píng)價(jià)方法研究[J]. 水科學(xué)進(jìn)展,2003,14(5):647-652. Song Songbai, Cai Huanjie, Xun Liangfang. Indicators system for region sustainable water resources utilization and its assessing methods[J]. Advances In Water Science, 2003, 14(5): 647-652. (in Chinese with English abstract)
[29] Zhang Yingxuan, Chen Min,Zhou Wenhua, et al. Evaluating beijing's human carrying capacity from the perspective of water resource constraints[J]. Journal of Environmental Sciences, 2010, 22(8): 1297-304.
[30] 胡吉敏. 沿海地區(qū)水資源承載力評(píng)價(jià)研究[D]. 大連:大連理工大學(xué),2008. Hu Jimin. Study on Evaluation of Water Resources Carrying Capacity in Coastal Regions [D].Dalian:Dalian University of Technology, 2008. (in Chinese with English abstract)
[31] 張中旺,常國(guó)瑞. 中線調(diào)水后漢江生態(tài)經(jīng)濟(jì)帶水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)[J]. 人民長(zhǎng)江,2016,47(6):16-21. Zhuang Zhongwang, Chang Guorui. Risk assessment of water resource shortage in Hanjiang River ecological economic zone after implementing middle route project of south to north water diversion[J]. Yangtze River, 2016, 47(6): 16-21. (in Chinese with English abstract)
[32] 孫建祥. 建筑業(yè)經(jīng)濟(jì)增長(zhǎng)方式轉(zhuǎn)變統(tǒng)計(jì)指標(biāo)體系的探討[J]. 江蘇統(tǒng)計(jì),1998,19(8):12-13. Sun Jianxiang.Discussion on the statistical index system of economic growth mode transformation in construction industry[J].Jiangsu Statistics, 1998, 19(8): 12-13. (in Chinese with English abstract)
[33] 周啟剛,張曉媛,王兆林. 基于正態(tài)云模型的三峽庫(kù)區(qū)土地利用生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(23):289-297.Zhou Qigang, Zhang Xiaoyuan, Wang Zhaolin.Land use ecological risk evaluation in Three Gorges Reservoir area based on normal cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 289-297. (in Chinese with English abstract)
Risk assessment and optimization of water resources shortage based on water and land resources coupling
Jiang Qiuxiang, Zhou Zhimei, Wang Zilong※, Fu Qiang, Wang Tian, Zhao Youzhu
(150030,)
Water resources risk assessment is a premise of protecting the development of industry and agriculture in Heilongjiang Province. Land resources combined with water resources affect the agricultural and industrial development. However, few studies have link both together in water resource studies. In this paper, we assessed water shortage risk and found the optimization paths of water resources based on coupling of water and land resources in Heilongjiang Province and its 13 prefecture-level cities. Four criteria layers with 17 indicators including water resources endowment, social economy, water utilization and water environment were established as a risk assessment index system of water shortage in the study area. Objective empowerment entropy method was used to determine the weight of each evaluation index in order to avoid the inaccuracy of subjective assumptions. The risk of water resources shortage evaluated by matter-element model was divided into 5 levels: Grade I (low risk), Grade II (lower risk), Grade III (medium risk), Grade IV (higher risk) and Grade V (high risk) grade. Then, the driving force of water shortage risk was analyzed by using the logarithmic mean Divisa index (LMDI) model, and the mean value of water consumption from 2010 to 2014 in Heilongjiang Province was adopted as the reference, and the difference between the water consumption of each criterion and the reference water consumption in 2010-2014 was calculated and summarized. Decomposition model of water utilization variation was constructed. Results showed that the comprehensive correlation degree of the total water shortage in Heilongjiang Province was 0.03, belonging to Grade III (medium risk). The risk of water shortage in the 13 prefecture-level cities showed great spatial differences, which was characterized as low risk in the north and south and high in the east and west of the Heilongjiang. The water shortage risk belonged to Grade V in the Daqing, Hegang, Jiamusi and Shuangyashan, Grade IV in the Qiqihar and Mudanjiang, Grade III in Suihua, Yichun and Harbin, Grade I in the Daxinganling and Heihe. The main influencing factors of the high risk of water shortage included water yielding coefficient, water investment per unit area for agriculture and forestry, water consumption per million RMB, per capita water requirement, irrigation rate of cultivated land and discharge rate of sewage treatment, which should be significantly considered in finding solutions to water shortage. The LMDI showed that the social economy and water utilization were the main factors influencing the grade of water shortage risk. Then, the coupling degree of the respective sub-elements of water and land resources was evaluated by the coupled coordination model, and it was concluded that the coupling degree of land and water resources in Heilongjiang Province was at the moderate level ofantagonistic coupling, and the land resources development lagged behind slightly. Meanwhile, the lagging factors of these regions were analyzed from the aspects of social economy and water and land utilization. Based on the evaluation of water shortage risk, the analysis of driving factors and the coupling analysis of water and land resources, the double optimization path of water shortage with both economic orientation and resource orientation was selected. According to the specific problems of different risk areas, advices on specific solution were put forward to promote effective coupling of water and land resources and to find an effective way to alleviate water shortage. As the continuous development of economy and society, regional resource endowments and risk characteristics should be combined to formulate a scientific and rational scheme on water utilization.
water resources; factorization; GIS; entropy matter-element; coupling coordination; optimization path; water and land resources coupling
10.11975/j.issn.1002-6819.2017.12.018
S271;TV213
A
1002-6819(2017)-12-0136-08
2016-12-24
2017-05-10
國(guó)家自然科學(xué)基金(51679040、51209038);黑龍江省自然科學(xué)基金(面上項(xiàng)目)(E2016004);黑龍江省博士后資助(LBH-Z13049);東北農(nóng)業(yè)大學(xué)“青年才俊”項(xiàng)目(14QC47)
姜秋香,女,黑龍江佳木斯,博士,副教授,主要研究方向?yàn)樗临Y源高效利用和管理。哈爾濱東北農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,150030。Email:jiangqiuxiang2017@163.com。
王子龍,男,山東膠州,博士,副教授,主要研究方向?yàn)楹畢^(qū)水土資源高效利用。哈爾濱東北農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,150030。Email:wang zilong2017@163.com。
姜秋香,周智美,王子龍,付 強(qiáng),王 天,趙蚰竹. 基于水土資源耦合的水資源短缺風(fēng)險(xiǎn)評(píng)價(jià)及優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):136-143. doi:10.11975/j.issn.1002-6819.2017.12.018 http://www.tcsae.org
Jiang Qiuxiang, Zhou Zhimei, Wang Zilong, Fu Qiang, Wang Tian, Zhao Youzhu. Risk assessment and optimization of water resources shortage based on water and land resources coupling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 136-143. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.018 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2017年12期