王麗紅,張 娜,坎 雜,李成松,朱興亮
?
用于番茄果秧分離的多組非圓行星輪系振動發(fā)生器設計
王麗紅1,張 娜1,坎 雜1※,李成松1,朱興亮2
(1. 石河子大學機械電氣工程學院,石河子 832000;2. 新疆農業(yè)大學機械交通學院,烏魯木齊 830052)
針對現有用于番茄果秧分離的雙偏心塊振動發(fā)生器運動參數易受載荷影響、分離滾筒易堵塞以及前期研究的單組非圓行星輪系振動發(fā)生器傳動部件載荷不均衡等問題,設計了一種三組非圓行星輪系振動發(fā)生器。對雙偏心塊式振動發(fā)生器驅動下分離滾筒的運動進行了分析,獲取了分離滾筒擬合角位移、角速度曲線,并將其作為三組非圓行星輪系振動發(fā)生器的輸出目標曲線。通過建立非圓齒輪傳動比方程以及節(jié)曲線方程,確定了三組非圓行星輪系振動發(fā)生器非圓齒輪的基本參數。搭建了分離滾筒運動測試試驗臺,利用高速攝像系統在振動發(fā)生器輸入轉速為111 r/min,高速攝像系統幀率為800 幀/s的參數條件下獲得實測角位移、角速度,通過MATLAB軟件獲取了分離滾筒在三組非圓行星輪系振動發(fā)生器驅動下的角位移和角速度擬合曲線,并分別與對應的仿真曲線和目標曲線進行對比分析,結果表明:試驗角位移和角速度曲線與仿真及目標曲線基本吻合。驗證了非圓行星輪系振動發(fā)生器設計的合理性。通過ADAMS獲取了三組和單組非圓行星輪系振動發(fā)生器的齒面接觸力,通過對比分析,發(fā)現單組非圓行星輪系振動發(fā)生器的齒面接觸力變化范圍為0~200 000 N,三組非圓行星輪系振動發(fā)生器齒面接觸力為0~125 N,驗證了三組相對于單組非圓行星輪系振動發(fā)生器更加均衡的特性。該研究為多組非圓行星輪系番茄果秧分離振動發(fā)生器的開發(fā)提供參考。
振動;分離;齒輪;收獲機;非圓齒輪;行星輪系;齒輪節(jié)曲線
新疆獨特的水土和光熱條件適宜優(yōu)質番茄的生長,已成為世界第二大加工番茄種植區(qū)[1-3]。近年來,新疆番茄機械化采收技術大面積推廣,果秧分離振動發(fā)生器作為番茄果秧收獲機中的重要部件之一,其傳動效果直接影響收獲機的工作性能[4]。
目前,果秧分離振動發(fā)生器主要分為連桿式、凸輪盤式、鏈帶式和偏心塊式4種[5-6],國內外廣泛采用雙偏心塊式振動發(fā)生器[7-13],通過兩個對稱偏心塊旋轉產生變向力偶,從而驅動分離滾筒進行變速變向回轉運動,實現果秧分離。
雙偏心塊式振動發(fā)生器具有果實分離效率高、消耗功率低等優(yōu)點,技術相對比較成熟,但當收獲機喂入量不均勻時,依據慣性原理實現運動需求的雙偏心塊式振動發(fā)生器輸出的運動會由于負載的變化而變化,致使果秧分離效果受到影響,甚至產生堵塞[14]。
非圓齒輪傳動具有傳動平穩(wěn)、結構緊湊、受載荷影響小的特點,能夠實現變速變向的復雜運動[15]。國內外非圓齒輪傳動技術廣泛應用在造紙、液壓馬達、插秧機、果品收獲和紡織機械等領域[16-22]。項目組[23]前期提出將非圓齒輪行星輪系應用到番茄果秧振動發(fā)生器的結構設計當中,通過全凸無內凹的節(jié)曲線獲得的單組非圓齒輪行星輪系振動發(fā)生器能夠實現變速變向回轉運動,但輪系中傳動部件載荷不均衡[24]。文獻表明在非圓輪系傳動過程中,多組行星輪系相對單組而言傳動部件受力更均衡,行星齒輪負荷更小[24-25]。鑒于此,本文提出采用W-W型三組非圓行星輪系的番茄果秧分離振動發(fā)生器,驅動分離滾筒實現變速變向回轉運動。
本文把通過雙偏心塊式振動發(fā)生器獲得的分離滾筒運動曲線作為目標曲線,通過具有凹性和全凸無內凹的2種節(jié)曲線獲取非圓齒輪齒廓,結合SolidWorks三維建模并利用ADAMS對三組非圓行星輪系振動發(fā)生器進行仿真分析,試制三組非圓行星輪系番茄果秧分離振動發(fā)生器物理樣機,替換雙偏心塊式振動發(fā)生器進行試驗,通過CPL-MS70K型高速攝像系統拍攝分離滾筒的運動過程并進行數據分析,得到分離滾筒的運動實測散點圖,將其擬合后與仿真曲線、目標曲線進行對比,以驗證機構設計的合理性。
三組非圓行星輪系番茄果秧分離振動發(fā)生器主要由輸入軸總成1、系桿總成2、殼體3和輸出軸總成4組成(如圖1a),通過兩端的軸承座與機架連接,殼體通過螺栓與機架固定。
如圖1所示,系桿總成包括輸入系桿、系桿軸和輸出系桿3部分,兩系桿結構對稱。輸入軸與輸入系桿通過鍵固結,輸出軸通過軸承分別與輸入軸及輸出系桿連接。系桿軸通過軸承與系桿總成連接。輸入系桿左側的定非圓齒輪與機架固接,三個均勻分布的行星非圓齒輪與定非圓齒輪外嚙合,并通過鍵與系桿軸固結。輸出系桿右側的輸出軸齒輪通過鍵與輸出軸連接,與之嚙合的三個行星圓齒輪通過鍵與系桿軸固結。當動力通過輸入軸帶動系桿轉動時,三個行星非圓齒輪和行星圓齒輪分別繞定非圓齒輪和輸出軸齒輪嚙合公轉,同時繞系桿軸自轉,由輸出軸輸出需要的傳動比。
1. 輸入軸總成 2. 系桿總成 3. 殼體 4. 輸出軸總成 5. 輸入軸 6. 軸承座 7. 同步帶輪 8. 定非圓齒輪 9. 行星非圓齒輪 10. 輸入系桿 11. 輸出系桿 12. 行星圓齒輪 13. 輸出軸齒輪 14. 輸出軸 15. 法蘭
工作時動力由同步帶輪輸入,經輸入軸帶動輸入系桿和輸出系桿同步轉動,系桿軸上的行星非圓齒輪與定非圓齒輪嚙合轉動,輸出軸齒輪與系桿軸上行星圓齒輪嚙合轉動。通過輪系及非圓齒輪嚙合的瞬時傳動比變化,使輸出軸獲得變速變向回轉運動,從而使得與輸出軸固結的法蘭帶動分離滾筒做變速變向回轉運動。
非圓齒輪作為非圓行星輪系振動發(fā)生器的重要零部件,直接影響輪系輸出運動。為確定非圓輪系的傳動要求,本文利用現有的雙偏心塊式振動發(fā)生器進行運動需求獲取,在輸入、輸出角位移分段函數的基礎上,結合非圓齒輪角位移處處連續(xù)、可導的特性,擬合修正后獲取三組非圓齒輪傳動比方程及節(jié)曲線方程。
2.1 振動發(fā)生器輸出目標曲線
項目組[26]通過高速攝像系統對采用雙偏心塊式振動發(fā)生器時分離滾筒的運動進行分析,獲得了分離滾筒角位移和角速度散點圖。利用MATLAB對分離滾筒的角位移、角速度散點圖進行擬合,獲取圖2所示的擬合角位移、角速度曲線,角位移擬合曲線的擬合度2為0.923(≥0.85),角速度擬合曲線的擬合度2為0.879(≥0.85),將角位移和角速度擬合曲線作為三組非圓行星輪系振動發(fā)生器的輸出目標曲線。
圖2 雙偏心塊振動發(fā)生器驅動下分離滾筒的擬合角速度、角位移曲線(目標曲線)
2.2 非圓齒輪傳動比方程
當偏心塊式振動發(fā)生器正常工作時,利用高速攝像系統拍攝分離滾筒上的運動情況,獲得其角位移散點圖,結合MATLAB軟件對分離滾筒的角位移散點圖進行分析,獲得分離滾筒(即振動發(fā)生器輸出軸)角位移擬合函數如式(1)。
(2)
2.3 非圓齒輪節(jié)曲線方程
結合三組非圓行星輪系結構設計,輸入輸出軸的傳動比4H可轉化為圖3a中定非圓齒輪1和輸出軸齒輪4之間的瞬時相對運動傳動比,表達式為:
式中1、2、3、4分別為定非圓齒輪、行星非圓齒輪、行星圓齒輪、輸出軸齒輪的極徑,1、2分別對應如圖3a中1、2的距離并隨著圖3a兩非圓齒輪的轉動而變化;3、4分別對應如圖3b中3、4的距離,由于行星圓齒輪、輸出軸齒輪均為圓齒輪傳動,所以3、4距離保持不變。行星非圓齒輪與定非圓齒輪嚙合節(jié)曲線如圖3a所示,行星圓齒輪與輸出軸齒輪嚙合節(jié)曲線如圖3b所示。
注:為兩齒輪的中心距,mm;點是齒輪傳動的節(jié)點;1、2、3、4分別為定非圓齒輪、行星非圓齒輪、行星圓齒輪、輸出軸齒輪的極徑,mm
Note:is the center distance between the two gear, mm;is the pitch point of gear transmission;1,2,3and4are the polar radius of fixed non-circular gear, planetary non-circular gear, planetary gear and output shaft gear, respectively, mm.
圖3 齒輪嚙合節(jié)曲線示意圖
Fig.3 Diagram of gears meshing pitch curve
又有
(5)
將式(2)、(4)分別帶入(5)可得出定非圓齒輪與行星非圓齒輪的節(jié)曲線方程表示為:
(7)
(9)
(11)
按照振動發(fā)生器空間結構要求,初定非圓齒輪m= 2.5 mm,定非圓齒輪齒數1=60,行星非圓齒輪齒數2=60,進而根據弧長公式=π,求得非圓齒輪中心距=143 mm,繪制三組非圓齒輪的齒廓如圖4所示。此時,圓齒輪模數=2.39 mm,行星圓齒輪齒數3=57,輸出軸齒輪4=63。
1. 定非圓齒輪 2. 行星非圓齒輪
3.1 試驗設計
本文從2個角度對三組非圓行星輪系番茄果秧分離振動發(fā)生器設計的合理性進行驗證:1)將采用三組非圓行星輪系振動發(fā)生器分離滾筒的角位移曲線(仿真所得及試驗所得)與采用雙偏心塊式振動發(fā)生器時分離滾筒的角位移曲線進行擬合比較;2)用仿真分析方法將三組和單組非圓行星輪系振動發(fā)生器時輸出軸齒輪上任意一個齒面在一個周期內的受力情況進行比較。
3.1.1 運動學試驗
將振動發(fā)生器模型導入ADAMS中進行仿真分析,設定模型輸入轉速參數為111 r/min,獲取三組非圓行星輪系番茄果秧分離振動發(fā)生器輸出軸角速度、角位移曲線。
試制三組非圓行星輪系振動發(fā)生器并替換FS-35振動分離試驗臺[27-28]上雙偏心塊式振動發(fā)生器進行試驗,利用CPL-MS70K型高速攝像系統拍攝分離滾筒的運動情況[29-30],將試驗的轉速設定為111 r/min,高速攝像系統幀率設定為800幀/s。試驗時調整高速攝像系統與機架的距離,以確保標記的分離滾筒撥桿處于攝錄區(qū)域內。
高速攝像系統拍攝分離滾筒的運動測試試驗臺如圖5所示。
1. 變頻器 2. 電動機 3. 非圓輪系振動發(fā)生器 4. 試驗臺 5. 標記的分離滾筒撥桿 6. 高速攝像系統
3.1.2 齒面接觸力試驗
為驗證三組非圓行星輪系振動發(fā)生器傳動部件載荷較為均衡,將三組非圓行星輪系振動發(fā)生器與單組非圓行星輪系振動發(fā)生器輸出軸齒輪齒面的受力情況進行比較。在ADAMS軟件中設定振動發(fā)生器輸入轉速為111 r/min,分別獲得三組和單組非圓行星輪系振動發(fā)生器行星齒輪與輸出軸齒輪嚙合的接觸力大小,導出數據并繪制三組和單組非圓行星輪系振動發(fā)生器齒面接觸力隨時間變化的曲線。
3.2 試驗結果與分析
3.2.1 運動學試驗結果分析
利用高速攝像分析軟件Blaster Mas對攝錄視頻進行分割、標記并進行逐幀追蹤,得到分離滾筒實測角位移散點圖,并求解出角速度散點圖。利用MATLAB和Origin9.0將散點擬合后得到實測擬合角位移、角速度曲線,擬合度2分別為0.861和0.981(均≥0.85)。為驗證裝置的準確性,將得到的實測擬合角位移、角速度曲線與目標曲線和仿真曲線進行對比,如圖6所示。
注:目標曲線為雙偏心塊式振動發(fā)生器曲線。
由圖6可知,三組非圓輪系振動發(fā)生器輸出軸角位移曲線呈現擺動增加趨勢,輸出軸角速度呈現周期性變化,且二者周期相同;實測曲線與仿真和目標的角位移、角速度曲線存在微小誤差,角速度曲線峰值差小于0.4 rad/s,角位移峰值差小于0.05 rad,但各曲線變化趨勢及關鍵數據點仍較為接近。即從運動學分析可知,三組非圓輪系振動發(fā)生器能產生保證果秧分離的運動需求,同時由于齒輪傳動所具有的特性可保證果秧分離過程中運動參數不易受載荷影響而發(fā)生變化,從而避免發(fā)生阻塞。
3.2.2 齒面接觸力試驗結果分析
將三組齒面接觸力變化曲線和單組的進行比較,得到2個齒面接觸力的對比分布圖(如圖7所示)。
圖7 三組與單組非圓行星輪系振動發(fā)生器齒面接觸力對比圖
從圖7可看出,單組非圓行星輪系振動發(fā)生器的齒面接觸力變化范圍為0~200 000 N,三組非圓行星輪系振動發(fā)生器的齒面接觸力變化范圍為0~125 N。因此,三組非圓行星輪系振動發(fā)生器傳動部件載荷相對于單組非圓行星輪系振動發(fā)生器更加均衡。
1)設計了基于多組非圓行星輪系的番茄果秧分離振動發(fā)生器,并通過分析其運動模型建立了非圓齒輪傳動比方程和節(jié)曲線方程,進而確定了非圓齒輪的基本參數。
2)搭建了分離滾筒運動測試試驗臺,利用高速攝像系統獲取了分離滾筒在三組非圓行星輪系振動發(fā)生器驅動下的實測角位移和角速度曲線,并分別與對應的仿真曲線和目標曲線進行對比分析,結果表明:試驗角位移和角速度曲線與仿真和目標曲線基本吻合,驗證了非圓行星輪系振動發(fā)生器設計的合理性。
3)獲取并對比分析了三組非圓行星輪系振動發(fā)生器與單組非圓行星輪系振動發(fā)生器的齒面接觸力,驗證了三組非圓行星輪系振動發(fā)生器傳動部件載荷相對于單組非圓行星輪系振動發(fā)生器更加均衡的特性。
[1] 縱婧. 中國新疆對哈薩克斯坦農產品出口潛力與市場開拓研究[D]. 烏魯木齊:新疆財經大學,2014. Zong Jing. Research on Export Potential and Market Development of Xinjiang Agricultural products in Kazakhstan[D]. Urumqi: Xinjiang University of Finance, 2014. (in Chinese with English abstract)
[2] 楊二軍.新疆番茄醬出口市場潛力研究[D].烏魯木齊:新疆農業(yè)大學,2013. Yang Erjun. Research on Tomato Products Export Market Potential in Xinjiang[D]. Urumqi: Xinjiang Agricultural University. 2013. (in Chinese with English abstract)
[3] 李成松,坎雜,譚洪洋,等.4FZ-30型自走式番茄收獲機的研制[J].農業(yè)工程學報,2012,28(10):20-26. Li Chengsong, Kan Za, Tan Hongyang, et al. Development of 4FZ-30 self-propelled tomato harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 20-26. (in Chinese with English abstract)
[4] 梁喜鳳,楊犇,王永維.番茄收獲機械手軌跡跟蹤模糊控制仿真與試驗[J].農業(yè)工程學報,2013,29(17):16-23. Liang Xifeng, Yang Ben, Wang Yongwei. Simulation and test of trajectory tracking control for tomato harvesting manipulator based on fuzzy logic compensation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 16-23. (in Chinese with English abstract)
[5] 石河子大學.番茄收獲分離裝置及該裝置所構成的番茄收獲機:201010578942.X[P]. 2011-06-01.
[6] 石河子大學.差速帶式番茄收獲分離裝置及該裝置所構成的番茄收獲機:201210029978.1[P]. 2012-02-11.
[7] 張源穎.新疆加工番茄產業(yè)發(fā)展面臨的問題及對策[J].新疆農墾經濟,2011,(11):46-49.
[8] 王長勤,許林云,周宏平,等.偏心式林果振動采收機的研制與試驗[J].農業(yè)工程學報,2012,28(16):10-16. Wang Changqin, Xu Linyun, Zhou Hongping, et al. Development and experiment of eccentric-type vibratory harvester for forest-fruits[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 10-16. (in Chinese with English abstract)
[9] Coby Lorenzen, Davls. Separator for tomato harvester: 3420239[P]. 1969-01-07.
[10] Brown G K. Harvest mechanization status for horticultural crops[J]. ASAE Paper, 1980(80-1532).
[11] Henry E, Studer, Davis. Tomato harvester: 4232506[P]. 1980-11-05.
[12] Johnson Farm Machinery Company. Multiple weight drum shaker: 5316519[P]. 1994-05-31.
[13] FMC Corporation. Adjustable four-weight shaker head: 5813910[P]. 1998-09-29.
[14] 朱興亮,李成松,坎雜,等.加工番茄果秧分離技術發(fā)展現狀分析[J].河北科技大學學報,2013,34(5):399-402. Zhu Xingliang, Li Chengsong, Kan Za, et al. Analysis of present development of fruit-seedling separation technology in tomato processing[J]. Journal of Hebei University of Science and Technology, 2013, 34(5): 399-402. (in Chinese with English abstract)
[15] 楊存.非圓齒輪運動學與動力學研究[D].蘭州:蘭州理工大學,2014. Yang Cun. Research on the Kinematics and Dynamics of Non-circular Gears[D]. Lanzhou: Lanzhou University of Technology, 2014. (in Chinese with English abstract)
[16] 趙勻,高林弟,陳建能,等.變形偏心非圓齒輪行星系分插機構設計和參數優(yōu)化[J].農業(yè)機械學報,2011,42(12):74-77. Zhao Yun, Gao Lindi, Chen Jianneng, et al. Design and parameter optimization of deformed eccentricnon-circulargear transplanting mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 74-77. (in Chinese with English abstract)
[17] 熊鎮(zhèn)芹,高本河,吳序堂.非圓行星齒輪液壓馬達的配流設計研究[J].機械科學與技術,2004,5:509-511.
[18] 付威,羅錫文,曾山,等.水稻精量旱穴播機穴距電液比例控制系統的設計與試驗[J].農業(yè)工程學報,2015,31(9):25-31. Fu Wei, Luo Xiwen, Zeng Shan, et al. Design and experiment of electro-hydraulic proportional control hill distance system of precision rice hill-drop drilling machine for dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 25-31. (in Chinese with English abstract)
[19] 任根勇.劍桿織機非圓齒輪行星輪系引緯機構的反求設計與仿真分析[D].杭州:浙江理工大學,2012. Ren Genyong. Reverse Design and Simulation Analysis of the Planetary Non-circular Gears Trains Weft Insertion Mechanism Applied on Rapier Loom[D]. Hangzhou: Zhejiang Sci-tech University, 2012. (in Chinese with English abstract)
[20] 董劍,吳序堂,賀敬良,等.新型非圓齒輪行星輪系低速大扭矩液壓馬達:CN101463792[P].2009-06-24.
[21] 俞高紅,張瑋煒,孫良,等.偏心齒輪-非圓齒輪行星輪系在后插旋轉式分插機構中的應用[J].農業(yè)工程學報,2011,27(4):100-105. Yu Gaohong, Zhang Weiwei, Sun Liang, et al. Application of planetary gear train with eccentric gears and non-circular gear in backward rotary transplanting mechanism[J]. Transactions of the Chinese Society for Agricultural Engeering (Transactions of the CSAE), 2011, 27(4): 100-105. (in Chinese with English abstract)
[22] 陳度,杜小強,王書茂,等.振動式果品收獲技術機理分析及研究進展[J].農業(yè)工程學報,2011,27(8):195-200. Chen Du, Du Xiaoqiang, Wang Shumao, et al. Mechanism of vibratory fruit harvest and review of current advance[J]. Transactions of the Chinese Society for Agricultural Engeering, 2011,27(8): 195-200. (in Chinese with English abstract)
[23] 朱興亮,王麗紅,坎雜,等.非圓輪系加工番茄果秧分離振動發(fā)生器的設計[J].江蘇農業(yè)科學,2016,44(3):398-401.
[24] 吳序堂,王貴海.非圓齒輪及非勻速傳動比[M].北京:機械工業(yè)出版社,1997:57-112.
[25] 張春鵬.非圓齒輪行星輪系傳動性能分析[D].沈陽:沈陽工業(yè)大學,2016. Zhang Chunpeng. Analysis of Non-circular Planetary Gear Train Transmission Performance[D]. Shenyang: Shenyang University of Technology, 2016. (in Chinese with English abstract)
[26] 李成松,坎雜,譚洪洋,等. 加工番茄果秧分離裝置運動過程分析[J].農業(yè)機械學報,2012,43(4):66-69. Li Chengsong, Kan Za, Tan Hongyang, et al. Movement process analysis on processing tomato fruit separation device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 66-69. (in Chinese with English abstract)
[27] 王麗紅,梁榮慶,秦金偉,等.加工番茄果秧分離參數優(yōu)化及驗證[J].農業(yè)工程學報,2015,31(5):23-28. Wang Lihong, Liang Rongqing, Qin Jinwei, et al.Parameters’ optimization and verification for processing tomato fruit- seeding separation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 23-28. (in Chinese with English abstract)
[28] 譚洪洋.加工番茄果秧分離裝置的試驗研究[D]石河子:石河子大學,2012. Tan Hongyang.Experimental Study on Processing of Tomato Seedling Separator. [D]. Shihezi: Shihezi University, 2012. (in Chinese with English abstract)
[29] 孫良,祝建彬,陳建能,等.基于球面曲線的空間非勻速行星輪系分插機構逆向設計[J].農業(yè)工程學報,2014,30(7):9-17. Sun Liang, Zhu Jianbin, Chen Jianneng, et al. Reverse design of transplanting mechanism with spatial planetary gear train based on spherical curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 9-17. (in Chinese with English abstract)
[30] 李成松,高振江,坎雜,等.雙支撐釀酒葡萄果實振動分離裝置作業(yè)機理[J]. 農業(yè)工程學報,2015,31(4):26-32. Li Chengsong, Gao Zhenjiang, Kan Za, et al. Operation mechanism of double support vibration separation device for wine grape berry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 26-32. (in Chinese with English abstract)
Design of tomato fruit separation vibration generator with multi group non-circular planetary gear
Wang Lihong1, Zhang Na1, Kan Za1※, Li Chengsong1, Zhu Xingliang2
(1.832000,; 2830052,)
The processing tomato planting area is increasing year by year in Xinjiang, and mechanized harvesting has become an important mean of tomato harvesting. Fruit seedling separation device is one of the core working parts of processed tomato harvesting machine. At present, double eccentric block type of fruit seedling separating vibration generator is widely used. However, there are still some problems with this relatively matured technology, such as motion parameters are easily affected by load, device is easily blocked and so on, which strongly affect the performance of processing tomato harvesting machine. Some scholars proposed to apply non-circular planetary gear to the structure design of tomato fruit seedling vibration generator, but this type of tomato fruit seedling vibration generator has a problem that its transmission components load is imbalanced. To solve above problems, in this study, we put forward multiple-group non-circular planetary gear of tomato fruit seedling vibration generator. The research results published from other scholars about trajectories of separation roller and conditions of tomato harvesting vibration were used when we designed tomato fruit separation vibration generator base on multi-group non-circular planetary gear. Trigonometric function and MATLAB software were exploited to fit separate roller angular velocity and angular displacement scatter curve. Then fitting curve of angular displacement and angular velocity were obtained as well as input and output angular displacement fitting function type, which served as the objective function of tomato fruit separation vibration generator based on multi-group non-circular planetary gear. The fitting degree with no more than 0.85 of angular displacement and velocity were obtained. The OriginPro9.0 was used to obtain angular velocity and angular displacement fitting function. According to the method of theoretical mechanics and dynamics, the theoretical equation of dynamics and kinematics were established to obtain the transmission ratio and pitch-curve equation of the non-circular gear train. Non-circular gears based on three groups were designed and gear tooth profiles of non-circular gear were generated by using gear’s pitch curve got from MATLAB. Then, the whole structure of fruit seedling vibration generator base on three group non-circular planetary gear was designed according to the selected type and corresponding parameters of gear train, which was mainly composed of input shaft assembly、tie rod assembly、shell and output shaft assembly. When this vibration generator working, power was input from the input shaft uniformly and transferred to the separation roller by transmission of this vibration generator. In this way, the uniform motion of input shaft was transformed into variable speed rotary motion of output shaft to drive the separation roller achieving the separation of fruit and stem seedlings. The model of vibration generator based on multi-group non-circular planetary gear was constructed, and this model was analyzed by simulating in the ADAMS at speeds of 111 revolutions per minute. The contrast figure of non-circular gear vibration generator and three groups non-circular gear vibration generator’s tooth surface contact force diagram was obtained by analyzing the tooth surface contact force between the planet gear and the output shaft gear, which showed that the vibration generator possessed uniform stress, and small vibration and the correctness of the model were verified. Finally, the physical prototype of vibration generator based on multi-group non-circular planetary gear was developed, and then tomato fruit seedling separation test was conducted in the way that replacing double eccentric block vibration generator with vibration generator based on multi-group non-circular planetary gear on tomato fruit seedling separation test platform, in this test, the motion process of separating drum was tracked shot using CPL-MS70k high speed camera system, whose frame rate was set to 800. The test data were analyzed and we found that the actual motion curve of drum separation fitted better with simulation curve and objective motion curve, from which maximum error was less than 0.4 rad/s, showing that the mechanism design was reasonable. This study provides a new idea for the improvement of processing tomato fruit seedling separation device.
vibration; separation; gears; harvesters; non-circular gear; planetary gear train; gear pitch curve
10.11975/j.issn.1002-6819.2017.12.005
S225.99
A
1002-6819(2017)-12-0034-06
2016-09-06
2017-06-02
國家自然科學基金資助項目(51265046)
王麗紅,女,河北邯鄲人,博士,教授,主要研究方向為農業(yè)裝備工程。石河子 石河子大學機械電氣工程學院,832003。 Email:wlh_shz@163.com
坎 雜,男,新疆精河人,博導,教授,主要研究方向為農業(yè)裝備工程。石河子 石河子大學機械電氣工程學院,832003。 Email:kz-shz@163.com
王麗紅,張 娜,坎 雜,李成松,朱興亮.用于番茄果秧分離的多組非圓行星輪系振動發(fā)生器設計[J].農業(yè)工程學報,2017,33(12):34-39. doi:10.11975/j.issn.1002-6819.2017.12.005 http://www.tcsae.org
Wang Lihong, Zhang Na, Kan Za, Li Chengsong, Zhu Xingliang. Design of tomato fruit separation vibration generator with multi group non-circular planetary gear[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 34-39. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.005 http://www.tcsae.org