鄧 英,李嘉楠,劉河生,龐輝慶,田 德
(華北電力大學(xué)可再生能源學(xué)院,北京 102206)
風(fēng)電機(jī)組尾流與疲勞載荷關(guān)系分析
鄧 英,李嘉楠,劉河生,龐輝慶,田 德
(華北電力大學(xué)可再生能源學(xué)院,北京 102206)
為了研究風(fēng)電機(jī)組尾流對(duì)下游風(fēng)電機(jī)組載荷的影響,假設(shè)了幾個(gè)重要尾流參數(shù):上下游風(fēng)電機(jī)組間距、上游風(fēng)電機(jī)組推力系數(shù)、湍流強(qiáng)度等。采用Bladed軟件和Matlab幅頻程序,分別對(duì)1.5與3.0 MW雙饋式風(fēng)電機(jī)組進(jìn)行各參數(shù)與載荷響應(yīng)的關(guān)系計(jì)算。結(jié)果表明:風(fēng)輪處風(fēng)速會(huì)隨著推力系數(shù)的增大非線性減??;風(fēng)電機(jī)組處于尾流影響范圍內(nèi)時(shí),在風(fēng)速和推力系數(shù)相同的條件下,通常湍流強(qiáng)度受尾流影響后減小使載荷增大,但當(dāng)推力系數(shù)對(duì)載荷的影響起主導(dǎo)作用時(shí),雖然湍流強(qiáng)度受尾流影響后減小但載荷會(huì)增大;當(dāng)風(fēng)速大于額定風(fēng)速時(shí),應(yīng)采用變槳控制減小推力系數(shù),以減小風(fēng)電機(jī)組的疲勞損傷。
風(fēng)電機(jī)組;計(jì)算機(jī)仿真;模型;間距;推力系數(shù);風(fēng)速;尾流;疲勞載荷
鄧 英,李嘉楠,劉河生,龐輝慶,田 德. 風(fēng)電機(jī)組尾流與疲勞載荷關(guān)系分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):239-244. doi:10.11975/j.issn.1002-6819.2017.10.031 http://www.tcsae.org
Deng Ying, Li Jianan, Liu Hesheng, Pang Huiqing, Tian De. Analysis on relationship between wake and fatigue load of wind turbines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 239-244.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.10.031 http://www.tcsae.org
隨著風(fēng)力發(fā)電技術(shù)的發(fā)展,超大型風(fēng)電機(jī)組的發(fā)電容量迅速擴(kuò)大,意味著更高的塔架設(shè)計(jì)和更長(zhǎng)的葉片設(shè)計(jì)。葉片的加長(zhǎng),使得掃風(fēng)面積增大,尾流區(qū)也隨之增大;同時(shí),塔架的增高,使得尾流效應(yīng)的性質(zhì)更加復(fù)雜。已有研究表明,對(duì)于大型風(fēng)電機(jī)組,尾流效應(yīng)的作用是不能忽視的,它對(duì)風(fēng)機(jī)的承載部件的疲勞載荷的增大有著重要影響,并且對(duì)風(fēng)電機(jī)組輸出功率特性也有顯著影響[1-4]。
許多科學(xué)家對(duì)尾流效應(yīng)等進(jìn)行了研究,Alfredsson等[5]最早通過風(fēng)洞試驗(yàn)研究尾流效應(yīng),揭示尾流對(duì)風(fēng)力機(jī)出力的影響。Hand等通過顯示試驗(yàn)對(duì)風(fēng)力機(jī)葉片近遠(yuǎn)場(chǎng)尾流結(jié)構(gòu)做出詳細(xì)分析[6-7]。風(fēng)場(chǎng)測(cè)試中,最著名的單臺(tái)風(fēng)力機(jī)實(shí)測(cè)是Tjaereborg、Nibe和Sexbieram測(cè)試[8-9];著名的集群實(shí)測(cè)是Horns Rev,Nysted,Middle Grunden,Vindeby,EWTW等測(cè)試[10-11]。他們建立了一些考慮尾流效應(yīng)的模型,并且與實(shí)際試驗(yàn)風(fēng)場(chǎng)的實(shí)測(cè)數(shù)據(jù)相匹配[12]。但是,當(dāng)時(shí)的試驗(yàn)風(fēng)場(chǎng)的塔架高度較低,風(fēng)電機(jī)組容量、掃風(fēng)面積、風(fēng)電場(chǎng)規(guī)模較小,其尾流效應(yīng)對(duì)機(jī)組的影響也比較簡(jiǎn)單。因此,現(xiàn)有研究普遍采用的方法都是用單一的“等效設(shè)計(jì)湍流強(qiáng)度”這個(gè)參量來代替所有的尾流效應(yīng)[13]。這種傳統(tǒng)方法隨著風(fēng)電機(jī)組的不斷增高增大,風(fēng)電場(chǎng)的規(guī)模劇增的形勢(shì)下,已經(jīng)越來越失去適用性。并且,隨著風(fēng)速差異、受力差異的擴(kuò)大,風(fēng)電機(jī)組不同受力部件之間產(chǎn)生的疲勞載荷的響應(yīng)的差異性也突顯出來[14]。因此,必須進(jìn)一步地研究尾流效應(yīng)對(duì)機(jī)組的影響。尾流模型是描述風(fēng)力機(jī)尾流結(jié)構(gòu)的數(shù)學(xué)模型,用于計(jì)算風(fēng)力機(jī)尾流區(qū)域的速度分布和風(fēng)電場(chǎng)中處在尾流區(qū)的風(fēng)力機(jī)的功率輸出[15]?,F(xiàn)有的對(duì)風(fēng)電機(jī)組尾流模擬的研究先后經(jīng)過了不考慮湍流的一維線性尾流模型、二維軸對(duì)稱渦旋粘性尾流模型和基于三維CFD的尾流模型[16]。
本文以Thomsen等[17]對(duì)尾流的研究為基礎(chǔ),分別建立1.5與3 MW風(fēng)電機(jī)組模型,通過控制變量的方法,以上下游風(fēng)電機(jī)組間距、上游風(fēng)電機(jī)組推力系數(shù)、湍流強(qiáng)度的輸入分別作為變量,在特定疲勞載荷工況下進(jìn)行模擬計(jì)算,將對(duì)下游風(fēng)電機(jī)組各部件載荷數(shù)據(jù)進(jìn)行模擬分析,得到不同尾流參數(shù)對(duì)下游風(fēng)電機(jī)組載荷的影響。
1.1 基礎(chǔ)尾流定理
風(fēng)電機(jī)組尾跡是擴(kuò)張的。由質(zhì)量守恒方程(1)以及式(2),可得式(3)及式(4)。
式中R1為風(fēng)輪前某處半徑,m;V1為風(fēng)輪前某處來流風(fēng)速,m/s;R2為風(fēng)輪后某處半徑,m;V2為風(fēng)輪后某處風(fēng)速,m/s;R為風(fēng)輪半徑,m;VT為通過風(fēng)輪的速度,m/s;a為軸向誘導(dǎo)因子。
在最大功率情況下a=1/3,有R=1.225R1、R2=1.414R=1.732R1[18]。
式中Vx表示尾流區(qū)域風(fēng)速,m/s;V0表示自然來流風(fēng)速,m/s;A表示上游風(fēng)電機(jī)組風(fēng)輪掃掠面積,m2;Aw表示尾流區(qū)域的面積,m2;DAn表示距離上游風(fēng)電機(jī)組n倍直徑截面處面積的增長(zhǎng)量,m2;γ表示面積擴(kuò)張角,(o);b為擴(kuò)張系數(shù)[19]。擴(kuò)張系數(shù)與軸向誘導(dǎo)因子關(guān)系如式(6)。
另一種圓錐理想尾流假設(shè)為:自然風(fēng)通過上游風(fēng)電機(jī)組向下游傳播的過程,可以理想為圓錐形,如圖 1所示。上游風(fēng)電機(jī)組安裝在x=0處,r(x)=R+xk,其中k=tana為尾流下降系數(shù)。
圖1 圓錐理想尾流假設(shè)Fig.1 Ideal conical wake hypothesis
1.2 風(fēng)電機(jī)組的Jensen尾流模型
影響尾流效應(yīng)的主要物理因素為機(jī)組間距、上游風(fēng)電機(jī)組功率特性及其推力特性和尾流區(qū)域的湍流強(qiáng)度[20]。尾流區(qū)域的湍流強(qiáng)度為:
式中Va表示平均風(fēng)速,m/s;sG表示風(fēng)電機(jī)組產(chǎn)生湍流的均方差;s0表示自然湍流的均方差。一般情況下,s0=0.08Va,sG=0.12Va。
工程上用風(fēng)資源分析軟件進(jìn)行風(fēng)場(chǎng)設(shè)計(jì),WAsP軟件使用Jensen尾流模型[21]和Fuga尾流模型[22]。風(fēng)電場(chǎng)微觀選址軟件Wind Farmer采用渦粘性尾流模型[23]。在這些尾流模型中,Jensen尾流模型因其形式簡(jiǎn)單、易于編碼、計(jì)算效率高、應(yīng)用方便且具有一定的精度,在風(fēng)電工程領(lǐng)域得到了廣泛的應(yīng)用。Barthelmie等[24]將Jensen尾流模型和其他5個(gè)工程模型應(yīng)用于海上風(fēng)電場(chǎng)的發(fā)電量評(píng)估中,并將結(jié)果與現(xiàn)場(chǎng)試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比分析。此外,Barthelmie等[25]經(jīng)過一系列的數(shù)值試驗(yàn)指出,工程模型的計(jì)算結(jié)果與較為先進(jìn)的CFD方法的結(jié)果相差不大。這些研究表明雖然Jensen模型為形式簡(jiǎn)單的解析模型,但它能夠較好地預(yù)測(cè)風(fēng)力機(jī)的尾流流場(chǎng)分布特征.特別是能夠較好地評(píng)估風(fēng)電場(chǎng)的發(fā)電量。
Jensen模型基于下列3個(gè)假設(shè):1)尾流場(chǎng)橫截面初始直徑為風(fēng)輪直徑;2)尾流場(chǎng)橫截面半徑增長(zhǎng)速率呈線性關(guān)系;3)尾流場(chǎng)橫向剖面上的速度是均勻的。Jensen模型較好的模擬了平坦地形條件下的尾流情況[26],模型簡(jiǎn)化圖如圖2。
圖2 Jensen模型Fig.2 Jensen model
可以根據(jù)動(dòng)量理論對(duì)尾流區(qū)域物理量進(jìn)行分析能得出:
式中r為空氣密度,一般取1.225 g/L;kw為一個(gè)常數(shù);Rw表示尾流半徑,m。令k為尾流下降系數(shù),則有k=kw(s0+sG)/Va,根據(jù)貝茨理論[27]對(duì)軸向推力進(jìn)行計(jì)算可求得自然風(fēng)速、通過風(fēng)速和推力系數(shù)之間的關(guān)系。
由方程式(8)~(11)聯(lián)立可求得表達(dá)式:
由方程式(11)可以得到在不同自然風(fēng)速下通過風(fēng)速于推力系數(shù)的變化曲線,如圖3a所示。在不同推力系數(shù)下通過風(fēng)速與自然風(fēng)速的變化曲線,如圖3b所示。
圖3 自然風(fēng)速和推力系數(shù)與通過風(fēng)速之間的關(guān)系曲線Fig.3 Curve of transit-wind speed related to different nature-wind speeds and thrust coefficients
圖3a中的從上到下分別對(duì)應(yīng)自然風(fēng)速為12、10和8 m/s時(shí),VT關(guān)于CT的變化規(guī)律曲線。由圖3a可知,在自然風(fēng)速一定的情況下,隨著推力系數(shù)的增大,風(fēng)輪處風(fēng)速會(huì)非線性減小,如果推力系數(shù)CT能足夠大,那么經(jīng)過風(fēng)輪的風(fēng)速VT將會(huì)趨于 0。不過實(shí)際的機(jī)組運(yùn)行中,并不會(huì)出現(xiàn)推力系數(shù)大于等于1的現(xiàn)象。
由方程式(11)還能得到另一結(jié)論:在推力系數(shù)CT一定的情況下,VT將隨V0線性變化,規(guī)律如圖3b所示。圖3b中的3條曲線由上至下分別對(duì)應(yīng)推力系數(shù)CT=0.2、0.4、0.6時(shí),經(jīng)過風(fēng)輪的風(fēng)速VT隨自然風(fēng)速V0變化過程線,從圖 3b中都能看出,VT隨V0線性增大,隨著推力系數(shù)CT的增大,風(fēng)輪處的風(fēng)速VT將逐漸減小,結(jié)論與圖3a所得完全一致.Jensen尾流模型認(rèn)為來流風(fēng)速通過風(fēng)電機(jī)組后,在向下游傳播的過程中,尾流的膨脹與速度的損失與尾流的傳輸距離成線性關(guān)系。
從式(12)中又可知,當(dāng)尾流下降系數(shù)k一定時(shí),尾流方向x處的尾流風(fēng)速Vx是關(guān)于風(fēng)輪半徑R和距離x的函數(shù)。并且,根據(jù)風(fēng)特性的不同,下降系數(shù)k的取值也有所不同:若上游風(fēng)電機(jī)組接收的流動(dòng)是自然風(fēng),尾流下降系數(shù)k就取0.04,否則,k取0.08[28]。
如果尾流下降系數(shù)k取0.08,自然風(fēng)速V0為8 m/s,推力系數(shù)CT等于0.2,那么尾流風(fēng)速Vx隨距離x的變化規(guī)律將如圖4a所示。從圖4a可知,尾流的風(fēng)速Vx隨距離x的增加而增加,但增加的趨勢(shì)較平緩。而對(duì)于不同的風(fēng)輪半徑R,其值越大,曲線越接近線性變化,也越平緩。
圖4 尾流風(fēng)速與距離和m的關(guān)系曲線Fig.4 Curves of wake speed related to distance andm
設(shè)m=x/R,將m帶入式(12)可得式(13)。
若對(duì)于尾流下降系數(shù)、自然風(fēng)速和推力系數(shù)的假設(shè)不變,則尾流風(fēng)速Vx隨m的變化規(guī)律如圖4b所示。由圖4b可知,尾流風(fēng)速Vx隨m的增大而增大,且趨勢(shì)越來越平緩。
2.1 湍流強(qiáng)度、推力系數(shù)與動(dòng)態(tài)載荷的關(guān)系
風(fēng)湍流是造成風(fēng)電機(jī)組各部件疲勞損傷、可靠性降低和發(fā)電出力特性差的主要原因之一[27]。傳統(tǒng)的解決風(fēng)電機(jī)組尾流中湍流強(qiáng)度的方法是只通過設(shè)計(jì)湍流強(qiáng)度風(fēng)來取代尾流效應(yīng),同時(shí)考慮上風(fēng)向尾流模型尺度參數(shù)[28]。上游風(fēng)電機(jī)組產(chǎn)生的風(fēng)場(chǎng)尾流參數(shù)的變化和性質(zhì)由許多參量共同決定。主要是前后風(fēng)電機(jī)組的間距、上游風(fēng)機(jī)的推力系數(shù)和湍流強(qiáng)度對(duì)載荷的影響,它們之間的關(guān)系如圖5所示。
圖5 不同因素對(duì)葉根載荷的影響Fig.5 Effects of different factors on blade root loads
湍流強(qiáng)度是描述大氣湍流運(yùn)動(dòng)特性的重要的特征量,是湍流總體水平的度量,主要用來描述風(fēng)速隨時(shí)間變化的程度[29]。風(fēng)力發(fā)電機(jī)組承受氣動(dòng)載荷的主要部位是葉片和塔筒,葉片與塔筒所受風(fēng)載都以彎矩和推力的形式直接作用于風(fēng)電機(jī)組上[30]。圖 5中的差值為未受尾流影響時(shí)的數(shù)值與加入尾流影響后的數(shù)值之差。圖5a為推力系數(shù)為0.4、風(fēng)速為7 m/s時(shí),7D間距的葉根載荷差值與湍流強(qiáng)度差值的響應(yīng)曲線,圖中湍流強(qiáng)度的變化對(duì)載荷影響明顯,圖5b顯示5D間距的湍流強(qiáng)度和載荷變化量的變化趨勢(shì)與圖5a相同,并且相比7D間距的載荷偏大。圖5c所示的推力系數(shù)為0.2、0.5時(shí),5D間距下的葉根載荷差值變化曲線表明,推力系數(shù)為0.5的載荷比推力系數(shù)為0.2的載荷變化大,經(jīng)統(tǒng)計(jì)計(jì)算增量大9.3%,說明推力系數(shù)影響載荷,推力系數(shù)越大載荷越大。
總結(jié)上述仿真研究可知,上游風(fēng)力機(jī)推力系數(shù)、風(fēng)電機(jī)組間距、湍流強(qiáng)度都對(duì)下游風(fēng)電機(jī)組的運(yùn)行有很明顯的影響。
為了進(jìn)一步研究上游風(fēng)力機(jī)推力系數(shù)、機(jī)組間距、風(fēng)速(為標(biāo)準(zhǔn)湍流風(fēng))的尾流影響,假設(shè)實(shí)際風(fēng)電場(chǎng)小范圍風(fēng)電機(jī)組布機(jī)的種類一般是同種風(fēng)力機(jī),同時(shí)假設(shè)上游風(fēng)電機(jī)組風(fēng)能利用率較高,葉尖速比可設(shè)為8;采用Bladed風(fēng)電機(jī)組建模仿真軟件,分別按照 FL1500/70和FL3000/90雙饋式兆瓦風(fēng)電機(jī)組的參數(shù),進(jìn)行風(fēng)場(chǎng)環(huán)境條件、風(fēng)湍流模型、風(fēng)電機(jī)組參數(shù)的設(shè)定。
2.2 不同推力系數(shù)對(duì)下游風(fēng)電機(jī)組主頻載荷幅值的影響
對(duì)上游風(fēng)電機(jī)組推力系數(shù)進(jìn)行假設(shè)。假設(shè)推力系數(shù)為0時(shí),上游3.0 MW風(fēng)電機(jī)組處于停機(jī)狀態(tài),對(duì)下游風(fēng)電機(jī)組無尾流影響。推力系數(shù)取值分別為0、0.4、0.55、0.7、0.85,得到葉根擺振彎矩Mx和葉根扭轉(zhuǎn)彎矩MZ主頻(主頻為0.3 Hz附近)幅值關(guān)于推力系數(shù)的變化,如圖6所示。
圖6 葉根擺振彎矩與葉根扭轉(zhuǎn)彎矩主頻幅值隨推力系數(shù)變化Fig.6 Dominant frequency amplitude of edgewise bending moment of root and pitching moment of root relate to thrust coefficient
隨著推力系數(shù)的增加,Mx、Mz的趨勢(shì)均為下降。主要原因是來流風(fēng)速下降從而影響Mz,驅(qū)動(dòng)轉(zhuǎn)矩下降使Mx下降,Mx為風(fēng)電機(jī)組提供轉(zhuǎn)矩,直接影響風(fēng)電機(jī)組的發(fā)電量。但在推力系數(shù)為 0.7之后,Mz有明顯增大,可見水平方向有較大風(fēng)速,而Mx并未明顯增大,可判斷此時(shí)為湍流強(qiáng)度增大造成Mz增大。因此,在上游機(jī)組推力系數(shù)大于0.7后,尾流效應(yīng)明顯,下游機(jī)組的疲勞損傷會(huì)增加。
2.3 尾流對(duì)下游風(fēng)電機(jī)組載荷的影響
假設(shè)1.5 MW雙饋式風(fēng)電機(jī)組間距為5、6、7倍風(fēng)輪直徑,為了得到下游風(fēng)電機(jī)組的葉片根部等效疲勞載荷的響應(yīng),本案例進(jìn)行了1.1工況下風(fēng)電機(jī)組疲勞載荷的仿真計(jì)算,假設(shè)推力系數(shù)為0.4,得到5D、6D、7D尾流間距的載荷曲線如圖7所示。
應(yīng)力-壽命曲線的反斜率與材料有關(guān),在風(fēng)電機(jī)組中,金屬材料反斜率值較小,通常取4;葉片反斜率值較大,通常取10[31]。由圖7可知,上游風(fēng)電機(jī)組間距的變化影響等效疲勞載荷,尾流間距越大等效疲勞載荷越小。
當(dāng)上游機(jī)組的間距為5D時(shí),通過變槳控制使上游機(jī)組推力系數(shù)分別為 0.5、0.6、0.8,得到下游風(fēng)電機(jī)組的葉根擺振彎矩Mx的等效疲勞載荷與風(fēng)速的關(guān)系曲線,如圖8所示。
圖7 不同機(jī)組間距下葉根揮舞彎矩與應(yīng)力-壽命曲線反斜率的關(guān)系曲線Fig.7 Curves of flapwise bending moment of root related to Stress-Life curve inverse slop under different distances between wind turbines
圖8 機(jī)組間距為5D時(shí)不同風(fēng)輪推力系數(shù)下的葉根擺振彎矩與自然風(fēng)速的關(guān)系曲線Fig.8 Curves of edgewise bending moment of root related to nature wind speed under different thrust coefficients when distance between wind turbines equals 5D
圖8表明,隨自然風(fēng)速增大Mx載荷下降;隨著推力系數(shù)減小,葉根擺振彎矩Mx的變小,推力系數(shù)為0.5時(shí),疲勞載荷最小。因?yàn)楠?dú)立變槳距控制可有效減小由于風(fēng)速沿高度分布不均勻造成的氣動(dòng)軸向力的周期性變化,減輕槳葉的氣動(dòng)疲勞載荷[32],所以在風(fēng)速大于額定風(fēng)速12 m/s以后,Mx減小幅度增大主要是因?yàn)樽儤刂谱屚屏ο禂?shù)變小,使下游風(fēng)電機(jī)組的風(fēng)湍流強(qiáng)度增加,波動(dòng)載荷降低。
因此,可以認(rèn)為兆瓦級(jí)風(fēng)電機(jī)組承受尾流效應(yīng),無論是風(fēng)輪間距變小,還是推力系數(shù)增加,都是疲勞載荷增加,風(fēng)湍流強(qiáng)度變小。
文章討論了上游風(fēng)電機(jī)組風(fēng)輪間距、推力系數(shù)、來流風(fēng)速與下游機(jī)組風(fēng)湍流強(qiáng)度、疲勞載荷的關(guān)系,利用Bladed軟件和Matlab幅頻程序?qū)C(jī)組運(yùn)行仿真數(shù)據(jù)進(jìn)行分析,判斷尾流效應(yīng)對(duì)下風(fēng)向風(fēng)電機(jī)組載荷的影響,得到如下結(jié)論:
1)在自然風(fēng)速一定的情況下,隨著推力系數(shù)的增大,通過風(fēng)速會(huì)非線性減小。尾流的風(fēng)速隨兩風(fēng)機(jī)間的距離的增加而增加,但增加的趨勢(shì)是逐漸平緩的。而對(duì)于不同的風(fēng)輪半徑,其值越大,尾流風(fēng)速-距離的關(guān)系曲線越接近線性變化,也越平緩。
2)風(fēng)電機(jī)組處于尾流影響范圍內(nèi)時(shí),在風(fēng)速和推力系數(shù)相同的條件下,間距越遠(yuǎn)載荷受尾流的影響越小。在湍流強(qiáng)度差值的絕對(duì)值較大的情況下,載荷差值隨湍流強(qiáng)度差值的減小而增大,是因?yàn)槭芪擦饔绊懞笸牧鲝?qiáng)度減小使載荷增大;載荷的差值隨湍流強(qiáng)度的差值的增大而減小,即受尾流影響后湍流增大同時(shí)載荷減小,是因?yàn)殡m然湍流增大時(shí)載荷增大但與此同時(shí)受尾流影響作用后風(fēng)速變小使推力系數(shù)減小,隨之載荷減小,相較而言推力系數(shù)減小對(duì)載荷的影響更大。
3)當(dāng)上風(fēng)向風(fēng)電機(jī)組的推力系數(shù)增大,載荷增加,當(dāng)風(fēng)速大于額定風(fēng)速時(shí),應(yīng)采用變槳控制減小推力系數(shù),以減小風(fēng)電機(jī)組的疲勞損傷。
以Bladed軟件的風(fēng)電機(jī)組建模及數(shù)值仿真計(jì)算為依據(jù),討論上游風(fēng)電機(jī)組尾流對(duì)風(fēng)電機(jī)組的疲勞載荷影響,有一定的局限性,需進(jìn)一步提高數(shù)據(jù)的準(zhǔn)確性。
[1]楊培宏,胡慶林,付盼,等. 考慮風(fēng)速、風(fēng)向變化及尾流效應(yīng)的風(fēng)電場(chǎng)建模[J]. 可再生能源,2016,34(5):692-698.Yang Peihong, Hu Qinglin, Fu Pan, et al. The modeling of wind farm considering the changes of wind speed, wind direction and wake effect[J]. Renewable Energy Resources,2016, 34(5): 692-698. (in Chinese with English abstract)
[2]Vera-Tudela L, Kuhn M. Analysing wind turbine fatigue load prediction: The impact of wind farm flow conditions[J].Renewable Energy, 2017, 107: 352-360.
[3]Orlando S, Bale A, Johnson D A. Experimental study of the effect of tower shadow on anemometer readings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011,99(1): 1-6.
[4]李勇鋒. 兆瓦級(jí)風(fēng)電機(jī)組的載荷計(jì)算與性能研究[J]. 中國(guó)新技術(shù)新產(chǎn)品,2017(10):48-49.
[5]Alfredsson P H, Dahlberg J A. Measurements of wake interaction effects on power output from small wind turbine models[R]. Stockholm: FFA, 1981.
[6]Hand M, Simms D, Fingersh L. Unsteady aerodynamics experiment phase VI: Wind tunnel test configurations and available data campaigns[R]. Battelle: NREL, 2001.
[7]胡丹梅. 水平軸風(fēng)力機(jī)尾跡氣動(dòng)特性研究[D]. 上海: 上海交通大學(xué), 2006.Hu Danmei. Study on horizontal-Axis Wind Turbine Wake Aerodynamics[D]. Shanghai: Shanghai Jiao Tong University,2006. (in Chinese with English abstract)
[8]Oye S. Tjaereborg wind turbine: first dynamic inflow measurements[R]. Copenhagen: Technical University of Denmark, 1991.
[9]Cleijne J W. Results of Sexbierum wind farm: single wake measurements[R]. Rotterdam: TNO Institute of Environmental and Energy Technology, 1993.
[10]Ivanell S, S?rensen J N, Dan H. Numerical Computations of Wind Turbine Wakes[M]. Berlin: Springer Berlin Heidelberg,2007: 259-263.
[11]Frandsen S, Barthelmie R, Rathmann O. Summary report:The shadow effect of large wind farms: Measurements, data analysis and modeling[R]. Roskilde: Ris0, 2007.
[12]Wang T, Coton F N. A high resolution tower shadow model for downwind wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(10): 873-892.
[13]Fadaeinedjad R, Moschopoulos G, Moallem M. The impact of tower shadow, yaw error, and wind shears on power quality in a wind–diesel system[J]. Energy Conversion, IEEE Transactions on, 2009, 24(1): 102-111.
[14]張曉東,張鎮(zhèn). 半經(jīng)驗(yàn)風(fēng)力機(jī)尾流模型的研究[J]. 太陽能學(xué)報(bào),2014(1):101-105.Zhang Xiaodong, Zhang Zhen. Research of semi-empirical wind turbine wake model[J]. Acta Energiae Solaris Sinica,2014(1): 101-105. (in Chinese with English abstract)
[15]白鶴. 海上風(fēng)電機(jī)組的尾流模型研究[D]. 北京:華北電力大學(xué),2016.Bai He. Research on Wake Model of Wind Turbines in Offshore Wind Farm[D]. Beijing: North China Electric Power University, 2016. (in Chinese with English abstract)
[16]唐田. 大型風(fēng)電場(chǎng)風(fēng)電機(jī)組尾流模型及其應(yīng)用研究[D].保定:華北電力大學(xué),2015.Tang Tian. Research in Wake Model on the Large-scale Wind Farm and its Application[D]. Baoding: North China Electric Power University, 2015. (in Chinese with English abstract)
[17]Thomsen K, S?rensen P. Fatigue loads for wind turbines operating in wakes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80(1/2): 121-136.
[18]曹娜,于群,王偉勝,等. 風(fēng)電場(chǎng)尾流效應(yīng)模型研究[J]. 太陽能學(xué)報(bào),2016,37(1):222-229.Cao Na, Yu Qun, Wang Weisheng, et al. Research on wake effect model on wind farm[J]. Acta Energiae Solaris Sinica,2016, 37(1): 222-229. (in Chinese with English abstract)
[19]李少華,岳巍澎,匡青峰,等. 雙機(jī)組風(fēng)力機(jī)尾流互擾及陣列的數(shù)值模擬[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2011,31(5):101-107.Li Shaohua, Yue Weipeng, Kuang Qingfeng, et al. Numerical simulation of wake interaction and array of double wind turbine[J]. Proceedings of the CSEE, 2011, 31(5): 101-107.(in Chinese with English abstract)
[20]王蘇,周健. 考慮尾流效應(yīng)的風(fēng)電場(chǎng)可靠性模型研究[J].黑龍江電力,2015,37(3):211-215.Wang Su, Zhou Jian. Research on reliability model of wind farm considering wake effect[J]. Heilongjiang Electric Power,2015, 37(3): 211-215. (in Chinese with English abstract)
[21]Jensen N O. A note on wind generator interaction.Roskilde[R]. Denma rk: RisFNational Laboratory, 1983.
[22]Ott S. Linearised CFD models for wakes. Danmarks Tekniske Universitet[R]. Danmarks: RjsFNational Laboratoriet for Baeredygtig Energi, 2011.
[23]Schlez W, Tindal A, Quarton D. GH wind farmer validation report[R]. Bristol: Garrad, 2003.
[24]Barthelmie R J, Frandsen S T, Nielsen M N, et a1. Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm[J].Wind Energy , 2010, 10(6): 517—528.
[25]Barthelmie R J, Folkerts L, Larsen G C, et a1. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar[J]. Journal of Atmospheric &Oceanic Technology, 2006, 23(7): 888-901.
[26]Tian L L, Zhu W J, Shen W Z, et al. Prediction of multi-wake problems using an improved Jensen wake model[J].Renewable Energy, 2017, 102: 457-469.
[27]鄧英,周峰,陳忠雷, 等. 基于LPV增益調(diào)度的風(fēng)電機(jī)組控制驗(yàn)證與仿真分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):29-33.Deng Ying, Zhou Feng, Chen Zhonglei, et al. Verification and simulation analysis of wind turbine control based on linear parameter varying gain scheduling[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(3): 29-33.(in Chinese with English abstract)
[28]鄧英,周峰,田德,等. 不同風(fēng)湍流模型的風(fēng)電機(jī)組載荷計(jì)算研究[J]. 太陽能學(xué)報(bào), 2014, 35(12): 2395-2400.Deng Ying, Zhou Feng, Tian De, et al. Research on load calculation of wind turbine for different wind turbulence model[J]. Acta Energiae Solaris Sinica, 2014, 35(12): 2395-2400. (in Chinese with English abstract)
[29]馬瑞潔. 水平軸風(fēng)力機(jī)的尾流特性研究[D]. 蘭州:蘭州理工大學(xué),2016.Ma Ruijie. Study of Horizontal-Axis Wind Turbine Wake Characteristics[D]. Lanzhou: Lanzhou University of Technology, 2016. (in Chinese with English abstract)
[30]付德義,薛揚(yáng),焦渤,等. 湍流強(qiáng)度對(duì)風(fēng)電機(jī)組疲勞等效載荷的影響[J]. 華北電力大學(xué)學(xué)報(bào),2015,42(1):45-50.Fu Deyi, Xue Yang, Jiao Bo, et al. Effect on the turbulence intensity to wind turbine fatigue equivalent load[J]. Journal of North China Electric Power University, 2015, 42(1): 45-50.(in Chinese with English abstract)
[31]江兵. MW級(jí)直驅(qū)風(fēng)力發(fā)電機(jī)葉片載荷分析及疲勞壽命估算[D]. 太原:太原理工大學(xué),2015.Jiang Bing. Bladed Load Analysis and Fatigue Life Estimation of MW Grade Direct Driven Wind Turbine[D].Taiyuan: Taiyuan University of Technology, 2015. (in Chinese with English abstract)
[32]邢鋼,郭威. 風(fēng)力發(fā)電機(jī)組變槳距控制方法研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(5):181-186.Xing Gang, Guo Wei. Method for collective pitch control of wind turbine generator system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(5): 181-186. (in Chinese with English abstract)
Analysis on relationship between wake and fatigue load of wind turbines
Deng Ying, Li Jianan, Liu Hesheng, Pang Huiqing, Tian De
(Renewable Energy Institute, North China Electric Power University, Beijing102206,China)
With the continuous development of wind power industry, the power record of single wind turbine is constantly expanded, and the scale of wind power generation is becoming larger and larger. For large wind turbines, the wake effect cannot be ignored. It has an important influence on the fatigue load of the wind turbine, and also has a significant impact on the output power characteristics of the wind turbine. In order to study the influence of wind turbine wake on the load of the downstream wind turbine, several important wake parameters such as upstream and downstream wind turbine spacing, upstream wind turbine thrust coefficient and nature wind speed are assumed according to the theoretical results of some researchers. The physical quantity of wake region can be obtained according to the momentum theory. The relation between the natural wind speed, the wind speed and the thrust coefficient can be obtained by calculating the axial thrust based on the Bates’ theory. The wind speed increases linearly with the natural wind speed, but with the increase of the thrust coefficient, the wind speed of the wind rotor will gradually decrease.When the natural wind speed is fixed, with the increase of thrust coefficient, the wind speed of the wind turbine will be reduced, and if the thrust coefficient can be large enough, then the wind speed of the wind rotor will tend to 0. However,there will be no thrust coefficient greater than or equal to 1 in the actual operation of the wind turbine. Use GH Bladed software to build a model of FL1500/70 1.5 and 3.0 MW doubly-fed wind turbine, and calculate the load response of the wake model to the downstream wind turbine. The conclusions are obtained by analyzing the calculation results which are as follows: 1) When the natural wind speed is constant, the wind speed at the wind rotor will decrease nonlinearly with the increase of thrust coefficient. The wake wind speed increases with the distance between 2 wind turbines, but the trend is gradually stabilized. But for different wind rotor radius, the larger the value, the closer to linear variation the relationship curve of wake wind speed and distance. 2) When the wind turbine is in the influence range of the wake,under the same wind speed and thrust coefficient, the farther the distance, the less the load will be affected by wake. In the case of larger absolute value of turbulence intensity difference, the load difference increases with the decrease of turbulence intensity difference, which is due to that the decrease of turbulence intensity under the wake effects makes the load increase; sometimes the load difference decreases with the increase of the difference of turbulence intensity, which means under the wake effect the turbulence increases and at the same time the load is reduced. The reason is when the turbulence increases, the load increases, but at the same time the wind speed affected by the wake effect becomes smaller,so the thrust coefficient decreases, followed by the decrease of the load. Comparing the turbulence intensity with the thrust coefficient, the reduction of thrust coefficient has a more influence on the load. 3) When the thrust coefficient of the upstream wind turbine increases, the load will increase; when the wind speed is greater than the rated wind speed, the thrust coefficient should be reduced by adopting the pitch control so as to reduce the fatigue damage of the wind turbine.4) Based on the wind turbine modeling and numerical simulation calculation with Bladed software, the influence of upstream wind turbine wake on the fatigue loading of the wind turbine is discussed. The accuracy of this calculation which is used to determine the load response characteristics of wind turbines is limited, but it is very difficult to carry out on-site verification of the fatigue load data of wind turbine. Therefore, the data provided by the chart in this paper are for reference only.
wind turbines; computer simulation; models; distance; thrust coefficient; wind speed; wake; fatigue load
10.11975/j.issn.1002-6819.2017.10.031
TK83
A
1002-6819(2017)-10-0239-06
2016-09-28
2017-04-13
國(guó)際合作重大專項(xiàng)(2016YFE0102700)
鄧 英,女,湖南,教授,主要從事風(fēng)力發(fā)電的技術(shù)研究。北京華北電力大學(xué)可再生能源學(xué)院,102206。Email:Dengying25@163.com