王 勇,陳 杰,劉厚林,邵 昌,張 翔
(1. 江蘇大學(xué)國家水泵及系統(tǒng)工程技術(shù)研究中心,鎮(zhèn)江 212013;2. 西華大學(xué)流體及動力機械教育部重點實驗室,成都 610039)
超低比轉(zhuǎn)速離心泵關(guān)閥啟動瞬態(tài)特性分析
王 勇1,陳 杰1,劉厚林1,邵 昌1,張 翔2※
(1. 江蘇大學(xué)國家水泵及系統(tǒng)工程技術(shù)研究中心,鎮(zhèn)江 212013;2. 西華大學(xué)流體及動力機械教育部重點實驗室,成都 610039)
為探究超低比轉(zhuǎn)速離心泵關(guān)閥啟動瞬態(tài)特性,該文以一臺比轉(zhuǎn)速為25的超低比轉(zhuǎn)速離心泵為研究對象,在關(guān)死點工況下對穩(wěn)態(tài)和關(guān)閥啟動瞬態(tài)過程進(jìn)行數(shù)值模擬,并與試驗結(jié)果進(jìn)行對比,研究表明:在關(guān)死點穩(wěn)態(tài)工況下性能曲線與試驗測得結(jié)果變化趨勢相同,最大偏差小于5%,驗證了數(shù)值模擬的準(zhǔn)確性;關(guān)閥啟動過程,不同啟動加速度下啟動過程的末期均出現(xiàn)一個沖擊揚程;在相同轉(zhuǎn)速時,穩(wěn)態(tài)過程中間截面的靜壓分布、相對速度流線分布和進(jìn)口管路內(nèi)相對速度與關(guān)閥啟動瞬態(tài)過程分布趨勢存在差異。關(guān)閥啟動瞬態(tài)過程內(nèi)部流場的發(fā)展總體上滯后于關(guān)死點穩(wěn)態(tài)過程內(nèi)部流場。研究結(jié)果可為進(jìn)一步研究超低比轉(zhuǎn)速離心泵啟動的瞬態(tài)過程特性提供參考。
離心泵;計算機仿真;試驗;關(guān)死點工況;穩(wěn)態(tài)特性;瞬態(tài)特性
超低比轉(zhuǎn)速離心泵(簡稱超低比速泵)一般是指比轉(zhuǎn)速小于等于30的離心泵,具有小流量、高揚程的特點,在航空航天、石油化工和農(nóng)業(yè)灌溉等國民經(jīng)濟領(lǐng)域有著廣泛的應(yīng)用[1-6]。通常超低比速泵運行工況基本穩(wěn)定,其流量、轉(zhuǎn)速和壓力等參數(shù)保持不變或者在一定范圍內(nèi)緩慢變化,但超低比速泵除了在穩(wěn)態(tài)工況下運行之外,還需短期在各種各樣的瞬態(tài)工況下運行,如啟動過程,往往伴隨著轉(zhuǎn)速、流量和壓力等參數(shù)的劇烈變化,嚴(yán)重時將造成機組設(shè)備沖擊破壞。因此,研究泵開啟過程的瞬態(tài)特性,對系統(tǒng)的安全和穩(wěn)定運行具有重要意義。
目前已有學(xué)者對非設(shè)計工況下離心泵內(nèi)部瞬態(tài)流動特性進(jìn)行了研究[7-9]。Dazin等[10]發(fā)現(xiàn)采用角動量方程和能量方程可以很好的預(yù)測離心泵瞬態(tài)運行過程中的葉輪扭矩、揚程和功率。Farhadi等[11]建立了適用于預(yù)測離心泵啟動過程瞬態(tài)特性的數(shù)學(xué)模型,該模型將整個系統(tǒng)內(nèi)部的湍動能考慮在內(nèi),預(yù)測精度較高。Rochuon等[12]提出POD方法(proper orthogonal decomposition method)在提取瞬態(tài)流場的主導(dǎo)模式方面是有效的。李貴東等[13]基于Eulerian-Eulerian非均相流模型對離心泵內(nèi)部流場進(jìn)行三維瞬態(tài)數(shù)值模擬,結(jié)果表明當(dāng)初始?xì)庀囿w積分?jǐn)?shù)逐漸增大時,葉輪流道內(nèi)流動紊亂,氣液兩相流動不均勻。張玉良等[14]研究低比轉(zhuǎn)速離心泵流量突然減小瞬態(tài)過程的外特性和內(nèi)流場,發(fā)現(xiàn)變工況過程結(jié)束后的穩(wěn)定流量越小,瞬態(tài)效應(yīng)愈發(fā)明顯。王玉川等[15]基于RNG k-ε湍流模型和滑移網(wǎng)格,對不同工況下離心泵內(nèi)部瞬態(tài)流場進(jìn)行數(shù)值模擬,模擬得到的揚程和效率曲線與試驗結(jié)果吻合較好。韓偉等[16]以導(dǎo)葉式離心泵為研究對象,研究過渡過程動靜葉柵內(nèi)固液兩相流的瞬態(tài)流動特性,研究表明:動葉柵流道內(nèi)的渦持續(xù)產(chǎn)生、合并、破碎和耗散,使得動葉進(jìn)口處的流動滯止,導(dǎo)致動葉進(jìn)口逐漸產(chǎn)生旋渦。
Thanapandi等[17-18]以較低的啟動加速度對不同閥門開度的離心泵進(jìn)行試驗研究,研究發(fā)現(xiàn)在啟動加速度很低的情況下,啟動過程與準(zhǔn)穩(wěn)態(tài)理論基本相符。Wu等[19-24]研究發(fā)現(xiàn)快速啟動使離心泵出現(xiàn)較高的揚程峰值,閥門開啟過程中的流體流動加速效應(yīng)使得其外特性曲線整體上位于穩(wěn)態(tài)計算結(jié)果之下,流量瞬態(tài)增加過程的性能曲線低于穩(wěn)態(tài)過程的性能曲線。劉竹青等[25]采用數(shù)值模擬手段研究雙吸離心泵關(guān)閥啟動過程的瞬態(tài)特性,研究發(fā)現(xiàn)全回路三維模型用來模擬泵啟動過程得到的瞬態(tài)揚程相比于局部邊界的數(shù)值模擬結(jié)果更為接近試驗值。袁建平等[26]針對離心泵啟動過程瞬態(tài)內(nèi)部流場和結(jié)構(gòu)場進(jìn)行了雙向流固耦合聯(lián)合求解,獲得了離心泵啟動過程中瞬時效應(yīng)對葉片應(yīng)力和應(yīng)變的影響規(guī)律。
綜上所述,盡管國內(nèi)外學(xué)者對離心泵瞬態(tài)過程做了大量研究工作,但是對超低比速泵的瞬態(tài)特性研究還較少,因此開展對超低比速泵啟動過程瞬態(tài)特性的研究顯得尤為重要。本文以一臺比轉(zhuǎn)速ns=25的超低比轉(zhuǎn)速離心泵為研究對象,在關(guān)死點工況下對其分別進(jìn)行穩(wěn)態(tài)和瞬態(tài)關(guān)閥啟動過程的數(shù)值計算,并與試驗結(jié)果進(jìn)行對比,分析不同啟動加速度對瞬態(tài)啟動過程中超低比轉(zhuǎn)速泵非定常特性的影響。最后對啟動時間為2 s的關(guān)閥啟動過程內(nèi)部流場進(jìn)行分析并與穩(wěn)態(tài)過程關(guān)死點工況的內(nèi)流場進(jìn)行對比,為深入研究超低比轉(zhuǎn)速離心泵啟動的瞬態(tài)過程特性提供參考。
1.1 試驗測試系統(tǒng)
試驗用超低比速泵主要參數(shù)如下:設(shè)計流量Qd=12.5 m3/h,揚程Hd=74 m,額定轉(zhuǎn)速nd=2 950 r/min,比轉(zhuǎn)速ns=25,葉輪入口直徑Dj=68 mm,葉輪出口直徑D2=228 mm,葉片出口寬度b2=7 mm,葉片數(shù)z=6,葉片出口安放角β2=40°,蝸殼基圓直徑D3=245 mm。本試驗在國家水泵及系統(tǒng)工程技術(shù)研究中心實驗室閉式試驗臺上進(jìn)行,圖1為超低比速泵瞬態(tài)特性測試試驗臺結(jié)構(gòu)示意圖。該試驗臺包括真空泵1、真空罐3、電磁流量計5、模型泵7、穩(wěn)壓罐9和管路閥門等。
圖1 瞬態(tài)特性測試試驗臺結(jié)構(gòu)示意圖Fig.1 Schematic diagram of transient characteristic experimental set-up
1.2 瞬態(tài)試驗測量裝置
1.2.1 壓力脈動的測量
用于進(jìn)口壓力脈動測量的傳感器型號為HM90-H10(武漢環(huán)宇高科測控有限公司),工作頻率為0~2 kHz,量程為0~300 kPa,用于出口壓力脈動測量的傳感器型號為HY6305(武漢環(huán)宇高科測控有限公司),工作頻率為0~2 kHz,量程為0~1 MPa,輸出信號為大小4~20 mA的電流信號,精度為±0.25%。分別在離心泵進(jìn)出口管道上一倍管徑處進(jìn)行打孔,孔徑為10 mm,安裝壓力脈動傳感器,用于測量模型泵進(jìn)出口處的壓力脈動。
1.2.2 電機瞬態(tài)轉(zhuǎn)速測量裝置
采用霍爾轉(zhuǎn)速傳感器對超低比轉(zhuǎn)速離心泵啟動過程中的轉(zhuǎn)速變化過程進(jìn)行監(jiān)測。圖2所示為CZ400型霍爾轉(zhuǎn)速傳感器安裝示意圖(上海傳振電子科技有限公司,量程為0~20 Hz,精度為±1%,方波電壓脈沖輸出)。將霍爾傳感器安裝在可調(diào)節(jié)支架上,并將支架固定在離心泵底座上,同時在離心泵聯(lián)軸器處裸露軸上安裝一個感應(yīng)磁鐵,通過調(diào)節(jié)傳感器上的安裝螺母,使得傳感器正對感應(yīng)磁鐵,并保持兩者距離為0.5~3 mm,每當(dāng)感應(yīng)磁鐵掃過霍爾轉(zhuǎn)速傳感器時,傳感器便輸出一個方波信號,2個脈沖方波間隔為一個葉輪旋轉(zhuǎn)周期,從而得出此時刻葉輪的轉(zhuǎn)速,當(dāng)感應(yīng)磁鐵連續(xù)掃過傳感器時,便可以得到一個時間段內(nèi)電機軸轉(zhuǎn)速的變化過程,從而擬合出超低比速泵啟動過程葉輪轉(zhuǎn)速的變化曲線,為后期關(guān)閥啟動過程的數(shù)值模擬提供參考。
圖2 傳感器安裝示意圖Fig.2 Schematic diagram of sensor installation
2.1 計算域建模及網(wǎng)格劃分
采用三維造型軟件Pro/E 5.0對超低比轉(zhuǎn)速模型泵整個流場計算域進(jìn)行三維建模,計算域包括:進(jìn)口延伸段、吸入室、葉輪水體、蝸殼水體和出口延伸段。其中進(jìn)口延伸長度為離心泵進(jìn)口直徑的5倍,出口延伸長度為蝸殼出口直徑的5倍,以保證流動的充分發(fā)展。采用商用軟件ANSYS-ICEM 14.5對計算域進(jìn)行網(wǎng)格劃分,為了保證較高的網(wǎng)格質(zhì)量和邊界層網(wǎng)格尺寸,對所有計算域采用六面體結(jié)構(gòu)化網(wǎng)格,經(jīng)過網(wǎng)格無關(guān)性驗證,最終網(wǎng)格數(shù)量為176.7萬,模型泵計算域三維造型如圖3所示。
圖3 計算域三維造型Fig.3 Three-dimension model of computational domain
2.2 湍流模型
SSTk-ω模型整合了k-ε模型和k-ω模型,在自由流區(qū)和邊界層外層使用k-ε模型,在近避面區(qū)采用k-ω模型,在混合區(qū)通過一個加權(quán)函數(shù)F1來表示2種模型,并通過函數(shù)F2來修正函數(shù)F1在剪切流計算時的誤差[27-28]。
Menter等[29]對SST k-ω湍流模型適用性的研究表明:該湍流模型能夠較好的處理近壁面與自由流區(qū)的流動,對流場細(xì)節(jié)的處理能力較好。因此本文在超低比速泵穩(wěn)態(tài)過程的數(shù)值計算中采用SST k-ω湍流模型完成雷諾方程組的封閉。
2.3 邊界條件
采用商用軟件ANSYS CFX 14.5全隱式耦合技術(shù)對方程組進(jìn)行求解,計算模型邊界條件設(shè)置為總壓進(jìn)口和質(zhì)量流量出口,系統(tǒng)參考壓力設(shè)置為0,固壁面邊界設(shè)置成無滑移壁面,壁面粗糙度設(shè)置為20 μm。
求解過程中,關(guān)死點穩(wěn)態(tài)過程求解時,選取時間步長為?t=1.122 33×10-4s,即葉輪每旋轉(zhuǎn)2°為1個時間步長,總計算步數(shù)為1 080步,即葉輪旋轉(zhuǎn)6圈;關(guān)閥啟動過程求解時,對不同啟動加速度下的求解取相同的分析頻率f=2 000 Hz,對應(yīng)的時間步長分別為?t=0.001 s、?t=0.001 5 s、?t=0.002 s,計算總時間分別為2、3和4 s。
2.4 關(guān)死點流量
離心泵在關(guān)死點處運行時,一般認(rèn)為此時的流量為0。吳賢芳[30]在對離心泵關(guān)死點工況進(jìn)行數(shù)值模擬時,認(rèn)為離心泵在關(guān)死點工況下運行時,離心泵的內(nèi)部流動在很小的流量下循環(huán),此流量大致與口環(huán)泄漏量相近,并通過式(1)求解口環(huán)泄漏量。
式中q為扣環(huán)泄流量,kg/s;Qd為設(shè)計流量,m3/h;ns為比轉(zhuǎn)速。Dyson等[31]認(rèn)為,口環(huán)泄漏量的大小約為泵設(shè)計流量的1%~5%。本文在計算時,取這個很小的流量為0.01Qd=0.035 kg/s,在對關(guān)閥啟動過程進(jìn)行求解時,認(rèn)為關(guān)死點流量足夠小時,這個很小的流量在整個啟動過程中可以看作一個不變常數(shù)。
3.1 關(guān)死點工況穩(wěn)態(tài)揚程
圖4所示為模型泵不同轉(zhuǎn)速下關(guān)死點處揚程的模擬值與試驗值對比圖。
由圖4可知,數(shù)值模擬得到的揚程-轉(zhuǎn)速曲線與試驗結(jié)果的變化趨勢相同,數(shù)值模擬結(jié)果均略高于試驗結(jié)果,隨著轉(zhuǎn)速的增加,模型泵關(guān)死點揚程逐漸增大;額定轉(zhuǎn)速處關(guān)死點揚程的模擬值為76.91 m,試驗測得關(guān)死點揚程為74.02 m,模擬值與試驗值的絕對偏差為3.9%,其余工況最大偏差均小于5%。因此,本文對超低比轉(zhuǎn)速離心泵關(guān)死點工況的數(shù)值計算方法具有一定的準(zhǔn)確性。
3.2 關(guān)閥啟動過程瞬態(tài)揚程
為了研究啟動加速度對超低比轉(zhuǎn)速模型泵關(guān)閥啟動過程瞬態(tài)特性的影響,分別在啟動加速度為154.38、102.92和77.19 rad/s2,即加速時間分別為2、3和4 s共3種不同啟動加速度時,對超低比轉(zhuǎn)速離心泵關(guān)閥啟動過程進(jìn)行數(shù)值計算。圖5為關(guān)閥啟動過程揚程曲線的計算結(jié)果和試驗結(jié)果。
圖4 關(guān)死點揚程-轉(zhuǎn)速曲線模擬值與試驗值Fig.4 Head-speed curve of simulation and experiment in shut-off condition
圖5 瞬態(tài)模擬和試驗結(jié)果Fig.5 Transient computational and experimental results
由圖5可知,隨著啟動過程發(fā)展,即轉(zhuǎn)速的線性增加,揚程逐漸增大,揚程在啟動初期增加緩慢,隨后隨時間增加揚程增加速率逐漸增大,揚程脈動幅度逐步加劇,3種不同啟動加速度下啟動過程的末期,揚程均達(dá)到最大值。當(dāng)加速時間為2、3和4 s時,數(shù)值計算得到揚程的峰值分別為83.31、81.62和80.13 m;3種加速時間下試驗測得的揚程峰值分別為80.05、79.28和78.53 m,相對偏差分別為4.07%、2.95%和2.04%,均在5%以內(nèi),表明對超低比轉(zhuǎn)速離心泵關(guān)閥啟動過程的數(shù)值模擬方法具有一定的準(zhǔn)確性。模型泵關(guān)死點處的揚程計算值為76.91 m,3種不同啟動加速度下,啟動完成時的瞬態(tài)揚程分別比穩(wěn)態(tài)揚程高出8.32%、6.13%和4.19%,這表明關(guān)閥啟動過程中揚程的變化具有明顯的瞬態(tài)效應(yīng),啟動過程結(jié)束時會產(chǎn)生一個明顯的沖擊揚程,且隨著啟動加速度的增大,這個沖擊揚程也逐漸增大,表明啟動加速度對超低比速泵關(guān)閥啟動過程的瞬態(tài)特性有明顯的影響。
3.3 內(nèi)部流場結(jié)果對比與分析
通過上述的研究結(jié)果發(fā)現(xiàn),隨著啟動加速度的減小,啟動過程中的瞬態(tài)效應(yīng)逐漸削弱。因此,為了深入分析超低比速泵關(guān)閥啟動過程中的瞬態(tài)特性,本文選取啟動加速度最大的一組啟動方案,分析加速時間t=2 s時關(guān)閥啟動瞬態(tài)和關(guān)死點穩(wěn)態(tài)過程中內(nèi)流場的演化過程。
3.3.1 靜壓分布
圖6分別為關(guān)死點穩(wěn)態(tài)過程與啟動總時間為t=2 s下關(guān)閥啟動瞬態(tài)過程不同時刻泵中間截面的靜壓分布云圖。
圖6 穩(wěn)態(tài)與瞬態(tài)中間截面靜壓分布Fig.6 Static pressure of steady state and transient state in middle section
由圖6可知,不同轉(zhuǎn)速工況下,靜壓最低處均位于葉輪進(jìn)口區(qū)域,葉輪流道出口靠近蝸殼附近斷面中間區(qū)域出現(xiàn)高壓區(qū)。隨著葉輪旋轉(zhuǎn)對流體做功,葉輪流道內(nèi)靜壓隨著半徑的增大逐漸增大,除靠近隔舌的葉輪流道外,其余流道內(nèi)壓力分布均勻,隔舌處壓力梯度較大,表明在關(guān)死點工況,蝸殼隔舌結(jié)構(gòu)對泵內(nèi)靜壓分布有重要影響。隨著轉(zhuǎn)速的增加,泵內(nèi)靜壓逐漸增加,泵進(jìn)出口壓差逐漸增大,不同轉(zhuǎn)速下葉輪流道內(nèi)靜壓分布趨勢相似。不同時刻靜壓最低處均位于葉輪進(jìn)口區(qū)域,隨著葉輪旋轉(zhuǎn)對流體做功,葉輪流道內(nèi)靜壓隨著半徑的增大逐漸增大,葉輪流道內(nèi)壓力分布均勻,隔舌處壓力梯度較大,不同時刻靜壓分布趨勢相似。當(dāng)t=0.4 s時,葉輪出口靠近葉片工作面處出現(xiàn)高壓集中區(qū),隨著轉(zhuǎn)速的增加,這個高壓區(qū)逐漸消失,泵內(nèi)靜壓逐漸增加,泵進(jìn)出口壓差逐漸增大,泵內(nèi)靜壓分別逐漸分布均勻。
由圖6可知,在相同轉(zhuǎn)速時,穩(wěn)態(tài)過程泵內(nèi)靜壓分布與關(guān)閥啟動過程泵內(nèi)靜壓明顯不同,在啟動過程初期,靜壓分布差別最大,隨著轉(zhuǎn)速的增加,泵內(nèi)靜壓分布的差別逐漸減小。
3.3.2 相對速度分布
圖7為關(guān)死點穩(wěn)態(tài)過程與啟動總時間為t=2 s下關(guān)閥啟動瞬態(tài)過程不同時刻泵中間截面的相對速度分布與流線。
圖7 穩(wěn)態(tài)與瞬態(tài)中間截面相對速度分布Fig.7 Relative velocity of steady state and transient state in middle section
由圖7a可知,不同轉(zhuǎn)速下,葉輪流道內(nèi)均存在大面積的低速區(qū),葉輪出口處相對速度最大,葉輪流道內(nèi)存在數(shù)量不等,大小不一的漩渦,葉輪內(nèi)流動損失很大,隨著轉(zhuǎn)速的增加,葉輪內(nèi)相對速度逐漸增大,低速區(qū)面積逐漸減小,漩渦區(qū)的范圍和數(shù)量逐漸減小,葉輪內(nèi)相對速度分布逐漸變的均勻。不同時刻葉輪出口處相對速度最大,葉輪流道內(nèi)同樣存在數(shù)量不等,大小不一的漩渦,當(dāng)啟動初期t=0.4 s時,漩渦區(qū)幾乎充滿整個葉輪流道,葉輪內(nèi)流動損失很大,隨著轉(zhuǎn)速的增加,葉輪內(nèi)相對速度逐漸增大,低速區(qū)面積逐漸減小,漩渦區(qū)的范圍和數(shù)量逐漸減小。
由圖7可知,在相同轉(zhuǎn)速時,穩(wěn)態(tài)過程時泵內(nèi)相對速度大于關(guān)閥啟動過程泵內(nèi)相對速度,在啟動過程初期,相對速度流線分布的差別最大,隨著轉(zhuǎn)速的增加,泵內(nèi)部流場的差別逐漸減小。
3.4 進(jìn)口管路內(nèi)速度分布
圖8為關(guān)死點穩(wěn)態(tài)過程與啟動總時間為t=2 s下關(guān)閥啟動瞬態(tài)過程不同時刻進(jìn)口管路軸截面的速度分布與流線圖。
圖8 穩(wěn)態(tài)與瞬態(tài)過程進(jìn)口管路內(nèi)速度分布Fig.8 Velocity of steady state and transient state in inlet pipe
由圖8a可知,不同轉(zhuǎn)速下,進(jìn)口管路內(nèi)速度沿流動方向逐漸增大,進(jìn)口管路靠近來流處速度流線分布均勻,在靠近吸水室進(jìn)口處出現(xiàn)大量類似卡門渦街的對稱分布漩渦區(qū),隨著轉(zhuǎn)速的增加,進(jìn)口管路內(nèi)速度逐漸增加,在吸水室進(jìn)口處速度最大,漩渦區(qū)范圍逐漸擴大,漩渦數(shù)量逐漸增加,當(dāng)漩渦區(qū)充滿進(jìn)口管路約一半時,漩渦區(qū)范圍不再擴大。由圖8b可知,在啟動初期t=0.4 s時,進(jìn)口管路內(nèi)速度流線分布均勻,當(dāng)t=1.2 s時,靠近吸水室進(jìn)口出出現(xiàn)漩渦區(qū),隨著轉(zhuǎn)速的增加,漩渦區(qū)范圍向來流方向擴大,漩渦數(shù)量增加,漩渦區(qū)分布與穩(wěn)態(tài)過程相似,呈對稱分布。
對比圖8a與8b可以看出,在相同轉(zhuǎn)速時,穩(wěn)態(tài)過程進(jìn)口管路內(nèi)速度大于關(guān)閥啟動過程進(jìn)口管內(nèi)的速度,漩渦區(qū)的范圍及漩渦數(shù)量均大于同一時刻瞬態(tài)過程。
基于對關(guān)死點穩(wěn)態(tài)過程和啟動過程內(nèi)流場的分析發(fā)現(xiàn):在相同轉(zhuǎn)速時,關(guān)閥啟動過程內(nèi)部瞬態(tài)流場的發(fā)展總體上滯后于關(guān)死點處穩(wěn)態(tài)過程內(nèi)部流場。
本文對一臺超低比速泵在關(guān)死點工況進(jìn)行穩(wěn)態(tài)和關(guān)閥啟動瞬態(tài)過程進(jìn)行了數(shù)值模擬,并與試驗結(jié)果進(jìn)行對比,分析了不同啟動加速度對瞬態(tài)沖擊揚程的影響,同時對比了關(guān)死點工況穩(wěn)態(tài)過程與瞬態(tài)過程揚程和內(nèi)流場的區(qū)別,得到以下結(jié)論:
1)關(guān)死點工況下?lián)P程的數(shù)值模擬結(jié)果與試驗結(jié)果偏差均在5%以內(nèi),表明本文采用的數(shù)值計算方法是可行的。
2)關(guān)閥啟動過程中,3種啟動加速度下啟動完成時的瞬態(tài)揚程分別比穩(wěn)態(tài)揚程高出8.32%、6.13%和4.19%,這表明關(guān)閥啟動過程中揚程的變化具有明顯的瞬態(tài)效應(yīng),啟動過程結(jié)束時會產(chǎn)生一個明顯的沖擊揚程,且沖擊揚程隨啟動加速度的增大而增大。
3)相同轉(zhuǎn)速時,啟動過程初期的靜壓分布差別最大;啟動過程蝸殼流道內(nèi)的漩渦區(qū)明顯多于穩(wěn)態(tài)過程;穩(wěn)態(tài)過程進(jìn)口管路內(nèi)相對速度、漩渦區(qū)的范圍及漩渦數(shù)量均大于瞬態(tài)過程。隨著啟動過程中轉(zhuǎn)速增加,這些差異逐漸縮小。
4)相同轉(zhuǎn)速時,關(guān)閥啟動過程內(nèi)部瞬態(tài)流場的發(fā)展總體上滯后于關(guān)死點處穩(wěn)態(tài)過程內(nèi)部流場。
[1] 劉元義,衣振芹. 超低比轉(zhuǎn)速離心泵的研究[J]. 機械工程與自動化,2008(2):198-200. Liu Yuanyi, Yi Zhenqin. Study on super-low specific speed centrifugal pump[J]. Mechanical Engineering & Automation, 2008(2): 198-200. (in Chinese with English abstract)
[2] 郭維,白東安. 超低比轉(zhuǎn)速離心泵內(nèi)流場計算及分析[J].火箭推進(jìn),2007,33(2):26-30. Guo Wei, Bai Dongan. Inner flow field computation and analysis of super low-specific-speed centrifugal pump[J]. Journal of Rocket Propulsion, 2007, 33(2): 26-30. (in Chinese with English abstract)
[3] 齊學(xué)義,劉永明,胡家旺,等. 提高超低比轉(zhuǎn)速離心泵效率的方法[J]. 水電能源科學(xué),2011,29(2):118-120. Qi Xueyi, Liu Yongming, Hu Jiawang, et al. Method of improving efficiency of low specific speed centrifugal pump[J]. Water Resources and Power, 2011, 29(2): 118-120. (in Chinese with English abstract)
[4] 聞建龍,沙毅,李傳君,等. 無過載超低比轉(zhuǎn)速離心泵水力設(shè)計[J]. 江蘇大學(xué)學(xué)報:自然科學(xué)版,2003,24(6):21-24. Wen Jianlong, Sha Yi, Li Chuanjun, et al. Hydraulic design of non-overload super-low specific speed centrifugal pump[J]. Journal of Jiangsu University :Natural Science Edition, 2003, 24(6): 21-24. (in Chinese with English abstract)
[5] 張德勝,施衛(wèi)東,陳斌,等. 低比轉(zhuǎn)速離心泵內(nèi)部流場分析及試驗[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(11):108-113. Zhang Desheng, Shi Weidong, Chen Bin, et al. Turbulence analysis and experiments of low-specific-speed centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 108-113. (in Chinese with English abstract)
[6] 齊學(xué)義,孔源,田亞斌,等. 基于CFD技術(shù)的超低比轉(zhuǎn)速離心泵葉輪的優(yōu)化設(shè)計[J]. 蘭州理工大學(xué)學(xué)報,2010,36(4):52-55. Qi Xueyi, Kong Yuan, Tian Yabin, et al. Optimization design of impeller for centrifugal pumps with super-low specific-speed by means of CFD technology[J]. Journal of Lanzhou University of Technology, 2010, 36(4): 52-55. (in Chinese with English abstract)
[7] 付燕霞,袁壽其,袁建平,等. 離心泵小流量工況下的內(nèi)部流動特性[J]. 排灌機械工程學(xué)報,2014,32(3):185-190. Fu Yanxia, Yuan Shouqi, Yuan Jianping, et al. Internal flow characteristics of centrifugal pump at low flow rates[J].Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2014, 32(3): 185-190. (in Chinese with English abstract)
[8] Liu H L, Wang K, Kim H B, et al. Experimental investigation of the unsteady flow in a double-blade centrifugal pump impeller[J]. Science China Technological Sciences, 2013, 56(4): 812-817.
[9] GonzáLez J, FernáNdez J, Blanco E, et al. Numerical simulation of the dynamic effects uue to impeller-volute interaction in a centrifugal pump[J]. Journal of Fluids Engineering, 2002, 124(2): 348-355.
[10] Dazin A, Caignaert G, Bois G, et al. Transient behavior of turbomachinery: Applications to radial flow pump startups[J]. Journal of Fluids Engineering, 2007, 129(11): 1436-1444.
[11] Farhadi K, Bousbia-Salah A, D’Auria F. A model for the analysis of pump start-up transients in Tehran Research Reactor[J]. Progress in Nuclear Energy, 2007, 49(7): 499-510.
[12] Rochuon N, Trébinjac I, Billonnet G. An extraction of the dominant rotor-stator interaction modes by the use of proper orthogonal decomposition (POD)[J]. Journal of Thermal Science, 2006, 15(2): 109-114.
[13] 李貴東,王洋,鄭意,等. 氣液兩相條件下離心泵內(nèi)部流態(tài)及受力分析[J]. 排灌機械工程學(xué)報,2016,34(5):369-374. Li Guidong, Wang Yang, Zheng Yi, et al. Unsteady internal flow and thrust analysis of centrifugal pump under gas-liquid two- phase flow conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(5): 369-374. (in Chinese with English abstract)
[14] 張玉良,肖俊建,崔寶玲,等. 離心泵快速變工況瞬態(tài)過程特性模擬[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(11):68-75. Zhang Yuliang, Xiao Junjian, Cui Baoling, et al. Simulation of transient behavior in prototype centrifugal pump during rapid regulating flow rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 68-75. (in Chinese with English abstract)
[15] 王玉川,譚磊,曹樹良,等. 離心泵葉輪區(qū)瞬態(tài)流動及壓力脈動特性[J]. 機械工程學(xué)報,2014,50(10):163-169. Wang Yuchuan, Tan Lei, Cao Shuliang, et al. Characteristics of transient flow and pressure fluctuation in impeller for centrifugal pump[J]. Journal of Mechanical Engineering, 2014, 50(10): 163-169. (in Chinese with English abstract)
[16] 韓偉,岳婷,李仁年,等. 動靜葉柵內(nèi)固液兩相過渡過程的數(shù)值研究[J]. 排灌機械工程學(xué)報,2015,33(2):111-115. Han Wei, Yue Ting, Li Rennian, et al. Numerical analysis of transition process of solid-liquid two-phase in rotor-stator cascades[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2015, 33(2): 111-115. (in Chinese with English abstract)
[17] Thanapandi P, Prasad R. Centrifugal pump transient characteristics and analysis using the method of characteristics[J]. International Journal of Mechanical Sciences, 1995, 37(1): 77-89.
[18] Thanapandi P, Prasad R. A quasi-steady performance prediction model for dynamic characteristics of a volute pump[J]. Proceedings of the Institution of Mechanical Engineers Part a Journal of Power & Energy, 1994, 208(11): 47-58.
[19] Wu D Z, Jiao L, Wang L Q. Experimental study on cavitation performance of a centrifugal pump during starting period[J]. Journal of Engineering Thermophysics, 2008, 29(10): 1682-1684.
[20] Wu D, Wang L, Hao Z, et al. Experimental study on hydrodynamic performance of a cavitation centrifugal pump during transient operation[J]. Journal of Mechanical Science and Technology, 2010, 24(2): 575-582.
[21] Li Z, Wu P, Wu D, et al. Experimental and numerical study of transient flow in a centrifugal pump during startup[J]. Journal of Mechanical Science and Technology, 2011, 25(3): 749-757.
[22] Wu D, Peng W, Li Z, et al. The transient flow in a centrifugal pump during the discharge valve rapid opening process[J]. Nuclear Engineering & Design, 2010, 240(12): 4061-4068. [23] Li Zhifeng, Wu Dazhuan, Wang Leqin, et al. Numerical simulation of the transient flow in a centrifugal pump during starting period[J]. Journal of Fluids Engineering, 2010, 132(8): 081102.
[24] 武鵬,吳大轉(zhuǎn),李志峰,等. 離心泵流量突增過程瞬態(tài)流動研究[J]. 工程熱物理學(xué)報,2010(3):419-422. Wu Peng, Wu Dazhuan, Li Zhifeng, et al. Study of transient flow in centrifugal pump during flow impulsively increase process[J].Journal of Engineering Thermophysics, 2010(3): 419-422. (in Chinese with English abstract)
[25] 劉竹青,朱強,楊魏,等. 雙吸離心泵關(guān)閥啟動過程的瞬態(tài)特性研究[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(10):44-48. Liu Zhuqing, Zhu Qiang, Yang Wei, et al. Transient characteristics of double-suction centrifugal pump during starting period under shut-off condition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 44-48. (in Chinese with English abstract)
[26] 袁建平,夏水晶,宗偉偉,等. 基于流固耦合的離心泵啟動過程瞬態(tài)葉片動應(yīng)力特性[J]. 振動與沖擊,2016,35(12):197-202. Yuan Jianping, Xia Shuijing, Zong Weiwei, et al. Transient stress characteristic during centrifugal pumps start-up based on fluent-structure interaction[J]. Journal of Vibration and Shock, 2016, 35(12): 197-202. (in Chinese with English abstract)
[27] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[28] Menter F R. Zonal. Two-equation k-ω turbulence model for aerodynamic flows[J]. AIAA Paper, 1993: 1993-2006.
[29] Menter F R, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer 4, 2003.
[30] 吳賢芳. 離心泵關(guān)死點性能的研究[D]. 鎮(zhèn)江:江蘇大學(xué),2013. Wu Xianfang. Research on Characteristics of Centrifugal Pumps at Shut-off Condition[D]. Zhenjiang: Jiangsu University, 2013.
[31] Dyson G, Teixeira J. Investigation of closed valve operation using computational fluid dynamics[C]// ASME 2009 Fluids Engineering Division Summer Meeting, 2009: 1-9.
Transient characteristic analysis of ultra-low specific-speed centrifugal pumps during startup period under shut-off condition
Wang Yong1, Chen Jie1, Liu Houlin1, Shao Chang1, Zhang Xiang2※
(1. National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China; 2. Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China)
In order to explore the characteristics of the ultra-low specific-speed centrifugal pump during startup period under shut-off condition, an ultra-low specific-speed centrifugal pump with the specific-speed of 25 was chosen as the research object. Unsteady numerical calculation under shut-off condition and transient condition was conducted for the ultra-low specific-speed centrifugal pump. The accuracy of numerical simulation was verified by experimental contrast. Based on the numerical results, the influence of different starting acceleration on the transient impact head, the difference between steady state and transient impact head, and the internal flow field were analyzed. The results showed that: The variation tendency of performance curve on shut-off condition under steady state condition was similar with the experiment, and along with the increase of rotational speed, the head under shut-off condition increased gradually. When the start was completed, the transient head was 8.32%, 6.13% and 4.19% higher than the steady state head, respectively, at 3 different starting accelerations, which indicated that the valve head change during the startup process had a significant transient effect. There was a significantly higher impact head at the end of startup processes with 3 different start accelerations, and with the increase of start acceleration, the impact head was also increased. With the rotation of the impeller acting fluid, the static pressure increased gradually with the increase of the radius. In addition to the impeller flow close to the tongue, the pressure distribution in the other channels was uniform, and the pressure gradient of the tongue was larger, which indicated that the volute tongue structure had an important influence on the distribution of the static pressure in the pump. With the increase of rotation speed, the static pressure increased gradually, and the pressure difference between the inlet and outlet of the pump increased gradually. When the time was 0.4 s, a high pressure concentration area occurred at impeller outlet near the blade pressure surface, and along with the increase of rotation speed, the high pressure concentration area gradually disappeared. The pump pressure distribution gradually grew uniform with pump pressure increasing. At the same speed, static pressure distribution, absolute speed streamline, and relative speed streamline shaft section of inlet pipe during stable process were different from the distribution during transient startup process. The differences were narrow with the increase of rotational speed. At the same speed, the development of inside transient flow field during transient startup process generally lagged after stable condition. At the same speed, static pressure of steady state and startup period under shut-off condition was obviously different. At the beginning of startup period, the static pressure distribution difference was the maximum, and with the increase of speed, the static pressure distribution difference gradually decreased. The relative velocity of steady state and startup period under shut-off condition was obviously different. At the beginning of the startup process, the difference of the streamline distribution of relative velocity was the biggest; with the increase of rotating speed, the difference of pump flow field decreased gradually. The relative velocity of inlet pipe in the process of steady state was larger than that in the process of startup, and the ranges of vortex region and vortex number were greater than the transient process at the same time. Based on the above results, it was found that with the decrease of starting acceleration, the transient effect was weakened. The research results provide the reference for the further study of the characteristics of transient process of the ultra-low specific-speed centrifugal pump.
centrifugal pump; computer simulation; experiment; shut-off condition; steady characteristic; transient characteristic
10.11975/j.issn.1002-6819.2017.11.009
TH311
A
1002-6819(2017)-11-0068-07
王 勇,陳 杰,劉厚林,邵 昌,張 翔. 超低比轉(zhuǎn)速離心泵關(guān)閥啟動瞬態(tài)特性分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(11):68-74.
10.11975/j.issn.1002-6819.2017.11.009 http://www.tcsae.org
Wang Yong, Chen Jie, Liu Houlin, Shao Chang, Zhang Xiang. Transient characteristic analysis of ultra-low specific-speed centrifugal pumps during startup period under shut-off condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 68-74. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.009 http://www.tcsae.org
2016-12-20
2017-04-23
江蘇省產(chǎn)學(xué)研聯(lián)合創(chuàng)新資金—前瞻性聯(lián)合研究項目(BY2015064-10);江蘇省“六大人才高峰”高層次人才項目(GBZB-017);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目;流體及動力機械教育部重點實驗室(西華大學(xué))開放課題(szjj2016-068)
王 勇,男,吉林白山人,博士,副研究員,主要研究方向為泵設(shè)計理論與方法。鎮(zhèn)江 江蘇大學(xué)國家水泵及系統(tǒng)工程技術(shù)研究中心,212013。Email:wylq@ujs.edu.cn
※通信作者:張 翔,博士,講師,主要研究方向為水力機械數(shù)值計算。成都 西華大學(xué)流體及動力機械教育部重點實驗室610039。
Email:zhangxiang@mail.xhu.edu.cn