張 毅
(蘇州科技大學(xué)土木工程學(xué)院,江蘇蘇州215011)
Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的準(zhǔn)對稱性與分?jǐn)?shù)階Noether定理1)
張 毅2)
(蘇州科技大學(xué)土木工程學(xué)院,江蘇蘇州215011)
應(yīng)用分?jǐn)?shù)階模型可以更準(zhǔn)確地描述和研究復(fù)雜系統(tǒng)的動力學(xué)行為和物理過程,同時(shí)Birkho ff力學(xué)是Hamilton力學(xué)的推廣,因此研究分?jǐn)?shù)階Birkho ff系統(tǒng)動力學(xué)具有重要意義.分?jǐn)?shù)階Noether定理揭示了Noether對稱變換與分?jǐn)?shù)階守恒量之間的內(nèi)在聯(lián)系,但是當(dāng)變換拓展為Noether準(zhǔn)對稱變換時(shí),該定理的推廣遇到了很大的困難.本文基于時(shí)間重新參數(shù)化方法提出并研究Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性與守恒量.首先,將時(shí)間重新參數(shù)化方法應(yīng)用于經(jīng)典Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性與守恒量研究,建立了相應(yīng)的Noether定理;其次,基于分?jǐn)?shù)階Pfa ff作用量分別在時(shí)間不變的和一般單參數(shù)無限小變換群下的不變性給出分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether準(zhǔn)對稱變換的定義和判據(jù),基于Frederico和Torres提出的分?jǐn)?shù)階守恒量定義,利用時(shí)間重新參數(shù)化方法建立了分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether定理,從而揭示了分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性與分?jǐn)?shù)階守恒量之間的內(nèi)在聯(lián)系.分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether對稱性定理和經(jīng)典Birkho ff系統(tǒng)的Noether定理是其特例.最后以分?jǐn)?shù)階Hojman-Urrutia問題為例說明結(jié)果的應(yīng)用.
分?jǐn)?shù)階Birkho ff系統(tǒng),Noether準(zhǔn)對稱性,F(xiàn)rederico-Torres分?jǐn)?shù)階守恒量,Caputo導(dǎo)數(shù)
分?jǐn)?shù)階微積分由于具有記憶性和非局域性等特點(diǎn),近四十年來被廣泛地應(yīng)用于解決科學(xué)和工程的許多領(lǐng)域的各種問題[13].1996年,Riewe[45]利用分?jǐn)?shù)階微積分將非保守力納入 Lagrange函數(shù)和Hamilton函數(shù)中構(gòu)建了非保守動力學(xué)系統(tǒng)的分?jǐn)?shù)階模型,首次提出并初步研究了分?jǐn)?shù)階變分問題.在此基礎(chǔ)上,Agrawal[67],Baleanu等[89],Atanackovi′c等[1011],Almeida等[1213]對分?jǐn)?shù)階變分問題進(jìn)行了深入研究.Frederico等[1418]最早開展分?jǐn)?shù)階Noether對稱性與守恒量的研究,提出了分?jǐn)?shù)階守恒量的定義,利用時(shí)間重新參數(shù)化方法,建立了分?jǐn)?shù)階Noether定理.近年來,分?jǐn)?shù)階Noether對稱性與守恒量的研究取得了重要進(jìn)展[1931].基于Frederico-Torres分?jǐn)?shù)階守恒量定義建立的Noether定理揭示了Noether對稱變換與分?jǐn)?shù)階守恒量之間的內(nèi)在聯(lián)系,但是當(dāng)其變換拓展為Noether準(zhǔn)對稱變換時(shí),該定理的推廣遇到了很大的困難.迄今為止筆者尚未見到關(guān)于Noether準(zhǔn)對稱變換與Frederico-Torres分?jǐn)?shù)階守恒量的Noether定理的研究報(bào)道.本文提出并研究Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性與守恒量問題,基于Frederico-Torres分?jǐn)?shù)階守恒量定義,給出Noether準(zhǔn)對稱性的定義和判據(jù),利用時(shí)間重新參數(shù)化方法,研究Noether準(zhǔn)對稱性與Frederico-Torres分?jǐn)?shù)階守恒量的聯(lián)系,建立了更一般的分?jǐn)?shù)階Noether定理.
本節(jié)列出文中涉及的分?jǐn)?shù)階導(dǎo)數(shù)的定義及相關(guān)性質(zhì),詳細(xì)的證明和討論可參見文獻(xiàn)[2-3].
設(shè)函數(shù) f(t)和g(t)在區(qū)間[a,b]上連續(xù)可積,則Riemann-Liouville分?jǐn)?shù)階左導(dǎo)數(shù)定義為
Riemann--Liouville分?jǐn)?shù)階右導(dǎo)數(shù)為
Caputo分?jǐn)?shù)階左導(dǎo)數(shù)定義為
Caputo分?jǐn)?shù)階右導(dǎo)數(shù)定義為
其中,Γ(?)是Euler-Gamma函數(shù),α是導(dǎo)數(shù)的階,且0≤α<1.
設(shè)函數(shù) f(t)和g(t)為在區(qū)間[a,b]上的光滑函數(shù),且 f(a)=f(b)=0,則Caputo導(dǎo)數(shù)下的分?jǐn)?shù)階分部積分公式為
在Caputo導(dǎo)數(shù)下,定義算子C(f,g)為
或
當(dāng)γ=1時(shí),式(8)和式(9)成為
積分泛函
稱為Pfa ff作用量,其中,B(t,aν)是Birkho ff函數(shù),Rμ(t,aν)(μ =1,2,···,2n)是 Birkho ff 函數(shù)組.
Pfa ff-Birkho ff原理可表示為[32]
帶有交換關(guān)系
及端點(diǎn)條件
由式(13)~式(15)容易導(dǎo)出Birkho ff方程
其中,矩陣
是非退化的.由Pfa ff-Birkho ff原理(式(13)~式(15))和 Birkho ff方程 (16)確定的動力學(xué)系統(tǒng)稱為經(jīng)典Birkho ff系統(tǒng).
下面利用時(shí)間重新參數(shù)化方法研究經(jīng)典Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性與守恒量.首先,研究時(shí)間不變的無限小變換下經(jīng)典Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性.
作用下,對任意[T1,T2]?[t1,t2],滿足如下條件
其中,ε為無限小參數(shù),ξμ是無限小變換的生成元,則稱Pfa ff作用量(式(12))在無限小變換(式(17))下準(zhǔn)不變的,變換(式(17))為系統(tǒng)在時(shí)間不變的無限小變換下的Noether準(zhǔn)對稱變換.
其中,ΔG= εG(t,aν),函數(shù)G(t,aν)稱為規(guī)范函數(shù).
判據(jù)1對于經(jīng)典Birkho ff系統(tǒng),如果存在規(guī)范函數(shù)G(t,aν)使得無限小變換(式(17))的生成元ξμ滿足條件
則變換(式(17))是系統(tǒng)在時(shí)間不變的無限小變換下的Noether準(zhǔn)對稱變換.
證明 由于積分區(qū)間[T1,T2]的任意性,式(19)等價(jià)于
將方程(21)等號兩邊對ε求導(dǎo),并令ε=0,立即得到式(20).證畢.
定理1對于經(jīng)典Birkho ff系統(tǒng),如果時(shí)間不變的無限小變換(式(17))是系統(tǒng)的Noether準(zhǔn)對稱變換,則是系統(tǒng)的一個(gè)守恒量.
證明 利用條件(式(20))和方程(16),有
因此,系統(tǒng)存在守恒量(式(22)).證畢.
其次,研究一般無限小變換下經(jīng)典Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性.
作用下,對任意[T1,T2]?[t1,t2],滿足如下條件
其中,ε為無限小參數(shù),ξ0,ξμ是無限小變換的生成元,則稱Pfa ff作用量(式(12))在無限小變換(式(23))下準(zhǔn)不變的,變換(式(23))為系統(tǒng)在一般無限小變換下的Noether準(zhǔn)對稱變換.
由式(24)確定的R1μ,B1和Rμ,B具有相同的運(yùn)動微分方程,此時(shí)有
于是有
判據(jù)2對于經(jīng)典Birkho ff系統(tǒng),如果存在規(guī)范函數(shù)G(t,aν)使得無限小變換(式(23))的生成元ξ0,ξμ滿足條件
證明 由式(25)可得出
由積分區(qū)間[T1,T2]的任意性,式(27)等價(jià)于
將方程(28)等號兩邊對ε求導(dǎo),并令ε=0,立即得到式(26).證畢.
定理2對于經(jīng)典Birkho ff系統(tǒng),如果一般無限小變換(式(23))是系統(tǒng)的Noether準(zhǔn)對稱變換,則
是系統(tǒng)的一個(gè)守恒量.
證明 如果將t看作為一個(gè)獨(dú)立變量,則每個(gè)非自治問題(式(12))等價(jià)于一個(gè)自治問題[14].事實(shí)上,設(shè)
則在時(shí)間t的一一對應(yīng)的李普希茨變換
作用下,有
隨著生活水平的不斷提高以及我國“大數(shù)據(jù),物聯(lián)網(wǎng)+”事業(yè)的不斷發(fā)展,手機(jī)智能化的普及,人們的智能化生活得到了諸多便利,與人們生活嘻嘻相關(guān)的各類APP應(yīng)用應(yīng)運(yùn)而生,正如大家所說的那樣“手機(jī)在手,應(yīng)有盡有”。目前紙質(zhì)圖書閱讀不方便,需隨身攜帶書籍,而電子圖書只需使用必備的手機(jī)即可實(shí)現(xiàn)隨時(shí)隨地地閱讀,滿足人們對于閱讀的需求,拓寬人們閱讀渠道,也給人們的生活到來了便利性。
其中
因此,如果作用量A[aν(·)]在定義2意義下是準(zhǔn)不變的,則作用量[t(·),aν(t(·))]在定義1意義下是準(zhǔn)不變的.由定理1可得到
是系統(tǒng)的一個(gè)守恒量.證畢.
定理 1和定理 2可稱為經(jīng)典 Birkho ff系統(tǒng)的Noether定理.該定理揭示了經(jīng)典Birkho ff系統(tǒng)分別在時(shí)間不變和一般單參數(shù)無限小變換下的Noether準(zhǔn)對稱性與守恒量之間的內(nèi)在聯(lián)系.如果˙G≡0,則定理給出了系統(tǒng)的Noether對稱性與守恒量的聯(lián)系.不同于以往的工作[3234],這里的證明采用了時(shí)間重新參數(shù)化方法:首先,在時(shí)間不變的無限小變換下給出守恒量(式(22));其次,引入李普希茨變換,將一個(gè)非自治問題化為一個(gè)自治問題,得到一般無限小變換下的守恒量(式(29)).
設(shè)基于Caputo導(dǎo)數(shù)的分?jǐn)?shù)階Pfa ff作用量為
則分?jǐn)?shù)階Pfa ff-Birkho ff原理可表示為
帶有交換關(guān)系
以及端點(diǎn)條件
由式(34)~式(36)可導(dǎo)出Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff方程
由分?jǐn)?shù)階Pfa ff-Birkho ff原理(式(34)~式(36))和分?jǐn)?shù)階Birkho ff方程(37)確定的動力學(xué)系統(tǒng)稱為Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng).
下面研究Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性與守恒量問題.首先基于由Frederico和Torres給出的分?jǐn)?shù)階守恒量概念[14],建立分?jǐn)?shù)階Birkho ff系統(tǒng)的分?jǐn)?shù)階守恒量定義,有
定義3 對于Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng),當(dāng)且僅當(dāng)沿著分?jǐn)?shù)階Birkho ff方程(37)的所有解曲線,有
定義3稱為Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的Frederico-Torres分?jǐn)?shù)階守恒量定義.
其次,研究時(shí)間不變的無限小變換下分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性與守恒量.
定義4 對于Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng),設(shè)和B1是另外的Birkho ff函數(shù)組和Birkho ff函數(shù),如果在時(shí)間不變的單參數(shù)無限小變換群(式(17))作用下,對任意[T1,T2]?[t1,t2],滿足如下條件
則稱分?jǐn)?shù)階Pfa ff作用量(式(33))在無限小變換(式(17))下是準(zhǔn)不變的,變換(式(17))為系統(tǒng)在時(shí)間不變的無限小變換下的Noether準(zhǔn)對稱變換.
其中 ΔG= εG(t,aν).
判據(jù)3 對于Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng),如果存在規(guī)范函數(shù)G(t,aν)使得無限小變換(式(17))的生成元ξμ滿足條件
則變換(式(17))是系統(tǒng)在時(shí)間不變的無限小變換下的Noether準(zhǔn)對稱變換.
證明 由于積分區(qū)間[T1,T2]的任意性,式(41)等價(jià)于
將方程(43)等號兩邊對ε求導(dǎo),并令ε=0,我們有
證畢.
定理3 對于Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng),如果時(shí)間不變的無限小變換(式(17))是系統(tǒng)的Noether準(zhǔn)對稱變換,則
是系統(tǒng)在定義3意義下的一個(gè)分?jǐn)?shù)階守恒量.
證明 由方程(37),得
將式(45)代入式(42),并注意到式(8)和式(9),我們有
由定義3,得守恒量式(44).證畢.
最后,研究一般無限小變換下分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性與守恒量.
定義5 對于Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng),設(shè)和B1是另外的Birkho ff函數(shù)組和Birkho ff函數(shù),如果在一般單參數(shù)無限小變換群(式(23))作用下,對任意[T1,T2]?[t1,t2],滿足如下條件
則稱分?jǐn)?shù)階Pfa ff作用量(式(33))在無限小變換(式(23))下準(zhǔn)不變的,變換(式(23))為系統(tǒng)的Noether準(zhǔn)對稱變換.
于是有
判據(jù)4 對于Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng),如果存在規(guī)范函數(shù)G(t,aν)使得無限小變換(式(23))的生成元 ξ0,ξμ滿足條件
則變換 (式 (23))是系統(tǒng)在一般無限小變換下的Noether準(zhǔn)對稱變換.
證明 由式(43)可得出
由積分區(qū)間[T1,T2]的任意性,式(49)等價(jià)于
注意到
將式(52)代入式(51),有
將方程(50)等號兩邊對ε求導(dǎo),利用式(53),并令ε=0,得
證畢.
定理4 對于Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng),如果一般無限小變換(式(23))是系統(tǒng)的Noether準(zhǔn)對稱變換,則
是系統(tǒng)在定義3意義下的一個(gè)分?jǐn)?shù)階守恒量.
證明 引進(jìn)李普希茨變換
則分?jǐn)?shù)階Pfa ff作用量(式(33))成為
其中 t(σ1)=t1,t(σ2)=t2,以及
將式(58)代入式(57),得
因此,如果分?jǐn)?shù)階作用量S[aν(·)]在定義5意義下是準(zhǔn)不變的,則分?jǐn)?shù)階作用量ˉS[t(·),aν(t(·))]在定義4意義下是準(zhǔn)不變的.由定理3,得到
是系統(tǒng)在定義3意義下的分?jǐn)?shù)階守恒量.當(dāng)λ=0時(shí),有
因此,我們有
而
將式(63)和式(62)代入式(60),得到分?jǐn)?shù)階守恒量(式 (54)).證畢.
定理3和定理4可稱為Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的 Noether定理.定理基于 Frederico和Torres提出的分?jǐn)?shù)階守恒量概念,建立了Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性與Frederico-Torres分?jǐn)?shù)階守恒量之間的聯(lián)系.如果G≡0,則定理給出了分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether對稱性與分?jǐn)?shù)階守恒量之間的聯(lián)系;如果α→1,則定理3和定理4退化為定理1和定理2,給出了經(jīng)典Birkho ff系統(tǒng)的Noether對稱性與經(jīng)典Noether守恒量之間的聯(lián)系.
考慮分?jǐn)?shù)階Hojman-Urrutia問題[35],該問題可表示為一個(gè)四階分?jǐn)?shù)階Birkho ff系統(tǒng),在Caputo導(dǎo)數(shù)下其Pfa ff作用量為
試研究該系統(tǒng)的分?jǐn)?shù)階Noether對稱性與分?jǐn)?shù)階守恒量.
分?jǐn)?shù)階Birkho ff方程(37)給出
判據(jù)方程(48)給出
方程(66)有解
式(67)對應(yīng)系統(tǒng)的Noether對稱變換,式(68)對應(yīng)系統(tǒng)的Noether準(zhǔn)對稱變換.根據(jù)定理4,得到
其中c2為任意常數(shù).式(69)是由Noether對稱性(式(67))導(dǎo)致的分?jǐn)?shù)階守恒量,式(70)是由Noether準(zhǔn)對稱性(式(68))導(dǎo)致的分?jǐn)?shù)階守恒量.當(dāng)α→1時(shí),式(69)和式(70)成為
式 (71)和式 (72)是經(jīng)典 Hojman-Urrutia問題的Noether守恒量.
由于應(yīng)用分?jǐn)?shù)階微積分可以更準(zhǔn)確地描述和研究復(fù)雜系統(tǒng)的動力學(xué)行為和物理過程,同時(shí)Birkho ff系統(tǒng)動力學(xué)是Hamilton力學(xué)的推廣,因此研究分?jǐn)?shù)階Birkho ff系統(tǒng)動力學(xué)具有重要意義.本工作一是建立了經(jīng)典 Birkho ff系統(tǒng)和 Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether準(zhǔn)對稱性的定義和判據(jù);二是基于時(shí)間重新參數(shù)化方法證明了經(jīng)典Birkho ff系統(tǒng)和Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的Noether定理,該定理建立了系統(tǒng)的Noether準(zhǔn)對稱性與分?jǐn)?shù)階守恒量之間的內(nèi)在聯(lián)系.以往關(guān)于 Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)基于Frederico-Torres分?jǐn)?shù)階守恒量定義的Noether定理以及經(jīng)典Birkho ff系統(tǒng)的Noether定理都是本文之特例.由于Caputo分?jǐn)?shù)階導(dǎo)數(shù)定義解決了Riemann-Liouville定義中的分?jǐn)?shù)階初值問題,從而在工程和實(shí)際問題的動力學(xué)建模中得到了更廣泛的應(yīng)用,因此本文的方法和結(jié)果可望得到廣泛應(yīng)用和進(jìn)一步發(fā)展.最后必須指出,基于 Frederico-Torres分?jǐn)?shù)階守恒量定義如何建立Noether準(zhǔn)對稱性與守恒量的關(guān)系尚屬開放的課題,例如Riemann-Liouville導(dǎo)數(shù)下分?jǐn)?shù)階Noether定理的推廣等.
1 Oldham KB,Spanier J.The Fractional Calculus.San Diego:Academic Press,1974
2 PodlubnyI.FractionalDi ff erentialEquations.SanDiego:Academic Press,1999
3 Kilbas AA,Srivastava HM,Trujillo JJ.Theory and Applications of Fractional Di ff erential Equations.Amsterdam:Elsevier B V,2006
4 Riewe F.Nonconservative Lagrangian and Hamiltonian mechanics.Physical Review E,1996,53(2):1890-1899
5 Riewe F.Mechanics with fractional derivatives.Physical Review E,1997,55(3):3581-3592
6 Agrawal OP.Formulation of Euler-Lagrange equations for fractional variational problems.Journal of Mathematical Analysis and Applications,2002,272(1):368-379
7 Agrawal OP.Fractional variational calculus in terms of Riesz fractional derivatives.Journal of Physics A:Mathematical and Theoretical,2007,40(24):6287-6303
8 Baleanu D,Avkar T.Lagrangians with linear velocities within Riemann-Liouville fractional derivatives.Nuovo Cimento B,2003,119(1):73-79
9 Baleanu D,Trujillo JJ.A new method of findin the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives.Communications in Nonlinear Science and Numerical Simulation,2010,15(5):1111-1115
10 Atanackovi′c TM,Konjik S,Pilipovi′c S.Variational problems with fractional derivatives:Euler-Lagrange equations.Journal of Physics A:Mathematical and Theoretical,2008,41(9):095201
11 Atanackovi′c TM,Konjik S,Oparnica Lj,et al.Generalized Hamilton’s principle with fractional derivatives.Journal of Physics A:Mathematical and Theoretical,2010,43(25):255203
12 Almeida R,Torres DFM.Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives.Communications in Nonlinear Science and Numerical Simulation,2011,16(3):1490-1500
13 Malinowska AB,Torres DFM.Introduction to the Fractional Calculus of Variations.London:Imperial College Press,2012
14 FredericoGSF,TorresDFM.AformulationofNoether’stheoremfor fractional problems of the calculus of variations.Journal of Mathematical Analysis and Applications,2007,334(2):834-846
15 Frederico GSF,Torres DFM.Fractional isoperimetric Noether’s theorem in the Riemann-Liouville sense.Reports on Mathematical Physics,2013,71(3):291-304
16 Frederico GSF.Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem.International Mathematical Forum,2008,3(10):479-493
17 Frederico GSF,Torres DFM.Fractional Noether’s theorem in the Riesz-Caputo sense.Applied Mathematics and Computation,2010,217(3):1023-1033
18 Frederico GSF,Lazo MJ.Fractional Noether’s theorem with classicalandCaputoderivatives:constantsofmotionfornon-conservative systems.Nonlinear Dynamics,2016,85(2):839-851
19 Atanackovi′c TM,Konjik S,Pilipovi′c S,et al.Variational problems with fractional derivatives:invariance conditions and Noether’s theorem.Nonlinear Analysis:Theory,Methods&Applications,2009,71(5-6):1504-1517
20 Odzijewicz T,Malinowska AB,Torres DFM.Noether’s theorem for fractional variational problems of variable order.Central European Journal of Physics,2013,11(6):691-701
21 Zhang SH,Chen BY,Fu JL.Hamilton formalism and Noether symmetry for mechanico-electrical systems with fractional derivatives.Chinese Physics B,2012,21(10):100202
22 Zhou S,Fu H and FuJL.Symmetry theories of Hamiltonian systemswith fractional derivatives.Science China Physics,Mechanics&Astronomy,2011,54(10):1847-1853
23 Luo SK,Li L.Fractional generalized Hamiltonian equations and its integral invariants.Nonlinear Dynamics,2013,73(1):339-346
24 Luo SK,Li L.Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives.Nonlinear Dynamics,2013,73(1):639-647
25 Jia QL,Wu HB,Mei FX.Noether symmetries and conserved quantities for fractional forced Birkhoffian systems.Journal of Mathematical Analysis and Applications,2016,442(2):782-795
26 Zhang Y,Zhou Y.Symmetries and conserved quantities for fractional action-like Pfaffian variational problems.Nonlinear Dynamics,2013,73(1-2):783-793
27 Zhang Y,Zhai XH.Noether symmetries and conserved quantities for fractional Birkhoffian systems.Nonlinear Dynamics,2015,81(1-2):469-480
28 Long ZX,Zhang Y.Noether’s theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in phase space.Acta Mechanica,2014,225(1):77-90
29 El-Nabulsi RA.Fractional variational symmetries of Lagrangians,the fractional Galilean transformation and the modifie Schr¨odinger equation.Nonlinear Dynamics,2015,81(1):939-948
30 Zhai XH,Zhang Y.Noether symmetries and conservedquantities for fractional Birkhoffian systems with time delay.Communications in Nonlinear Science and Numerical Simulation,2016,36:81-97
31 Yan B,Zhang Y.Noether’s theorem for fractional Birkhoffian systems of variable order.Acta Mechanica,2016,227(9):2439-2449
32梅鳳翔.李群和李代數(shù)對約束力學(xué)系統(tǒng)的應(yīng)用.北京:科學(xué)出版社,1999(Mei Fengxiang.Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems.Beijing:Science Press,1999(in Chinese))
33梅鳳翔,吳惠彬,李彥敏等.Birkho ff力學(xué)的研究進(jìn)展.力學(xué)學(xué)報(bào),2016,48(2):263-268(Mei Fengxiang,Wu Huibin,Li Yanmin,et al.Advances in research on Birkhoffian mechanics.Chinese Journal of Theoretical and Applied Mechanics,2016,48(2):263-268(in Chinese))
34張毅.相空間中非保守系統(tǒng)的 Herglotz廣義變分原理及其Noether定理.力學(xué)學(xué)報(bào),2016,48(6):1382-1389(Zhang Yi.Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether’s theorem.Chinese Journal of Theoretical and Applied Mechanics,2016,48(6):1382-1389(in Chinese))
35 Luo SK,Xu YL.Fractional Birkhoffian mechanics.Acta Mechanica,2015,226(3):829-844
QUASI-SYMMETRY AND NOETHER’S THEOREM FOR FRACTIONAL BIRKHOFFIAN SYSTEMS IN TERMS OF CAPUTO DERIVATIVES1)
Zhang Yi2)
(College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,Jiangshu,China)
The dynamical behavior and physical process of a complex system can be described and studied more accurately by using a fractional model,at the same time the Birkhoffian mechanics is a generalization of Hamiltonian mechanics,and therefore,the study of dynamics of fractional Birkhoffian systems is of great significanceFractional Noether’s theorem reveals the intrinsic relation between the Noether symmetric transformation and the fractional conserved quantity,but when the transformation is replaced by the Noether quasi-symmetric transformation,the corresponding extension of Noether’s theorem is very difficult.In this paper,the Noether quasi-symmetry and the conserved quantity for fractional Birkhoffian systems in terms of Caputo derivatives are presented and studied by using a technique of timereparametrization.Firstly,the technique is applied to the study of the Noether quasi-symmetry and the conserved quantityfor classical Birkhoffian systems and Noether’s theorem in its general form is established.Secondly,the definition and criteria of Noether quasi-symmetric transformations for fractional Birkhoffian systems are given which are based on the invariance of fractional Pfa ffaction under one-parameter infinitesima group of transformations without transforming the time and with transforming the time,respectively.Based on the definitio of fractional conserved quantity proposed by Frederico and Torres,Noether’s theorem for fractional Birkhoffian systems is established by using the method of timereparametrization.The theorem reveals the inner relationship between Noether quasi-symmetry and fractional conserved quantity and contains Noether’s theorem for the symmetry of fractional Birkhoffian system and Noether’s theorem for classical Birkhoffian system as its specials.Finally,we take the Hojman-Urrutia problem as an example to illustrate the application of the results.
fractional Birkhoffian system,Noether quasi-symmetry,Frederico-Torres fractional conserved quantity,caputo derivative
O316
:A
10.6052/0459-1879-16-350
2016–11–28 收稿,2017–02–19 錄用,2017–02–22 網(wǎng)絡(luò)版發(fā)表.
1)國家自然科學(xué)基金資助項(xiàng)目(11272227,11572212).
2)張毅,教授,主要研究方向:分析力學(xué).E-mail:zhy@mail.usts.edu.cn
張毅.Caputo導(dǎo)數(shù)下分?jǐn)?shù)階Birkho ff系統(tǒng)的準(zhǔn)對稱性與分?jǐn)?shù)階Noether定理.力學(xué)學(xué)報(bào),2017,49(3):693-702
Zhang Yi.Quasi-symmetry and Noether’s theorem for fractional Birkhoffian systems in terms of Caputo derivatives.Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):693-702