談炳東 許進(jìn)升,2) 孫朝翔 賈云飛 范興貴
?(南京理工大學(xué)機(jī)械工程學(xué)院,南京210094)?(北京航天長征飛行器研究所,北京100076)
短纖維增強(qiáng)三元乙丙橡膠橫觀各向同性
黏--超彈性本構(gòu)模型1)
談炳東?許進(jìn)升?,2)孫朝翔?賈云飛?范興貴?
?(南京理工大學(xué)機(jī)械工程學(xué)院,南京210094)?(北京航天長征飛行器研究所,北京100076)
短纖維增強(qiáng)三元乙丙橡膠包覆薄膜,是一種應(yīng)用于固體火箭發(fā)動機(jī)纏繞包覆裝藥的新型復(fù)合材料.為了描述其在工作過程中受振動、沖擊等載荷作用時(shí)的力學(xué)行為,基于黏彈性理論和纖維增強(qiáng)連續(xù)介質(zhì)力學(xué)理論,提出了一種考慮應(yīng)變率強(qiáng)化效應(yīng)的橫觀各向同性黏--超彈本構(gòu)模型.模型中應(yīng)變能函數(shù)被分解為超彈性應(yīng)變能和黏性應(yīng)變能,其中超彈性應(yīng)變能包括表征各向同性的橡膠基體應(yīng)變能和表征各向異性的纖維拉伸應(yīng)變能,黏性應(yīng)變能采用表征橡膠和纖維黏性響應(yīng)的宏觀唯象模型.選取表征各應(yīng)變能的函數(shù)形式,經(jīng)過數(shù)學(xué)變換、替代、疊加,求解確定最終的應(yīng)力應(yīng)變形式,明確模型參數(shù)獲取的具體步驟,將預(yù)測結(jié)果與實(shí)驗(yàn)結(jié)果對比分析,準(zhǔn)確性較高.研究表明:該模型能有效預(yù)測材料在低應(yīng)變率下纖維方向?yàn)??~45?的非線性率相關(guān)力學(xué)特性;模型形式易于實(shí)現(xiàn)有限元開發(fā),對固體火箭發(fā)動機(jī)裝藥結(jié)構(gòu)完整性分析具有參考價(jià)值.
三元乙丙橡膠,橫觀各向同性,黏--超彈性,本構(gòu)模型
三元乙丙(EPDM)聚合物屬于高分子橡膠彈性體,由于其具有密度小、絕熱性能良好、耐老化等諸多優(yōu)點(diǎn),被廣泛應(yīng)用于固體火箭發(fā)動機(jī)絕熱包覆層中[1].但是隨著固體火箭發(fā)動機(jī)技術(shù)的不斷發(fā)展,必須在傳統(tǒng)的EPDM包覆層中添加補(bǔ)強(qiáng)劑、有機(jī)和無機(jī)功能填料以改善其性能,以便更好地適應(yīng)發(fā)動機(jī)復(fù)雜的工作環(huán)境.目前國內(nèi)外對于EPDM的研究大多是關(guān)于填料或者配比的改變對其耐燒蝕性和拉伸強(qiáng)度等性能參數(shù)的影響[25],但對其承受不同載荷(溫度、振動、沖擊等)時(shí)表現(xiàn)的力學(xué)特征的研究較少,因此建立其本構(gòu)模型就顯得十分必要,能夠?yàn)楣腆w火箭發(fā)動機(jī)裝藥結(jié)構(gòu)完整性分析提供理論依據(jù).
EPDM純橡膠在受力作用下,既表現(xiàn)出典型的超彈特性,又具有明顯的應(yīng)變率強(qiáng)化效應(yīng),綜合表現(xiàn)出黏--超彈力學(xué)特性.經(jīng)典的橡膠超彈模型主要基于統(tǒng)計(jì)熱力學(xué)法和連續(xù)介質(zhì)力學(xué)法[6],其中應(yīng)用較多的模型包括Arrdua-Boyce模型[7]、Mooney-Rivlin模型[8]、Yeoh模型[9]等.對于橡膠的動態(tài)黏彈特性,Christensen[10]應(yīng)用橡膠彈性動力學(xué)理論得到非線性黏彈性本構(gòu)模型;Yang等[11]、Bergstr¨om等[12]、Song等[13]等在超彈模型的基礎(chǔ)上,考慮率相關(guān)性,建立不同形式的黏--超彈本構(gòu)模型;Jiang等[14]對ZWT非線性黏--超彈本構(gòu)模型改進(jìn),預(yù)測EPDM在準(zhǔn)靜態(tài)和動態(tài)沖擊載荷下的力學(xué)行為.而本文研究的新型EPDM絕熱包覆材料,由于添加短纖維,其力學(xué)特性呈現(xiàn)出各向異性,具體表現(xiàn)為沿纖維方向的力學(xué)性能與其他方向的具有明顯差異,可以簡化成橫觀各向同性[15].Pierce等[16]在各向同性的基礎(chǔ)上,將模型發(fā)展到橫觀各向同性的條件下,進(jìn)而去研究人體軟骨膠原纖維在有限變形條件下的力學(xué)性能.Balnazi等[17]在自由能函數(shù)中加入橫觀各向同性項(xiàng),從而推導(dǎo)出黏--超彈本構(gòu)模型,能較好地表征動脈壁膠原軟組織的應(yīng)力回復(fù)特性.Jiang等[18]將表征軟組織的彈性能量和黏性耗散結(jié)合構(gòu)建出短纖維增強(qiáng)黏--超彈本構(gòu)模型,以描述人類脊柱韌帶的非線性、應(yīng)變率相關(guān)力學(xué)行為.在各向同性的假設(shè)下,對于傳統(tǒng)的黏--超彈本構(gòu)模型的研究成果較多[1921],但是基于橫觀各向同性的黏--超彈本構(gòu)模型的研究卻有限[2224],主要原因是考慮到纖維方向性和黏性系數(shù)的不確定性,導(dǎo)致本構(gòu)模型形式繁瑣,參數(shù)測定方法復(fù)雜,其普適性大幅降低.
筆者結(jié)合黏彈性理論和纖維增強(qiáng)連續(xù)介質(zhì)力學(xué)理論,將Helmholtz自由能函數(shù)分解為超彈性應(yīng)變能和黏性應(yīng)變能,其中超彈性應(yīng)變能包括基體橡膠應(yīng)變能和纖維拉伸應(yīng)變能,選取表征各應(yīng)變能的函數(shù)形式,通過變換、替代和疊加,求解應(yīng)力--應(yīng)變關(guān)系,從而建立一種能描述短纖維增強(qiáng)EPDM包覆薄膜的非線性、各向異性、應(yīng)變率強(qiáng)化力學(xué)特性的黏--超彈本構(gòu)模型.
1.1 實(shí)驗(yàn)材料
EPDM薄膜包覆材料是將芳綸短纖維作為增強(qiáng)體添加到各向同性的橡膠基體中,短纖維長度約為5mm,長徑比約為200,其在基體橡膠中分散良好并呈單向分布,假設(shè)短纖維與基體橡膠完全粘合(不存在裂紋和滑移現(xiàn)象),但橡膠和短纖維的性能迥異,所以EPDM薄膜包覆層具有各向異性和率相關(guān)的力學(xué)特性:當(dāng)拉伸載荷沿纖維方向作用時(shí),纖維能有效增加材料的抗拉強(qiáng)度;當(dāng)卸載后,基體橡膠有助于材料恢復(fù)到初始狀態(tài).
定義平行于纖維方向?yàn)??,垂直于纖維方向?yàn)?0?,并且在 0?~90?之間每隔 15?切取條形試件,圖 1是其微觀結(jié)構(gòu)示意圖.此種新型 EPDM薄膜包覆層的厚度約為0.5mm,切取帶狀試件,尺寸為80mm×10mm,標(biāo)距為40mm.對EPDM薄膜包覆材料進(jìn)行了單軸拉伸和偏軸拉伸實(shí)驗(yàn),實(shí)驗(yàn)溫度為291K,濕度為48%,實(shí)驗(yàn)所用的拉伸速率分別為5mm/min、20mm/min和100mm/min.
圖1 EPDM薄膜包覆層示意圖Fig.1 Diagram of EPDM inhibitor fil
1.2 本構(gòu)方程
連續(xù)介質(zhì)力學(xué)中,變形梯度張量 F=?x/?X,表示連續(xù)體的變形歷史,其中 X和 x分別表示質(zhì)點(diǎn)在初始構(gòu)形和當(dāng)前構(gòu)形中的坐標(biāo).對右柯西--格林(Cauchy-Green)變形張量C=FTF求物質(zhì)時(shí)間導(dǎo)數(shù),得到變形率張量˙C
右柯西--格林應(yīng)變張量不變量表示為
式中,I是二階單位張量,結(jié)構(gòu)張量A0=a0?a0,a0代表纖維方向,λF是纖維的伸長比.
右柯西--格林應(yīng)變率張量不變量表示為
Helmholtz自由能函數(shù)W能夠描述橡膠材料在大變形下的力學(xué)行為,考慮到EPDM包覆薄膜具有明顯的率相關(guān)性,將應(yīng)變能函數(shù)W分解為超彈性應(yīng)變能We和黏性應(yīng)變能ψv兩部分[18,25-26]
超彈性應(yīng)變能函數(shù)可以表示成與右柯西--格林應(yīng)變張量C和纖維方向a0有關(guān)的應(yīng)變張量不變量Ii的標(biāo)量函數(shù)[27]
式中,超彈性應(yīng)變能函數(shù)被分解為各向同性和各向異性兩部分:I1,I2和I3表征橡膠基體的各向同性屬性;I4和I5與纖維伸長率和伸長方向有關(guān),用來表征各向異性.
黏性應(yīng)變能具有率相關(guān)效應(yīng),表示為與右柯西-格林應(yīng)變率張量˙C相關(guān)的應(yīng)變率張量不變量Ji的標(biāo)量函數(shù)[28]
由鏈導(dǎo)法則可得,應(yīng)變能函數(shù)W對右柯西--格林應(yīng)變張量C和應(yīng)變率張量進(jìn)行求導(dǎo),得到第二皮奧拉--基爾霍夫(Piola-Kirchho ff)應(yīng)力張量S
式中,?Ii/?C和?Ji/?是不變量的一階導(dǎo)數(shù)
而表征真實(shí)應(yīng)力的柯西(Cauchy)應(yīng)力張量為
短纖維增強(qiáng)EPDM包覆薄膜在拉伸過程中具有非線性、各向異性、大變形的率相關(guān)力學(xué)特性,根據(jù)Spencer提出的纖維增強(qiáng)連續(xù)介質(zhì)力學(xué)理論,通過解耦應(yīng)變能函數(shù),計(jì)算應(yīng)力--應(yīng)變關(guān)系,再進(jìn)行疊加,是一種有效表征黏彈性材料力學(xué)行為的方法.
2.1 超彈應(yīng)變能的解耦
用應(yīng)變張量不變量 Ii表示的超彈性應(yīng)變能函數(shù),相比較I1,I2對于纖維增強(qiáng)橡膠的變形影響較小,可以被忽略[23,29];基于不可壓縮性假設(shè),I3=J2=1;I4=,與纖維伸長率有關(guān),不可被忽略;不考慮纖維和基體橡膠的相互作用,即忽略I5的影響[15,23,30].因此為便于獲取參數(shù),將超彈性應(yīng)變能函數(shù)解耦為基體橡膠應(yīng)變能和纖維伸長應(yīng)變能,構(gòu)造關(guān)于 I1和 I4的簡單多項(xiàng)式應(yīng)變能函數(shù)[15,18,30-31]
2.1.1 橡膠應(yīng)變能
超彈性橡膠應(yīng)變能函數(shù)的完全多項(xiàng)式形式可以表示為[32]
式中,Cij和Di為模型參數(shù).在不可壓假設(shè)下,選取N=2作為多項(xiàng)式的階數(shù),得到基體橡膠的超彈性應(yīng)變能函數(shù)
式中,材料參數(shù)C10和C20的單位均為MPa.
2.1.2 纖維應(yīng)變能
當(dāng)纖維處于壓縮狀態(tài)時(shí),其呈現(xiàn)弱阻力,所以假定纖維受拉伸載荷作用時(shí),應(yīng)變能與其拉伸長度有關(guān),被定義為[33]
式中,材料參數(shù)C2和C3的單位均為MPa.
2.2 黏性應(yīng)變能的推導(dǎo)
材料的黏度依賴于其微觀結(jié)構(gòu)和化學(xué)成分[34],為簡化材料的黏性表征方法,提出一種宏觀的唯象模型來表征橡膠基體和短纖維的黏性響應(yīng),黏性應(yīng)變能被定義為[18]
式中,黏性材料參數(shù)ηi單位均為MPa·min.
2.3 黏--超彈本構(gòu)模型
超彈性應(yīng)變能和黏性應(yīng)變能的函數(shù)形式已經(jīng)被定義,當(dāng)I4≥1時(shí),將式(13)~式(15)代入式(10)得簡化后的黏--超彈本構(gòu)模型應(yīng)力張量
式中,B是左柯西--格林應(yīng)變張量,a是纖維在當(dāng)前構(gòu)形中的方向向量,且B=F·FT,a=F·a0.
2.4 模型參數(shù)的確定方法
通過對黏--超彈應(yīng)變能函數(shù)的分解耦合,采用7個(gè)材料參數(shù)利用最小二乘法擬合3種拉伸速率下的單軸拉伸和偏軸拉伸實(shí)驗(yàn)數(shù)據(jù)獲得.材料參數(shù)由于纖維方向性而變得復(fù)雜,在相同變形的基礎(chǔ)上,不同纖維方向會產(chǎn)生不同的力學(xué)響應(yīng),必須根據(jù)相應(yīng)的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行分步擬合.
為簡化參數(shù)獲取,假定5mm/min拉伸速率的實(shí)驗(yàn)為準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn),即忽略基體材料和纖維的應(yīng)變率效應(yīng),只表征超彈性力學(xué)響應(yīng);考慮到工程實(shí)用性,認(rèn)為垂直于纖維方向的力學(xué)行為完全表征純橡膠的靜態(tài)力學(xué)屬性;通過對I4取值分析和實(shí)驗(yàn)結(jié)果分析,當(dāng)纖維方向大于45?時(shí),纖維增強(qiáng)作用明顯被削弱,由此確定模型的適用范圍為0?~45?.獲取模型參數(shù)的具體步驟如下:
(1)擬合90?纖維方向的5mm/min單軸拉伸實(shí)驗(yàn)數(shù)據(jù),得到橡膠應(yīng)變能的材料參數(shù)C10和C20;
(2)擬合0?、15?、30?和45?纖維方向的5mm/min偏軸拉伸實(shí)驗(yàn)數(shù)據(jù),得到纖維拉伸應(yīng)變能的材料參數(shù)C2和C3;
(3)擬合20mm/min拉伸實(shí)驗(yàn)數(shù)據(jù),獲取黏性應(yīng)變能參數(shù) η1,η2,η3和 η4;
(4)利用前面3步獲取的材料參數(shù)對100mm/min拉伸實(shí)驗(yàn)數(shù)據(jù)進(jìn)行驗(yàn)證,與不考慮黏性應(yīng)變能的預(yù)測曲線進(jìn)行對比.
3.1 本構(gòu)模型一維形式
考慮到短纖維增強(qiáng)EPDM包覆薄膜的不可壓和橫觀各向同性,假設(shè)變形前短纖維的單位方向向量為 a0=[cosα sinα 0],單軸拉伸狀態(tài)如圖2所示.其變形梯度張量F、左柯西--格林應(yīng)變張量B和應(yīng)變率張量
其中,λi和分別表示第i個(gè)主方向的拉伸比和拉伸速率.
圖2 短纖維增強(qiáng)EPDM單軸拉伸變形Fig.2 Uniaxial tensile deformation of short fibe reinforced EPDM
基于橡膠材料在有限拉伸變形下完全不可壓和短纖維增強(qiáng)EPDM的橫觀各向同1性,假設(shè)主方向伸長比分別為λ1=λ,λ2=λ3=λ-2,計(jì)算可得
基于這種情況,對式(16)進(jìn)行簡化(忽略λ3方向上的應(yīng)變率效應(yīng)),得到黏--超彈本構(gòu)模型在單軸拉伸下的柯西應(yīng)力
式中,σ=Pλ,P是工程應(yīng)力.
3.2 參數(shù)擬合
3.2.1 超彈性材料參數(shù)
對于超彈性部分,沒有必要考慮應(yīng)變率效應(yīng)的影響,通過擬合5mm/min速率下各個(gè)纖維方向的單軸和偏軸拉伸實(shí)驗(yàn)數(shù)據(jù),即可獲得表征超彈性應(yīng)變能的材料參數(shù),如圖3所示.由此得到橡膠基體材料參數(shù)為
短纖維材料參數(shù)C2和C3如表1所示.
圖3 超彈性參數(shù)擬合結(jié)果Fig.3 Fitting results of hyperelastic parameters
表1 短纖維材料參數(shù)C2和C3Table 1 Short fibe material parameter C2and C3
通過對短纖維材料參數(shù)C2和C3分析發(fā)現(xiàn):參數(shù)C2和纖維方向α近似線性相關(guān),利用線性回歸分析得C2:y=-0.02189x+3.19074;參數(shù)C3與纖維方向無關(guān),幾乎保持恒定,約為-1.99738.
3.2.2 黏彈性材料參數(shù)
在超彈性材料參數(shù)確定的基礎(chǔ)上,通過擬合20mm/min速率的應(yīng)力--應(yīng)變曲線獲得黏彈性部分材料參數(shù)ηi,如圖4所示.首先擬合20mm/min速率下90?纖維方向的實(shí)驗(yàn)曲線,得到只與橡膠基體黏性響應(yīng)有關(guān)的材料參數(shù)η1和η2;然后擬合其他纖維方向的實(shí)驗(yàn)曲線,獲取表征纖維對橡膠作用產(chǎn)生的黏性響應(yīng)的材料參數(shù)η3和η4,黏性材料參數(shù)見表2.
圖4 黏彈性參數(shù)擬合結(jié)果Fig.4 Fitting results of viscoelastic parameters
表2 黏彈性材料參數(shù)ηiTable 2 Viscoelastic material parameters ηi____
3.3 模型驗(yàn)證
在獲得所有材料參數(shù)的基礎(chǔ)上,利用本文建立的各向異性黏--超彈性本構(gòu)模型對100mm/min拉伸速率(應(yīng)變率為2.5/min)的應(yīng)力--應(yīng)變曲線進(jìn)行預(yù)測對比,同時(shí)給出了應(yīng)變率為0.5/min和不考慮黏性的模型預(yù)測結(jié)果,如圖5所示.
利用模型預(yù)測結(jié)果與應(yīng)變率為2.5/min的實(shí)驗(yàn)數(shù)據(jù)吻合度較高,誤差主要出現(xiàn)在拉伸的初始階段,考慮拉伸實(shí)驗(yàn)數(shù)據(jù)受諸多因素影響,此誤差在可接受范圍內(nèi).與應(yīng)變率為0.5/min和不考慮黏性的模型預(yù)測結(jié)果相比,相差較大,說明在相同拉伸條件下,材料表現(xiàn)出強(qiáng)烈的率相關(guān)效應(yīng),即應(yīng)力隨應(yīng)變率的增加而增加.從而證明本文建立的各向異性黏--超彈性本構(gòu)模型的有效性和準(zhǔn)確性,能夠表征0?~45?纖維方向和低應(yīng)變率下短纖維增強(qiáng)材料的力學(xué)響應(yīng).
圖5 不同應(yīng)變率下的應(yīng)力--應(yīng)變曲線對比Fig.5 Comparison of stress-strain curve under di ff erent strain rates
(1)基于纖維增強(qiáng)連續(xù)介質(zhì)力學(xué)理論,提出了一種考慮應(yīng)變率效應(yīng)的橫觀各向同性黏--超彈性本構(gòu)模型,能夠描述短纖維增強(qiáng)EPDM絕熱包覆材料在0?~45?纖維方向和低應(yīng)變率下表現(xiàn)的大變形、非線性和各向異性的率相關(guān)力學(xué)特性.
(2)黏--超彈性應(yīng)變能被解耦為超彈性應(yīng)變能和黏性應(yīng)變能,而超彈性應(yīng)變能又被解耦為橡膠應(yīng)變能和纖維拉伸應(yīng)變能,其中纖維應(yīng)變能材料參數(shù)C2和纖維方向α近似線性相關(guān).
(3)所提出的各向異性黏--超彈性本構(gòu)模型有效性好,獲取材料參數(shù)的步驟明確,模型形式易于實(shí)現(xiàn)有限元開發(fā),能為固體火箭發(fā)動機(jī)裝藥結(jié)構(gòu)完整性數(shù)值分析提供參考依據(jù).
(4)在拉伸初始階段,模型預(yù)測結(jié)果與實(shí)驗(yàn)數(shù)據(jù)存在誤差,可通過改進(jìn)橡膠應(yīng)變能函數(shù)形式提高模型的準(zhǔn)確性.
1汪建麗,王紅麗,熊治榮等.三元乙丙橡膠絕熱層在固體火箭發(fā)動機(jī)中的應(yīng)用.宇航材料工藝,2009,39(2):12-14(Wang Jianli,Wang Hongli,Xiong Zhirong,et al.EPDM rubber insulation applied in solid rocket motor.Aerospace Materials and Technology,2009,39(2):12-14(in Chinese))
2 Natali M,Rallini M,Kenny J,et al.E ff ect of Wollastonite on the ablation resistance of EPDM based elastomeric heat shielding materials for solid rocket motors.Polymer Degradation&Stability,2016,130:47-57
3 Singh S,Guchhait PK,Bandyopadhyay GG,et al.Development of polyimide–nanosilica fille EPDM based light rocket motor insulator compound:Influenc of polyimide–nanosilica loading on thermal,ablation,and mechanical properties.Composites Part A Applied Science&Manufacturing,2013,44(1):8-15
4路向輝,楊士山,劉晨等.填料對三元乙丙橡膠包覆層性能影響研究.化工新型材料,2013,41(10):131-132(Lu Xianghui,Yang Shishan,Liu Chen,et al.Study on the influenc of filler on the properties of EPDMrubber coating.NewChemical Materials,2013,41(10):131-132(in Chinese))
5王紀(jì)霞,張志鵬,趙榮等.三元乙丙橡膠絕熱層力學(xué)性能的改善.航天制造技術(shù),2013(4):41-44(Wang Jixia,Zhang Zhipeng,Zhao Rong,et al.Enhancement of mechanical performances of EPDM rubber insulation.Aerospace Manufacturing Technology,2013(4):41-44(in Chinese))
6張少實(shí).復(fù)合材料與黏彈性力學(xué).第 2版.北京:機(jī)械工業(yè)出版社,2005(Zhang Shaoshi.Composite Materials and Viscoelastic Mechanics.Second edition.Beijing:China Machine Press,2005(in Chinese))
7 Arruda EM,Boyce MC.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials.Journal of the Mechanics&Physics of Solids,1993,41(2):389-412
8 Mooney M.A theory of large elastic deformation.Journal of Applied Physics,1940,11(9):582-592
9 Yeoh OH.Characterization of elastic properties of carbon-blackfille rubber vulcanizates.Rubber Chemistry&Technology,1990,63(5):792-805
10 Christensen RM.A nonlinear theory of viscoelasticity for application to elastomers.Journal of Applied Mechanics,1980,47(4):762-768
11 Yang LM,Shim VPW,Lim CT.A visco-hyperelastic approach to modelling the constitutive behaviour of rubber.International Journal of Impact Engineering,2000,24(6):545-560
12 Bergstr¨om JS,Boyce MC.Large strain time-dependent behavior of fille elastomers.Mechanics of Materials,2000,32(11):627-644
13 Song B,Chen W.Dynamic compressive behavior of EPDM rubber under nearly uniaxial strain conditions.Journal of Engineering Materials&Technology,2004,126(2):213-217
14 Jiang J,Xu JS,Zhang ZS,et al.Rate-dependent compressive behavior of EPDM insulation:Experimental and constitutive analysis.Mechanics of Materials,2016,96:30-38
15董金平,張志強(qiáng).基于橫觀各向同性超彈性理論的短纖維增強(qiáng)橡膠本構(gòu)模型的建立與應(yīng)用.計(jì)算力學(xué)學(xué)報(bào),2016,33(2):231-237(Dong Jinping,Zhang Zhiqiang.Establishment and application of short fibe reinforced rubber constitutive model based on transversely isotropic hyperelastic theory.Chinese Journal of Computational Mechanics,2016,33(2):231-237(in Chinese))
16 PierceDM,TrobinW,RayaJG,etal.DT-MRIbasedcomputationof collagen fibe deformation in human articular cartilage:A feasibility study.Annals of Biomedical Engineering,2010,38(7):2447-2463
17 Balzani D,Brinkhues S,Holzapfel GA.Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls.Computer Methods in Applied Mechanics&Engineering,2012,213-216(4):139-151
18 Jiang Y,Wang Y,Peng X.A visco-hyperelastic constitutive model for human spine ligaments.Cell Biochemistryand Biophysics,2015,71(2):1147-1156
19胡少青,鞠玉濤,常武軍等.NEPE固體推進(jìn)劑黏--超彈性本構(gòu)模型研究.兵工學(xué)報(bào),2013,34(2):168-173(Hu Shaoqing,Ju Yutao,Chang Wujun,et al.A visco-hyperelastic constitutive behavior of NEPE propellant.Acta Armamentarii,2013,34(2):168-173(in Chinese))
20胡小玲.炭黑填充橡膠黏超彈性力學(xué)行為的宏細(xì)觀研究.[博士論文].湘潭:湘潭大學(xué),2013(Hu Xiaoling.Micro and macro viscohyperelastic behavior of carbon black fille rubbers.[PhD Thesis].Xiangtan:Xiangtan University,2013(in Chinese))
21 Boccaccio A,Lamberti L,Papi M,et al.A hybrid characterization framework to determine the visco-hyperelastic properties of a porcine zona pellucida.Interface Focus A Theme Supplement of Journal of the Royal Society Interface,2014,4(2):86-108
22黃小雙,彭雄奇,張必超.簾線/橡膠復(fù)合材料各向異性黏--超彈性本構(gòu)模型.力學(xué)學(xué)報(bào),2016,48(1):140-145(Huang Xiaoshuang,Peng Xiongqi,Zhang Bichao.An anisotropic visco-hyperelastic constitutive model for cord-rubber composites.Chinese Journal of Theoretical and Applied Mechanics,2016,48(1):140-145(in Chinese))
23 Zhurov AI,Evans SL,Holt CA,et al.A nonlinear compressible transversely-isotropic viscohyperelastic constitutive model of the periodontal ligament//Proceedings of ASME,2008 International Mechanical Engineering Congress and Exposition,2008:707-719
24 Kulkarni SG,Gao XL,Horner SE,et al.A transversely isotropic visco-hyperelastic constitutive model for soft tissues.Mathematics&Mechanics of Solids,2014,21(6):747-770
25 Spencer AJM.Continuum Theory of the Mechanics of Fiberreinforced Composites.New York:Springer,1984
26 Zhang F.Viscoelastic constitutive model of cord-rubber composite.Journal of Reinforced Plastics&Composites,2005,24(12):1311-1320
27 Guo Z,Peng X,Moran B.Large deformation response of a hyperelastic fibr reinforced composite:Theoretical model and numerical validation.Composites Part A Applied Science&Manufacturing,2007,38(8):1842-185
28 Limbert G,Middleton J.A transversely isotropic viscohyperelastic material:Application to the modeling of biological soft connective tissues.International Journal of Solids&Structures,2004,41(14):4237-4260
29 Holzapfel GA.Nonlinear solid mechanics:A continuum approach for engineering science.Meccanica,2002,37(4):489-490
30 Brown LW,Smith LM.A simple transversely isotropic hyperelastic constitutive model suitable for finit element analysis of fibe reinforced elastomers.Journal of Engineering Materials&Technology,2011,133(2):307-314
31 Ishikawa S,Tokuda A,Kotera H.Numerical simulation for fibe reinforced rubber.Journal of Computational Science and Technology,2008,2(4):587-596
32李曉芳,楊曉翔.橡膠材料的超彈性本構(gòu)模型.彈性體,2005,15(1):50-58(Li Xiaofang,Yang Xiaoxiang.A review of elastic constitutive model for rubber materials. China Elastomerics,2005,15(1):50-58(in Chinese))
33 Peng XQ,Guo ZY,Du TL,et al.A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation.Composites,2013,52(52):275-281
34 Mattucci SF,Moulton JA,Chandrashekar N,et al.Strain rate dependent properties of younger human cervical spine ligaments.Journal of the Mechanical Behavior of Biomedical Materials,2012,10(10):216-226
A TRANSVERSELY ISOTROPIC VISCO-HYPERELASTIC CONSTITUTIVE MODEL FOR SHORT FIBER REINFORCED EPDM1)
Tan Bingdong?Xu Jinsheng?,2)Sun Chaoxiang?Jia Yunfei?Fan Xinggui??(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)?(Beijing Institute of Space Long March Vehicle,Beijing 100076,China)
Short fibe reinforced EPDM inhibitor fil is a new type composite material,which has been applied in solid rocket motor winding and coating.Based on viscoelastic theory and fibe reinforced continuum mechanics theory,a transversely isotropic visco-hyperelastic constitutive model is proposed to describe strain rate dependent mechanical behaviors under vibration,impact and other loading conditions.The strain energy function is decomposed into hyperelastic strain energy and viscous strain energy,in which hyperelastic strain energy includes two parts:representing the strain energy from isotropic rubber matrix and anisotropic fibe tensile deformation.A macro-phenomenological model is proposed to characterizetheviscousresponsefromrubbermatrixandfibers Then,selectthefunctionformofeachstrainenergy.After a series of mathematical transformation,substitution and superposition,the fina form of stress and strain is determined.Moreover,the specifi steps to obtain model parameters are defined Finally,the predicted and experimental results are compared and analyzed,which indicates high accuracy of the proposed model.Studies show that it can e ff ectively predict their nonlinear and strain rate dependent mechanical behaviors in the fibe direction from 0?to 45?at low strain rate.It is concluded that the proposed model is easy to realize finit element development,which has reference value for the structural integrity analysis of solid rocket motor.
EPDM,transversely isotropic,visco-hyperelastic,constitutive model
O331,TB332,V435
:A
10.6052/0459-1879-16-380
2016–12–16 收稿,2017–03–23 錄用,2017–03–23 網(wǎng)絡(luò)版發(fā)表.
1)國家自然科學(xué)基金(51606098)和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(30915118805)資助項(xiàng)目.
2)許進(jìn)升,副教授,主要研究方向:結(jié)構(gòu)完整性分析.E-mail:xujinsheng@njust.edu.cn
談炳東,許進(jìn)升,孫朝翔,賈云飛,范興貴.短纖維增強(qiáng)三元乙丙橡膠橫觀各向同性黏--超彈性本構(gòu)模型.力學(xué)學(xué)報(bào),2017,49(3):677-684
Tan Bingdong,Xu Jinsheng,Sun Chaoxiang,Jia Yunfei,Fan Xinggui.A transversely isotropic visco-hyperelastic constitutive model for short fibe reinforced EPDM.Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):677-684