吳惠昌,謝煥雄,胡志超,顧峰瑋,游兆延,顏建春,魏 海
(農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
·農(nóng)產(chǎn)品加工工程·
連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀的設(shè)計(jì)與試驗(yàn)
吳惠昌,謝煥雄,胡志超※,顧峰瑋,游兆延,顏建春,魏 海
(農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
為了提高谷物干燥設(shè)備自動(dòng)化水平和干燥后谷物品質(zhì),提出一種基于電阻法檢測(cè)原理,測(cè)量稻谷、小麥和大麥的連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀。其主要由谷物取樣機(jī)構(gòu)、谷物采樣機(jī)構(gòu)和信號(hào)采集電路等部分組成。通過(guò)測(cè)量谷物單粒外形尺寸統(tǒng)計(jì)出谷物等效粒徑。運(yùn)用谷物等效粒徑和谷物與金屬表面的靜滑動(dòng)摩擦角,計(jì)算確定谷物取樣機(jī)構(gòu)中不銹鋼制異向正弦螺旋桿的中徑和螺距分別為16和9 mm。由螺旋桿與分粒撥刀組成的谷物取樣機(jī)構(gòu),在剔除雜物和多余谷物的同時(shí),使谷物以連續(xù)單粒的形式進(jìn)入進(jìn)料口。選定模數(shù)為0.4 mm斜紋表面滾花形式碾壓輥?zhàn)鳛槟雺弘姌O,測(cè)量10%~35%含水率范圍內(nèi)稻谷、小麥和大麥單粒電阻值。構(gòu)建稻谷、小麥和大麥的單粒阻值-含水率對(duì)應(yīng)關(guān)系曲線(xiàn)并回歸出水分計(jì)算函數(shù)(稻谷R2=0.998;小麥R2=0.999;大麥R2=0.999)。設(shè)計(jì)多路復(fù)用比例檢測(cè)電路、二階壓控有源低通濾波器和50Hz陷波等信號(hào)處理電路。采用基于ARM CortexTM-M3核的低功耗32位微處理器硬件和軟件平臺(tái)完成谷物水分?jǐn)?shù)據(jù)的采樣、處理和計(jì)算?,F(xiàn)場(chǎng)水分在線(xiàn)檢測(cè)與烘干法對(duì)比試驗(yàn)表明,在循環(huán)式谷物烘干機(jī)烘干過(guò)程?5~55 ℃的谷物溫度和10%~35%含水率范圍內(nèi),單粒式在線(xiàn)水分測(cè)定儀的在線(xiàn)水分測(cè)量絕對(duì)誤差≤±0.4%,一次100粒谷物測(cè)量平均時(shí)間≤55s,水分測(cè)量重復(fù)誤差≤±0.3%,研究結(jié)果為實(shí)現(xiàn)谷物烘干過(guò)程水分在線(xiàn)檢測(cè)提供參考。
谷物;水分;電阻;單粒式;STM32低功耗微處理器
谷物干燥是糧食安全儲(chǔ)藏的重要環(huán)節(jié)[1-4]。近年來(lái),中國(guó)谷物干燥模型解析理論及控制技術(shù)研究取得了較大突破,尤其在谷物水分結(jié)合能及干燥系統(tǒng)熱能結(jié)構(gòu)解析方面[5-8],實(shí)現(xiàn)利用客觀(guān)干燥勢(shì)進(jìn)行高效節(jié)能干燥,創(chuàng)制出多種谷物干燥自適應(yīng)控制系統(tǒng)[9-12]。但谷物烘干過(guò)程中水分在線(xiàn)精確檢測(cè)仍是制約谷物干燥系統(tǒng)開(kāi)發(fā)的核心技術(shù)難點(diǎn)。
谷物水分檢測(cè)原理主要有電阻法、電容法、微波法、紅外法、中子法、核磁共振法等。微波法、紅外法及電容法均受谷物的形狀、厚度、密度以及粒體內(nèi)部的水分分布等因素影響,檢測(cè)精度和重復(fù)性較低[13-17]。中子法和核磁共振法系統(tǒng)復(fù)雜,造價(jià)高,現(xiàn)階段還不能用于谷物干燥過(guò)程的水分在線(xiàn)測(cè)量[18-21]。電阻法依據(jù)谷物不同含水率對(duì)應(yīng)不同的導(dǎo)電率原理檢測(cè)谷物水分,是谷物在線(xiàn)水分儀普遍采用的方法,如日本三久和無(wú)錫金子烘干控制系統(tǒng)均自帶基于電阻法的單次多粒式水分儀,與烘干設(shè)備成套提供;李長(zhǎng)友等設(shè)計(jì)出具有縱向采料盤(pán)的電阻式單粒稻谷水分儀[22];張永林等采用阻-頻轉(zhuǎn)換和智能非線(xiàn)性處理算法設(shè)計(jì)單粒式谷物水分儀[23];梅慶等采用單螺旋桿擠壓測(cè)阻機(jī)構(gòu)設(shè)計(jì)谷物在線(xiàn)水分儀[24]。但針對(duì)電阻法存在阻值分布范圍極寬、采樣信號(hào)幅值小、取樣要求高和抗干擾性差等問(wèn)題的解決未見(jiàn)相應(yīng)研究。
論文針對(duì)上述問(wèn)題,從取樣機(jī)構(gòu)優(yōu)化、碾壓機(jī)理分析、采樣電路創(chuàng)新設(shè)計(jì)和數(shù)據(jù)分析處理入手,研發(fā)一種基于電阻法的連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀,實(shí)現(xiàn)對(duì)稻谷、小麥和大麥水分的在線(xiàn)檢測(cè),并進(jìn)行應(yīng)用試驗(yàn),驗(yàn)證其水分檢測(cè)的穩(wěn)定性、可靠性和準(zhǔn)確性。
連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀的系統(tǒng)構(gòu)成如圖1所示,在驅(qū)動(dòng)電機(jī)驅(qū)動(dòng)下的谷物取樣機(jī)構(gòu)承接物料顆粒,在谷物取樣機(jī)構(gòu)上方的清雜機(jī)構(gòu)去除多余谷物和雜物,經(jīng)過(guò)谷物取樣機(jī)構(gòu)篩選和排序后,谷物以等間隔單粒的形式輸送至采樣機(jī)構(gòu),采樣機(jī)構(gòu)在驅(qū)動(dòng)電機(jī)驅(qū)動(dòng)下碾壓?jiǎn)瘟9任?。測(cè)控電路實(shí)時(shí)采集碾壓過(guò)程中傳感器測(cè)得的谷物電阻值和谷物溫度值,根據(jù)由單粒阻值-含水率對(duì)應(yīng)關(guān)系曲線(xiàn)回歸出的數(shù)學(xué)函數(shù)計(jì)算出單粒谷物對(duì)應(yīng)的水分值。測(cè)控電路保存100粒有效采樣的單粒谷物的水分值,并對(duì)100粒單粒谷物的水分值進(jìn)行整理分析,得出本次在線(xiàn)采樣的谷物水分值,并輸出至觸摸屏,供用戶(hù)或上位機(jī)系統(tǒng)分析使用。被采樣的每粒谷物含水率都代表一部分物料的含水率,連續(xù)采樣100粒谷物單粒,使每次測(cè)得的水分值更接近所烘干物料的整體水分值,較多粒式采樣方式更準(zhǔn)確。
圖1 谷物水分測(cè)定儀系統(tǒng)結(jié)構(gòu)框圖Fig.1 Structure diagram of grain moisture tester system
連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀安裝于設(shè)備提升機(jī)提升通道的側(cè)邊或出料口[25]。完成一次水分測(cè)定需有效碾壓100粒谷物單粒,損耗小于總烘干谷物總量的百萬(wàn)分之一,對(duì)烘干后谷物損失率的增加可忽略。經(jīng)碾壓后破損的谷物單粒直接返送至提升機(jī),回到烘干機(jī)的烘干倉(cāng),而谷物烘干熱風(fēng)溫度低于60 ℃,破損的谷物單粒在烘干過(guò)程中不會(huì)產(chǎn)生焦糊。
基于電阻法的連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀應(yīng)用于谷物烘干過(guò)程在線(xiàn)水分測(cè)定,必須在機(jī)械機(jī)構(gòu)設(shè)計(jì)上實(shí)現(xiàn)谷物連續(xù)平穩(wěn)取樣,單?;判蚝涂煽坑行雺?。在信號(hào)采集電路設(shè)計(jì)上解決不同含水率谷物極寬電阻范圍的測(cè)量和現(xiàn)場(chǎng)工頻干擾的問(wèn)題。計(jì)算軟件的設(shè)計(jì)需完成單粒谷物碾壓阻值實(shí)時(shí)采樣和含水率計(jì)算,統(tǒng)計(jì)分析所有單粒谷物含水率,輸出一次水分測(cè)定結(jié)果。
2.1 機(jī)械結(jié)構(gòu)設(shè)計(jì)
2.1.1 工作原理
谷物在線(xiàn)水分儀機(jī)械結(jié)構(gòu)如圖2所示。機(jī)械結(jié)構(gòu)的合理設(shè)計(jì)是保證水分儀在線(xiàn)連續(xù)單粒采樣穩(wěn)定、可靠和準(zhǔn)確的基礎(chǔ)。連續(xù)單粒式谷物在線(xiàn)水分儀主要由測(cè)控電路板1、螺旋桿4、分粒撥刀6、碾壓輥9、直流電機(jī)11等組成。進(jìn)行水分檢測(cè)時(shí),測(cè)控電路板1輸出啟停指令控制直流電機(jī)11經(jīng)內(nèi)嵌變速器減速后輸出200 r/min的轉(zhuǎn)速,驅(qū)動(dòng)傳動(dòng)齒輪10、碾壓輥9和傳動(dòng)軸3旋轉(zhuǎn),同時(shí)安裝于傳動(dòng)軸3上的螺旋桿4和分粒撥刀6進(jìn)行同步異向旋轉(zhuǎn),使其完成水分檢測(cè)所需谷物樣品的接收、清雜、單粒式排序和平穩(wěn)碾壓。在螺旋桿4和分粒撥刀6的上方配置楔形清雜塊2,在雙螺旋桿4推送谷物時(shí),可以多方位剔除谷物中的雜物和多余物料,達(dá)到單粒有序無(wú)雜輸送的目的。
圖2 單粒式谷物水分測(cè)定儀機(jī)械結(jié)構(gòu)圖Fig.2 Mechanical structure of single grain moisture tester
2.1.2 谷物取樣機(jī)構(gòu)
連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀的取樣機(jī)構(gòu)由一對(duì)不銹鋼制異向正弦螺旋桿和分粒撥刀組成(圖3)。散落在取樣機(jī)構(gòu)上的谷物在同步異向旋轉(zhuǎn)的螺旋桿上緣推動(dòng)下向進(jìn)料口移動(dòng)。螺旋桿的螺旋曲面軸向截面為正弦波形,保證谷物單粒在推送過(guò)程中水平姿態(tài)平穩(wěn)。一對(duì)分粒撥刀安裝在螺旋桿與進(jìn)料口之間,旋轉(zhuǎn)角度錯(cuò)位180°,在傳動(dòng)軸的帶動(dòng)下與螺旋桿同步旋轉(zhuǎn),使得螺旋桿每旋轉(zhuǎn)半圈只能有一粒谷物進(jìn)入進(jìn)料口。
圖3 谷物取樣機(jī)構(gòu)部件示意圖Fig.3 Schematic diagram of grain-fetched mechanism
谷物在螺旋桿上緣是否能完成水平單粒排列取決于螺旋桿的中徑和螺距尺寸大小。螺旋桿中徑和螺距尺寸過(guò)大或過(guò)小,會(huì)導(dǎo)致過(guò)多谷物單粒集聚于兩螺旋桿之間或在螺旋桿旋轉(zhuǎn)過(guò)程中脫落,使取樣機(jī)構(gòu)不能正常提取單粒谷物。螺旋桿的中徑和螺距尺寸是由谷物單粒大小以及谷物在螺旋桿表面靜滑動(dòng)摩擦角決定[26-27],圖4所示雙螺旋桿取樣示意圖。
依據(jù)式(1)可計(jì)算出螺旋桿中徑
式中D為螺旋桿中徑,mm;α為單粒谷物與螺旋桿中徑線(xiàn)接觸點(diǎn)的切線(xiàn)水平夾角,(°);d為谷物單粒等效粒徑,mm。由于谷物單粒在雙螺旋桿取樣機(jī)構(gòu)上初始姿態(tài)為隨機(jī)的,所以采用谷物單粒外形三軸最大外接圓直徑平均值作為幾何當(dāng)量徑計(jì)算谷物單粒等效粒徑。
圖4 雙螺旋桿取樣示意圖Fig.4 Schematic diagram of double helix rods fetching
對(duì)中國(guó)水稻、小麥和大麥代表性主產(chǎn)品種谷粒外形尺寸進(jìn)行測(cè)量,統(tǒng)計(jì)結(jié)果如表1所示。為了保證取樣機(jī)構(gòu)對(duì)不同谷物的兼容性,取所測(cè)谷粒最大等效粒徑作為谷物等效粒徑,即d取值5.18 mm。含水率為10%~30%的谷物與不銹鋼表面的靜滑動(dòng)摩擦角為26°~40°,為了使谷物單粒在螺旋桿間平穩(wěn)移動(dòng)徑向不脫落,谷物單粒與螺旋桿中徑線(xiàn)接觸點(diǎn)的切線(xiàn)水平夾角α取45°~50°,根據(jù)式(1)計(jì)算可得雙螺旋桿中徑為D=12.54~16.96 mm,取值16 mm。
確定雙螺旋桿中徑后根據(jù)式(2)可驗(yàn)證雙螺旋桿旋轉(zhuǎn)過(guò)程中徑向剔除多余谷物的能力。
式中β為多余谷物單粒與螺旋桿中徑線(xiàn)接觸點(diǎn)的切線(xiàn)水平夾角,(°)。
由式(2)分析可知,谷物單粒等效粒徑d越大,多余谷物與螺旋桿中徑線(xiàn)接觸點(diǎn)的切線(xiàn)水平夾角β越小,越容易剔除,所以驗(yàn)證計(jì)算時(shí)谷物單粒等效粒徑d取表1中谷物等效粒徑均值4.7 mm。由式(2)計(jì)算可得此時(shí)β=24.3°,小于谷物與光滑不銹鋼表面的靜滑動(dòng)摩擦角,則多余谷物單粒在與雙螺旋桿表面摩擦力的作用下被徑向剔除出取樣機(jī)構(gòu)。
表1 谷物單粒外形尺寸測(cè)量統(tǒng)計(jì)表Table 1 Statistical table of single grain size measurement
式中P為螺旋桿螺距,mm;φ為螺紋升角的余角,(°)。綜合考慮谷物與不銹鋼表面的靜滑動(dòng)摩擦角和螺旋推送物料的平穩(wěn)性與可靠性,φ取值80°,則螺距P由式(3)可得為8.86 mm,取值9 mm。
為使谷物單粒在雙螺旋桿上水平移動(dòng)過(guò)程中的連續(xù)和不越齒拋粒,選取螺紋壓頂高和牙底高為2 mm,使等效粒徑尺寸大小的谷物單粒的重心始終低于螺紋齒頂。雙螺旋桿的長(zhǎng)度決定同時(shí)承接谷物的數(shù)量,本設(shè)計(jì)只需保證螺旋齒間單粒輸送,結(jié)合水分測(cè)定儀結(jié)構(gòu)尺寸和安裝的要求,雙螺旋桿的長(zhǎng)度取50 mm。
取樣機(jī)構(gòu)雙螺旋桿旋轉(zhuǎn)速度決定谷物單粒推入進(jìn)料口的速度,影響完成一次水分值測(cè)量的用時(shí)。根據(jù)《電容法和電阻法糧食水分測(cè)定儀通用技術(shù)條件》[28]規(guī)定,
根據(jù)式(3)可計(jì)算出螺旋桿螺距P電阻法水分儀完成一次水分測(cè)量的時(shí)間應(yīng)不超過(guò)1 min。以有效采樣100粒谷物單粒阻值作為水分計(jì)算數(shù)據(jù),異向正弦雙螺旋桿每旋轉(zhuǎn)半圈可向進(jìn)料口推入1粒谷物,所以選取取樣機(jī)構(gòu)螺旋桿的轉(zhuǎn)速為60 r/min,則完成一次水分?jǐn)?shù)據(jù)采樣的設(shè)計(jì)時(shí)間為50 s。
綜上所述取樣機(jī)構(gòu)螺旋桿的設(shè)計(jì)參數(shù)如表2所示。
表2 谷物取樣機(jī)構(gòu)雙螺旋桿設(shè)計(jì)參數(shù)表Table 2 Design parameters of double screw rods used in grain-fetched mechanism
2.1.2 谷物采樣機(jī)構(gòu)
連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀的采樣機(jī)構(gòu)由2個(gè)相互絕緣的不銹鋼碾壓輥構(gòu)成,在異向旋轉(zhuǎn)碾壓谷物單粒時(shí)作為電極,探測(cè)被碾壓谷物單粒的實(shí)時(shí)電阻值。碾壓輥的直徑、表面滾花、碾壓間距和轉(zhuǎn)速是影響有效性碾壓的重要參數(shù)。所謂有效碾壓是指谷物單粒被平穩(wěn)均勻碾壓,不產(chǎn)生跳粒、斷裂和粘連現(xiàn)象。
碾壓輥的直徑和長(zhǎng)度決定一對(duì)異向旋轉(zhuǎn)碾壓輥捕獲單粒谷物的成功率,直徑越大捕獲成功率越高,綜合結(jié)構(gòu)設(shè)計(jì)要求確定碾壓輥直徑為55 mm,長(zhǎng)度為12 mm。碾壓間距為兩碾壓輥碾壓面的最小距離,直接影響對(duì)谷物顆粒的碾壓力,綜合考慮碾壓后谷物與碾壓輥粘連程度,取碾壓間距為0.4 mm[29]。采用彈性預(yù)緊機(jī)構(gòu)將兩碾壓輥安裝于水分儀殼體上,確保使用壽命內(nèi)碾壓間距保持不變。
碾壓輥表面滾花類(lèi)型則影響碾壓的平穩(wěn)性,常見(jiàn)表面滾花類(lèi)型有直紋、斜紋和網(wǎng)紋(圖5)。依據(jù)標(biāo)準(zhǔn)《滾花》規(guī)定的計(jì)算方法[30],直徑55 mm不銹鋼碾壓輥滾花加工應(yīng)選模數(shù)為0.4 mm的滾花刀,斜紋刀螺旋角選標(biāo)準(zhǔn)30°。選取模數(shù)為0.4 mm的直紋、斜紋和網(wǎng)紋3種滾花開(kāi)展試驗(yàn)和模擬仿真研究,碾壓平穩(wěn)性?xún)?yōu)劣依次為斜紋、網(wǎng)紋和直紋滾花,故碾壓輥表面滾花形式選擇斜紋[31]。
圖5 三種滾花形式的碾壓輥Fig.5 Three kinds of knurling roller
從谷物單粒的組成結(jié)構(gòu)可知,水稻、小麥和大麥的胚乳均被一層表皮包裹。谷物采樣機(jī)構(gòu)在進(jìn)行碾壓谷物單粒時(shí)須考慮表皮水分和胚乳水分的影響,因此谷物采樣機(jī)構(gòu)采用揉搓式碾壓,兩碾壓輥的轉(zhuǎn)速分別選取35和52 r/min。在兩碾壓輥捕獲單粒谷物時(shí),由于轉(zhuǎn)速差的存在,谷物單粒表皮被碾壓后迅速被撥裂,使碾壓輥充分碾壓谷物單粒的胚乳。單粒谷物阻值測(cè)量包括前期表皮阻值和后期胚乳阻值,計(jì)算輸出的單粒谷物含水率值為表皮和胚乳的整體含水率。采樣機(jī)構(gòu)碾壓輥的設(shè)計(jì)參數(shù)如表3所示。
表3 谷物采樣機(jī)構(gòu)碾壓輥設(shè)計(jì)參數(shù)表Table 3 Design parameters of roller used in grain-sampled mechanism
2.2 信號(hào)采集電路設(shè)計(jì)
采樣機(jī)構(gòu)碾壓谷物單粒時(shí),信號(hào)采集電路周期性采集碾壓過(guò)程中兩碾壓輥間的瞬態(tài)阻值,并保存碾壓過(guò)程中全部瞬態(tài)阻值數(shù)據(jù)。單粒谷物碾壓結(jié)束后,對(duì)所測(cè)所有瞬態(tài)阻值數(shù)據(jù)進(jìn)行分析處理并計(jì)算出單粒谷物水分值。信號(hào)采集電路設(shè)計(jì)原理框圖如圖6所示。
圖6 信號(hào)采集電路設(shè)計(jì)原理框圖Fig.6 Schematic diagram of signal acquisition circuit design
2.2.1 多路復(fù)用比例電路
不同含水率的單粒谷物具有極寬的電阻域特性,比容積電阻范圍可達(dá)10-2~1010?·cm[22]。常規(guī)比例法測(cè)量電路很難滿(mǎn)足測(cè)量要求,為此本文設(shè)計(jì)了多路復(fù)用比例電路,電路原理圖如圖7所示。
圖7 多路復(fù)用比例電路原理圖Fig.7 Schematic diagram of multiplex proportional circuit
為保證比例電路復(fù)選開(kāi)關(guān)的頻率響應(yīng)特性和減少開(kāi)關(guān)接觸電阻對(duì)標(biāo)準(zhǔn)比例電阻的影響,S1和S2選擇Standex-Meder公司干簧管繼電器。依據(jù)式(4)可計(jì)算出谷物等效電阻Rx
式中v1、v2和v3為電路節(jié)點(diǎn)電勢(shì)值,V;Rx為谷物等效電阻,k?;Ri為第i路標(biāo)準(zhǔn)電阻值,k?;Ri的取值如表4所示。
表4 多路復(fù)用比例電路標(biāo)準(zhǔn)電阻取值表Table 4 Standard resistance value table of multiplex proportional circuit
2.2.2 濾波電路
為了提高信號(hào)采集電路的抗干擾能力,分別采用集成電路AD8643和LM358構(gòu)成二階壓控有源低通濾波器和雙T有源帶阻濾波電路,能夠有效抵抗1 kV浪涌和強(qiáng)度為3 A/m工頻磁場(chǎng)的干擾。
2.2.3 A/D轉(zhuǎn)換電路
多路復(fù)用比例電路輸出的3路電壓信號(hào)經(jīng)過(guò)低通濾波器和50 Hz陷波電路濾波后輸入A/D轉(zhuǎn)換電路,選擇Analog Devices公司的4通道16位雙極性輸入同步模數(shù)轉(zhuǎn)換芯片AD7606-4構(gòu)成A/D轉(zhuǎn)換電路。本設(shè)計(jì)中AD7606-4選擇并行接口和64倍過(guò)采樣數(shù)字濾波。
2.2.4 微處理器系統(tǒng)
選擇ST公司32位基于ARM CortexTM-M3核的STM32L151CBQ6低功耗微處理器構(gòu)成微處理器系統(tǒng)核心,具有豐富功能配置和32MHz的CPU處理速度,滿(mǎn)足水分儀大量數(shù)據(jù)計(jì)算處理和接口功能的要求。
2.2.5 電 源
連續(xù)單粒式谷物在線(xiàn)水分儀為DC24V供電,電源設(shè)計(jì)采用隔離穩(wěn)壓正負(fù)雙輸出DC-DC模塊,隔離電壓為3 kV,能有效抵抗1kV/5kHz的電快速脈沖群干擾。
2.3 水分計(jì)算方法
選取含水率10%~35%范圍內(nèi)的揚(yáng)粳239、淮麥33和揚(yáng)農(nóng)啤4號(hào)作為稻谷、小麥和大麥的試驗(yàn)樣品,在谷物溫度為25 ℃時(shí),使用電子萬(wàn)能試驗(yàn)機(jī)、高精度程控直流源和數(shù)字萬(wàn)用表,采用比例法測(cè)量不同含水率谷物單粒被碾壓輥碾壓時(shí)的直流電阻值,記錄兩碾壓輥碾壓間距為0.4 mm時(shí)的穩(wěn)態(tài)阻值。相同水分值的樣品測(cè)量100粒后取平均阻值。樣品含水率采用《糧食、油料檢驗(yàn)水分測(cè)定法》規(guī)定的105 ℃恒質(zhì)量法測(cè)得[32]。根據(jù)試驗(yàn)數(shù)據(jù)得出如圖8所示含水率與阻值關(guān)系曲線(xiàn)。
圖8 谷物含水率與單粒電阻值關(guān)系曲線(xiàn)Fig.8 Relationship curve between grain moisture content and single grain resistance
對(duì)圖8所示谷物單粒含水率與阻值關(guān)系曲線(xiàn)進(jìn)行多項(xiàng)式回歸,可得稻谷含水率計(jì)算公式(5)、小麥含水率計(jì)算公式(6)和大麥含水率計(jì)算公式(7)如下
式中M1、M2、M3分別為稻谷、小麥和大麥的含水率,%;R為谷物單粒阻值平均值,k?;x為R的常用對(duì)數(shù),數(shù)值等于lg(R);R2為方程的決定系數(shù)。
由公式(5)~(7)可知,谷物單粒含水率與阻值的對(duì)應(yīng)函數(shù)關(guān)系在高水分和低水分時(shí)有所不同,相應(yīng)的計(jì)算函數(shù)分界點(diǎn)對(duì)應(yīng)的含水率分別為:稻谷為20%;小麥為18%;大麥為18%。
試驗(yàn)研究表明,谷物溫度對(duì)其單粒電阻的影響顯著,性質(zhì)上表現(xiàn)為谷物單粒的電阻值隨溫度的升高而減小,變化規(guī)律基本符合?10~50 ℃條件下溫升1 ℃對(duì)電阻的影響相當(dāng)于含水率增大0.1%[33]。
2.4 軟件設(shè)計(jì)
水分采樣計(jì)算程序流程圖如圖9所示。
圖9 谷物水分計(jì)算程序流程圖Fig.9 Flowchart of grain moisture content calculation
單粒式谷物在線(xiàn)水分測(cè)定儀系統(tǒng)軟件采用STM32固件庫(kù)函數(shù)編程,在RVMDK5.12編程編譯環(huán)境下完成。水分采樣計(jì)算程序主要分兩部分,一是單粒谷物阻值信號(hào)采樣和水分計(jì)算,二是統(tǒng)計(jì)分析設(shè)定數(shù)量的單粒谷物水分值,計(jì)算輸出本次采樣水分值。單粒谷物阻值采樣時(shí),每個(gè)通道采樣周期為1 ms,持續(xù)采樣時(shí)間為20 ms的整數(shù)倍,以消除工頻干擾的影響。采用中值法計(jì)算單粒谷物每個(gè)通道采樣時(shí)間內(nèi)所有阻值的平均值,并保存此平均值。每個(gè)通道輸出阻值必須在該通道有效阻值范圍內(nèi),否則判斷本通道采樣無(wú)效。根據(jù)單粒谷物有效平均阻值,計(jì)算出單粒谷物水分。被采樣的谷物單粒數(shù)達(dá)到預(yù)設(shè)顆粒數(shù)時(shí),結(jié)束本次水分采樣,統(tǒng)計(jì)分析所有單粒谷物水分值,輸出本次谷物水分采樣最終水分值。
3.1 現(xiàn)場(chǎng)在線(xiàn)水分檢測(cè)
為了驗(yàn)證連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀的準(zhǔn)確性,在2013—2016年間分別在江蘇、江西、山東和遼寧等地對(duì)連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀進(jìn)行多批次稻谷、小麥和大麥水分在線(xiàn)測(cè)定驗(yàn)證試驗(yàn)。如圖10所示。
考慮到循環(huán)式谷物烘干機(jī)裝料后烘干倉(cāng)內(nèi)的谷物水分分布不均勻,在進(jìn)行水分在線(xiàn)檢測(cè)前,需采用自然通風(fēng)循環(huán)2 h以上。烘干全過(guò)程中,每間隔1 h進(jìn)行一次谷物水分在線(xiàn)檢測(cè),水分儀采樣單粒數(shù)設(shè)為100粒,每次連續(xù)采樣3個(gè)水分?jǐn)?shù)值,記錄這3個(gè)水分?jǐn)?shù)值的平均值。在谷物在線(xiàn)水分儀采樣水分的同時(shí),人工從水分儀上方的提升機(jī)取料口連續(xù)勻速取樣,直至水分儀3次水分采樣結(jié)束,并將質(zhì)量不少于1 kg的谷物樣品置于密封袋保存。
3.2 烘干法水分檢測(cè)
將現(xiàn)場(chǎng)取樣保存在密封袋中的谷物樣品放在實(shí)驗(yàn)室內(nèi),使其谷物溫度與實(shí)驗(yàn)室保持的室溫達(dá)到平衡。充分混合每袋中的谷物樣品,然后依據(jù)標(biāo)準(zhǔn)《糧食、油料檢驗(yàn)水分測(cè)定法》對(duì)谷物樣品進(jìn)行105 ℃恒質(zhì)量法水分測(cè)定,并記錄檢測(cè)結(jié)果。
3.3 試驗(yàn)結(jié)果
連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀現(xiàn)場(chǎng)對(duì)谷物烘干過(guò)程中水分在線(xiàn)檢測(cè)的重復(fù)誤差和一次水分測(cè)量用時(shí)如表5所示。
試驗(yàn)結(jié)果表明,完成一次水分測(cè)量平均時(shí)間≤55 s,水分測(cè)量值重復(fù)誤差≤±0.3%,優(yōu)于原烘干機(jī)所裝進(jìn)口或國(guó)產(chǎn)在線(xiàn)水分儀一次水分測(cè)量平均時(shí)間≥90 s和水分測(cè)量值重復(fù)誤差≤±0.5%的性能指標(biāo)。與谷物樣品105 ℃恒質(zhì)量烘干法測(cè)得的水分值比較結(jié)果如表6所示。對(duì)比試驗(yàn)結(jié)果表明,水分測(cè)量值絕對(duì)誤差≤±0.4%,絕對(duì)誤差小于目前市場(chǎng)主流電阻式谷物在線(xiàn)水分儀絕對(duì)誤差≤±0.5%的指標(biāo)要求。符合谷物烘干過(guò)程水分在線(xiàn)檢測(cè)的精度要求。
表5 在線(xiàn)水分儀含水率測(cè)量重復(fù)誤差和測(cè)量用時(shí)Table 5 Repetitive errors and measuring times of moisture measurement for on-line moisture tester
表6 在線(xiàn)水分儀與烘干法測(cè)量水分結(jié)果比較Table 6 Comparison of measured moisture content between on-line moisture tester and drying method
1)采用一對(duì)不銹鋼制異向正弦螺旋桿和分粒撥刀組成的谷物取樣機(jī)構(gòu)和斜紋表面滾花碾壓輥組成的采樣機(jī)構(gòu),連續(xù)采樣100粒谷物單粒水分值計(jì)算谷物水分值,完成一次水分測(cè)量時(shí)間≤55 s,水分測(cè)量重復(fù)誤差≤±0.3%。
2)設(shè)計(jì)多路復(fù)用比例電路為解決10-2~1010?·cm極寬比容積電阻精確檢測(cè),采用二階壓控有源低通濾波器和50 Hz陷波電路,使水分測(cè)定儀滿(mǎn)足在線(xiàn)檢測(cè)的電磁兼容性要求。
3)構(gòu)建含水率在10%~35%范圍內(nèi)的稻谷、小麥和大麥單粒阻值與其含水率對(duì)應(yīng)關(guān)系曲線(xiàn),運(yùn)用ARM CortexTM-M3核的低功耗32位微處理器硬件和軟件平臺(tái),設(shè)計(jì)出連續(xù)單粒式谷物在線(xiàn)水分儀的水分采樣、分析和計(jì)算軟件。
4)現(xiàn)場(chǎng)在線(xiàn)驗(yàn)證試驗(yàn)可知,稻谷、小麥和大麥在溫度?5~55 ℃和含水率10%~35%范圍內(nèi),單粒式在線(xiàn)水分測(cè)定儀的水分測(cè)量值絕對(duì)誤差≤0.4%,水分測(cè)量值重復(fù)誤差≤0.3%,滿(mǎn)足烘干過(guò)程水分在線(xiàn)檢測(cè)的需求。對(duì)于其他品種的谷物烘干過(guò)程水分在線(xiàn)檢測(cè)還有待后續(xù)研究。
[1] 束旭強(qiáng). 糧食儲(chǔ)藏期間水分變化的探討[J]. 糧油倉(cāng)儲(chǔ)科技通訊,2004(5):52-54. Shu Xuqiang. Discussion moisture changes during food storage[J]. Grain and Oil Storage Technology Newsletter, 2004(5): 52-54. (in Chinese with English abstract)
[2] 余昆. 糧食儲(chǔ)藏安全水分的分析與確定[J]. 糧食加工,2010,35(6):81-83,94. Yu Kun. Food storage security analysis and determination of moisture[J]. Food Processing, 2010, 35(6): 81-83, 94. (in Chinese with English abstract)
[3] 丁海濱,趙忠厚,周建新,等. 開(kāi)展綠色儲(chǔ)糧工程,確保國(guó)家儲(chǔ)備糧安全[J]. 食品科學(xué),2004,25(12):358-360. Ding Haibin, Zhao Zhonghou, Zhou Jianxin, et al. Developing green grain storage engineering to ensure security of state grain reserves[J]. Food Science, 2004, 25(12): 358-360. (in Chinese with English abstract)
[4] 靳祖訓(xùn),蘭盛斌. 減少糧食產(chǎn)后損失是確保糧食安全的重要途徑[J]. 糧食儲(chǔ)藏,2004,32(4):3-13. Jiu Zuxun, Lan Shengbin. Reducing post-harvest grain losses to guarantee grain safety[J]. Grain Storage, 2004, 32(4): 3-13. (in Chinese with English abstract)
[5] 吳文福,郭宏偉,徐巖,等. 基于糧食濕熱平衡模型的吉林省糧食儲(chǔ)藏生態(tài)區(qū)劃[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(21):286-292. Wu wenfu, Guo Hongwei, Xu Yan, et al. Ecological regionalization of grain storage in Jilin based on water and heat balance model of grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 286-292. (in Chinese with English abstract)
[6] 李長(zhǎng)友,麥智煒,方壯東. 糧食水分結(jié)合能與熱風(fēng)干燥動(dòng)力解析法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(7):236-242. Li Changyou, Mai Zhiwei, Fang Zhuangdong. Analytical study of grain moisture binding energy and hot air drying dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 236-242. (in Chinese with English abstract)
[7] 李長(zhǎng)友,馬興灶,方壯東,等. 糧食熱風(fēng)干燥熱能結(jié)構(gòu)與解析法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(9):220-228. Li Changyou, Ma Xingzao, Fang Zhuangdong, et al. Thermal energy structure of grain drying by analytical method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2014, 30(9): 220-228. (in Chinese with English abstract)
[8] 李長(zhǎng)友. 糧食熱風(fēng)干燥系統(tǒng)評(píng)價(jià)理論研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(12):1-6. Li Changyou. Exergy evaluation theory of hot air drying system for grains[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 1-6. (in Chinese with English abstract)
[9] 張立輝. 谷物干燥過(guò)程模擬及測(cè)控新方法研究[D]. 長(zhǎng)春:吉林大學(xué),2014. Zhang Lihui. Research on Grain Drying Process Simulation and New Measurement and Control Methods[D]. Changchun: Jilin University, 2014. (in Chinese with English abstract)
[10] 胡志超,王海鷗,謝煥雄,等. 幾種谷物橫流干燥數(shù)學(xué)模型及其應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(增刊1):76-82. Hu Zhichao, Wang Haiou, Xie Huanxiong, et al. Mathematical models of crossflow grain drying and their applications[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2010, 26(Supp.1): 76-82. (in Chinese with English abstract)
[11] 李國(guó)昉,齊玉斌,李棟,等. 谷物干燥仿人智能控制系統(tǒng)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(1):83-86. Li Guofang, Qi Yubin, Li Dong, et al. Human simulated intelligent controller for grain dryer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 83-86. (in Chinese with English abstract)
[12] 張立輝,李春良,王立光. 連續(xù)谷物干燥機(jī)測(cè)控系統(tǒng)的設(shè)計(jì)[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,51(4):145-149. Zhang Lihui, Li Chunliang, Wang Liguang. Design for the control system of continuous grain dryer[J]. Journal of Gansu Agricultural University, 2016, 51(4): 145-149. (in Chinese with English abstract)
[13] 李光煜. 物料含水量微波檢測(cè)系統(tǒng)關(guān)鍵技術(shù)研究[D]. 北京:北京理工大學(xué),2014. Li Guangyu. Research on the Key Technology of Water Content Microwave Detection System[D]. Beijing: Beijing Institute of Technology, 2014. (in Chinese with English abstract)
[14] 汪小舟,陸正清. 微波加熱法測(cè)定谷物水分的研究[J]. 廣州食品工業(yè)科技,2004,20(3):115-116. Wang Xiaozhou, Lu Zhengqing. Study on microwave heat method measuring corn humidity content[J]. Guangzhou Food Science and Technology, 2004, 20(3): 115-116. (in Chinese with English abstract)
[15] 王江蓉,周京,沈娜,等. 近紅外測(cè)定稻谷水分定標(biāo)模型驗(yàn)證研究[J]. 糧食與飼料工業(yè),2015(3):5-7. Wang Jiangrong, Zhou Jing, Shen Na, et al. Research on calibration model verification for determination of moisture content in paddy with near-infrared method[J]. Gereal & Feed Industry, 2015(3): 5-7. (in Chinese with English abstract)
[16] 楊柳,楊明皓,董蘭蘭. 主動(dòng)屏蔽式平面探頭水分在線(xiàn)傳感器研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(1):77-80. Yang Liu, Yang Minghao, Dong Lanlan. Development of a coplanar electrode capacitance moisture sensor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 77-80. (in Chinese with English abstract)
[17] 楊柳,毛志懷,董蘭蘭. 電容式谷物水分傳感器平面探頭的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):185-189. Yang Liu, Mao Zhihuai, Dong Lanlan. Development of plane polar probe of capacitive grain moisture sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 185-189. (in Chinese with English abstract)
[18] 楊?lèi)偳?,王劍平,王成? 谷物含水率中子法在線(xiàn)測(cè)量的可行性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(5):99-101. Yang Yueqian, Wang Jianping, Wang Chengzhi. Study on on-line measurement of grain moisture content by neutron gauge[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(5): 99-101. (in Chinese with English abstract)
[19] 宋平,徐靜,馬賀男,等. 用低場(chǎng)核磁共振檢測(cè)水稻浸種過(guò)程中種子水分的相態(tài)及分布特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):204-210. Song Ping, Xu Jing, Ma Henan, et al. Moisture phase state and distribution characteristics of seed during rice seed soaking process by low field nuclear magnetic resonance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 204-210. (in Chinese with English abstract)
[20] 陳衛(wèi)江,林向陽(yáng),阮榕生,等. 核磁共振技術(shù)無(wú)損快速評(píng)價(jià)食品水分的研究[J]. 食品研究與開(kāi)發(fā),2006,27(4):125-127. Chen Weijiang, Lin Xiangyang, Ruan Rongsheng, et al. Study on quick and non-destructive estimate the moisture content of food[J]. Food Research and Development, 2006, 27(4): 125-127. (in Chinese with English abstract)
[21] 張緒坤,祝樹(shù)森,黃儉花,等. 用低場(chǎng)核磁分析胡蘿卜切片干燥過(guò)程的內(nèi)部水分變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):282-287. Zhang Xukun, Zhu Shusen, Huang Jianhua, et al. Analysis on internal moisture changes of carrot slices during drying process using low-field NMR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 282-287. (in Chinese with English abstract)
[22] 李長(zhǎng)友. 稻谷干燥含水率在線(xiàn)檢測(cè)裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(3):56-59. Li Changyou. Design and experiment of on-line moisture content metering device for paddy drying process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(3): 56-59. (in Chinese with English abstract)
[23] 張永林,王旺平,鄭長(zhǎng)征,等. 谷物干燥實(shí)時(shí)在線(xiàn)智能水分測(cè)量系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(9):137-140. Zhang Yonglin, Wang Wangping, Zheng Changzheng, et al. Intelligent real-time on-line measuring system for moisture content during grain drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 137-140. (in Chinese with English abstract)
[24] 梅慶,金亦富,張瑞宏,等. 谷物干燥水分在線(xiàn)測(cè)量系統(tǒng)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2015(9):241-244. Mei Qing, Jin Yifu, Zhang Ruihong, et al. Design of the grain moisture online measuring system[J]. Journal of Agricultural Mechanization Research, 2015(9): 241-244. (in Chinese with English abstract)
[25] 潘永康,王喜忠,劉相東. 現(xiàn)代干燥技術(shù)[M]. 北京:化工工業(yè)出版社,2006:945-969.
[26] 楊作梅,郭玉明,崔清亮,等. 谷子摩擦特性試驗(yàn)及其影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):258-264. Yang Zuomei, Guo Yuming, Cui Qingliang, et al. Test and influence factors analysis of friction characteristics of millet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 258-264. (in Chinese with English abstract)
[27] 程緒鐸,陸琳琳,石翠霞. 小麥摩擦特性的試驗(yàn)研究[J]. 中國(guó)糧油學(xué)報(bào),2012,27(4):15-19. Chen Xuduo, Lu Linlin, Shi Cuixia. The experimental research on friction properties of wheat[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(4): 15-19. (in Chinese with English abstract)
[28] GB/T 19878-2005,電容法和電阻法糧食水分測(cè)定儀通用技術(shù)條件[S].
[29] 楊作梅,孫靜鑫,郭玉明. 不同含水率對(duì)谷子籽粒壓縮力學(xué)性質(zhì)與摩擦特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):253-260. Yang Zuomei, Sun Jingxin, Guo Yuming. Effect of moisture content on compression mechanical properties and frictional characteristics of millet graint[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 253-260. (in Chinese with English abstract)
[30] GB/T 6403.3-2008,滾花[S].
[31] 陳陽(yáng),胡志超,吳惠昌,等. 基于EDEM的單粒式谷物水分儀采樣機(jī)構(gòu)仿真研究[J]. 農(nóng)機(jī)化研究,2016(7):239-244. Chen Yang, Hu Zhichao, Wu Huichang, et al. Simulation research on sampling mechanism of single resistance typed grain on-line moisture teller based on EDEM[J]. Journal of Agricultural Mechanization Research, 2016(7): 239-244. (in Chinese with English abstract)
[32] GB/T 5497-1985,糧食、油料檢驗(yàn) 水分測(cè)定法[S].
[33] 楊兆選,鹿凱寧,劉承璽. 智能糧食濕度測(cè)試儀設(shè)計(jì)[J]. 電子測(cè)量與儀器學(xué)報(bào),1996,10(3):64-66. Yang Zhaoxuan, Lu Kaining, Liu Chengxi. Design of the intelligent humidiometer to test grain’s damp[J]. Journal of Electronic Measurement and Instrument, 1996, 10(3): 64-66. (in Chinese with English abstract)
Design and experiment of continuous single grain typed on-line grain moisture test apparatus
Wu Huichang, Xie Huanxiong, Hu Zhichao※, Gu Fengwei, You Zhaoyan, Yan Jianchun, Wei Hai
(Nanjing Research Institute of Agricultural Mechanization, Ministry of Agriculture, Nanjing 210014, China)
Grain drying operation is an important part of food safe storage. In recent years, many scholars and engineers have done a lot of work on grain drying technology aiming to reduce energy consumption and realize automatic control of drying devices, but online moisture accurate detection in the grain drying that is core technique is still application difficulty to be solved, which restricts the development of grain drying system. Based on the analysis of the advantages and disadvantages of the technical principle of current online grain moisture meters, this paper presented a continuous single grain online moisture meter based on the water detection principle of resistance method. Physical dimensions of main varieties in main paddy, wheat and barley producing areas in China were measured, statistics of grain equivalent diameter were made, and pitch diameter and helix angle of stainless-steel incongruous sine screw rod were calculated by applying static sliding friction angle between single grain and metal surface. Therefore, the grain sampling device of moisture tester was designed, which was composed of a double-screw rod and a split grain knife. The grain sampling device screened out sundries and excess grain, and ensured single grain and continuity at the same time when sampling. According to the results of the experiment and simulation, 3 kinds of knurling forms with 0.4 mm modulus were chosen, including straight lines, oblique lines and net-mesh lines, and net-mesh lines had the optimal rolling smoothness among them, followed by straight lines knurling and oblique lines knurling. Considering the removal effect of adhesion on roller, the brushing effect of oblique lines knurling was the best, so the roller surface chose oblique lines form. Yangjing 239, Huaimai 33, and Yangnongpi 4 were chosen respectively as the test samples of paddy, wheat and barley, prepared as multiple samples with different moisture content. Meanwhile, when 105 ℃ drying method was adopted to test moisture content of each sample in the laboratory, the direct-current (DC) resistance of single grain with different moisture content compacted by the roller was measured by using universal electronic testing machine, programmable DC power supply with high precision, digital multimeter and other equipment; the steady resistance value was taken when the distance between the 2 rollers was 0.4 mm, and average resistance value was obtained after testing 100 samples for the samples with the same moisture content. Regression curves between the grain moisture content and single grain resistance of paddy, wheat and barley were built according to the experimental data. The calculation function expression of grain moisture content was obtained through polynomial regression on curve. Multiplex proportional circuit was designed, providing possibility to solve precise detection of extremely wide resistance of specific volume ranging from 10-2to 1010?·cm. Second order voltage-controlled active low-pass filter based on four-channel amplifier AD8643, and 50 Hz band-stop filter circuit consisting of operational amplifier LM358 were designed to meet the electromagnetic compatibility requirements for on-line grain moisture tester detection. Hardware and software platforms of ARM CortexTM-M3 core’s low power 32-bit microprocessor STM32L151CBQ6 were applied to finish both the sampling of grain moisture and the design of processing program. Online detection comparison tests on site showed that, when the drying temperature ranged from -5 to 55 ℃ and the moisture content ranged from 10% to 35% for paddy, wheat and barley, the online moisture measurement accuracy of the tester was less than ±0.5%, which satisfied online moisture detection requirements for the drying of the 3 kinds of grains. The design method can provide a reference for the online detection of water in the drying process of grain.
grain; moisture; electric resistance; single grain typed; low power 32 bit microprocessor STM32
10.11975/j.issn.1002-6819.2017.11.036
S237; TP206+.1
A
1002-6819(2017)-11-0282-09
吳惠昌,謝煥雄,胡志超,顧峰瑋,游兆延,顏建春,魏 海. 連續(xù)單粒式谷物在線(xiàn)水分測(cè)定儀的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):282-290.
10.11975/j.issn.1002-6819.2017.11.036 http://www.tcsae.org
Wu Huichang, Xie Huanxiong, Hu Zhichao, Gu Fengwei, You Zhaoyan, Yan Jianchun, Wei Hai. Design and experiment of continuous single grain typed on-line grain moisture test apparatus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 282-290. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.036 http://www.tcsae.org
2017-02-21
2017-04-12
江蘇省科技計(jì)劃項(xiàng)目(BE2015301);中國(guó)農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)(2016);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(農(nóng)產(chǎn)品分級(jí)與貯藏裝備創(chuàng)新團(tuán)隊(duì))
吳惠昌,男,江蘇揚(yáng)州人,副研究員,主要從事農(nóng)產(chǎn)品加工與農(nóng)機(jī)裝備智能化的研究。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。
Email:huichangwu@126.com
※通信作者:胡志超,男,陜西藍(lán)田人,研究員,主要從事農(nóng)作物收獲及產(chǎn)后加工技術(shù)裝備的研究。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。Email:nfzhongzi@163.com。中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:胡志超(E041200498S)