• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于基團(tuán)貢獻(xiàn)法推算混合制冷工質(zhì)表面張力

      2017-07-03 14:58:46趙義逢鄭學(xué)林
      制冷 2017年2期
      關(guān)鍵詞:平均偏差表面張力工質(zhì)

      趙義逢,鄭學(xué)林

      ( 上海海事大學(xué),上海 201306 )

      基于基團(tuán)貢獻(xiàn)法推算混合制冷工質(zhì)表面張力

      趙義逢,鄭學(xué)林

      ( 上海海事大學(xué),上海 201306 )

      基于基團(tuán)貢獻(xiàn)法,計(jì)算了現(xiàn)有四種純組分摩爾表面積下,15種二元、4種三元混合制冷工質(zhì)表面張力。通過(guò)對(duì)比不同摩爾表面積模型下的計(jì)算精度,得出利用Rasmussen摩爾表面積模型計(jì)算二元、三元混合制冷工質(zhì)表面張力可得到較高精度。1193組二元混合制冷工質(zhì)表面張力的相對(duì)平均偏差為0.15mN·m-1,100組三元混合制冷工質(zhì)表面張力的相對(duì)平均偏差為-0.03mN·m-1。因此,在Rasmussen摩爾表面積模型下的基團(tuán)貢獻(xiàn)法能夠用于新型環(huán)?;旌现评涔べ|(zhì)表面張力的推算。

      基團(tuán)貢獻(xiàn)法;表面張力;混合制冷工質(zhì)

      1 引言

      隨著人類(lèi)對(duì)溫室效應(yīng)和臭氧空洞問(wèn)題關(guān)注的增多,制冷、空調(diào)、熱泵行業(yè)廣泛采用的CFC與HCFC類(lèi)物質(zhì)將會(huì)被淘汰。尋找一種臭氧層衰減指數(shù)(ODP)為零、全球變暖潛勢(shì)(GWP)較低的新型環(huán)保制冷工質(zhì)成為國(guó)際上的研究熱點(diǎn)。然而,在保證制冷工質(zhì)優(yōu)良的熱力學(xué)性能、低毒性和不易燃性的前提下,目前為止未找到CFC和HCFC的替代物。例如,杜邦和霍尼韋爾提出的2,3,3,3-四氟丙烯(HFO-1234yf),由于其ODP為零,每100年GWP為4,與R134a有相似的熱力學(xué)性能,是代替汽車(chē)空調(diào)制冷工質(zhì)R134a的最佳工質(zhì)[1,2]。但由于其弱可燃性阻礙了在汽車(chē)空調(diào)制冷系統(tǒng)中的應(yīng)用[1,3]?;旌现评涔べ|(zhì)具備各組分制冷工質(zhì)的優(yōu)點(diǎn),同時(shí)又能克服單一制冷工質(zhì)的缺點(diǎn)。

      表面張力作為重要的熱物性參數(shù),影響著氣液界面中的能量傳遞和傳質(zhì)過(guò)程,對(duì)汽車(chē)空調(diào)蒸發(fā)器和冷凝器的計(jì)算和設(shè)計(jì)起著至關(guān)重要的作用。表面張力的預(yù)估模型有很多,如經(jīng)典熱力學(xué)理論[4-6]、梯度理論[7]、流體界面的范德瓦爾斯理論[8]和基團(tuán)貢獻(xiàn)模型[5]等。基團(tuán)貢獻(xiàn)法具有計(jì)算精度高和簡(jiǎn)單方便等優(yōu)點(diǎn),被廣泛地應(yīng)用于多元非電解質(zhì)混合溶液表面張力的估算。對(duì)二元、三元混合制冷工質(zhì),考查不同純組分Sprow[5]、Goldsack[6]、Paquette[9]、Rasmussen[5]四種摩爾表面積模型對(duì)混合制冷工質(zhì)表面張力推算精度的影響,以尋求最優(yōu)的純組分摩爾表面積模型。

      2 理論

      Sprow和Prausnitz[2]在引入表面相的基礎(chǔ)上,假定整體相和表面相處于平衡,組分i的偏摩爾表面積與其摩爾表面積相等,推導(dǎo)出混合物表面張力的預(yù)估方程:

      (1)

      (2)

      在混合物中,組分i在整體相和表面相的活度系數(shù)均可按下式計(jì)算[10]:

      (3)

      (4)

      (5)

      (6)

      純組分摩爾表面積模型的選擇很大程度上影響混合物表面張力的推算精度?,F(xiàn)有的純組分摩爾表面積計(jì)算模型列于表1:

      依據(jù)文獻(xiàn)[5]中推算混合物表面張力計(jì)算機(jī)語(yǔ)言的方法進(jìn)行編程,同時(shí)迭代過(guò)程中引入欠松弛法,取松弛因子ω=0.01,并對(duì)四種純組分摩爾表面積下計(jì)算表面張力精度進(jìn)行了對(duì)比。

      3 結(jié)果與討論

      為了對(duì)比不同純組分摩爾表面積模型下,混合制冷工質(zhì)表面張力的計(jì)算精度。本文推算了15種二元混合制冷工質(zhì)共1193組數(shù)據(jù)、4種三元混合制冷工質(zhì)共100組數(shù)據(jù)的表面張力值?;鶊F(tuán)貢獻(xiàn)法中本文用到的參數(shù)見(jiàn)表2、表3。

      表1 四種純組分摩爾表面積模型

      Table 1 Models for prediction on the surface area of pure substance

      作者方程參數(shù)方程編號(hào)Sprow和Prausnitz[2]Ai=V2/3iBN1/3ANA是阿伏伽德羅常數(shù),NA=6.022×1023,ViB是體相中組分i的摩爾體積。(7)GoldsackDE等[6]Ai=π(34π)2/3N1/3AV2/3iB(8)Paquette等[9]Ai=1.21N1/3AV6/15iCV4/15iBViC是組分i的臨界摩爾體積(9)Rasmussen[5]Ai=2.5×109∑kυk,iQkQk是基團(tuán)k的面積參數(shù)(10)

      表2 基團(tuán)貢獻(xiàn)法中本文所用基團(tuán)分類(lèi)及基團(tuán)參數(shù)[11-13]

      Table 2 The group specifications and sample group assignments pure refrigerants in this work[11-13]

      基團(tuán)序號(hào)主基團(tuán)次基團(tuán)RkQk1CH2CH30.90110.848CH20.67440.540CH0.44690.22840CF2CF31.40601.38051CHFCH2F1.06991.000CHF0.84200.68852CHF2CH2F21.46541.460CHF21.23801.23254CClF2CClF21.80161.64455CHClF2CHClF22.02901.87256CHF3CHF31.63351.60811FF0.37710.440

      表3 本文所用基團(tuán)相互作用參數(shù)amn[11-13]

      Table 3 The group interaction parameter amnfor pure refrigerants in this work[11-13]

      基團(tuán)CH2CF2CHFCHF2CClF2CHClF2CHF3FCH2033.51527.08134.38-47.3333.49-68.51117.77CF287.260—245.25—-54.69-321.67218.9CHF105.48000———218.9CHF235.69-11.44—0—-44.17-16.78218.9CClF274.33———0124.2197.41—CHClF221.63110.37—165.97-80.9302.73—CHF3203.282666.6—156.77-0.5452.660—F1538.316.0316.0316.03———0

      混合制冷工質(zhì)表面張力的推算值和實(shí)驗(yàn)值之間的相對(duì)平均偏差定義如下:

      (10)

      式中,N是實(shí)驗(yàn)數(shù)據(jù)個(gè)數(shù),σexp和σcalc分別是混合制冷工質(zhì)表面張力的實(shí)驗(yàn)值和推算值。

      二元、三元混合制冷工質(zhì)的相對(duì)平均偏差見(jiàn)表4、表5。觀察計(jì)算結(jié)果:二元混合制冷工質(zhì)數(shù)據(jù)點(diǎn)數(shù)總計(jì)1193個(gè),在不同摩爾表面積模型下,即方程(7)~(10),得到的相對(duì)平均偏差分別為0.32mN·m-1,0.30 mN·m-1,0.29 mN·m-1和0.15 mN·m-1;三元混合制冷工質(zhì)數(shù)據(jù)點(diǎn)數(shù)總計(jì)100個(gè),相對(duì)平均偏差分別為0.22 mN·m-1,0.20 mN·m-1,0.19 mN·m-1和-0.03 mN·m-1。因此,利用Rasmussen摩爾表面積模型計(jì)算二元、三元混合制冷工質(zhì)表面張力能得到較高的精度。圖1、圖2為Rasmussen摩爾表面積模型下,二元、三元混合制冷工質(zhì)表面張力的相對(duì)平均偏差,相對(duì)平均偏差分布在零線上下。同時(shí),值得注意的是,R290和R32、R32和R227ea兩種二元混合制冷工質(zhì)的高非理想特性,實(shí)驗(yàn)得到的表面張力值均小于混合物中各組分的表面張力值,使得混合工質(zhì)表面張力的計(jì)算值與實(shí)驗(yàn)值相差較大。對(duì)于這一類(lèi)混合工質(zhì),基團(tuán)貢獻(xiàn)法不再適用于其表面張力的計(jì)算。

      4 結(jié)論

      基于基團(tuán)貢獻(xiàn)法,計(jì)算了在四種摩爾表面積模型下1193組15種二元混合制冷工質(zhì)、100組4種三元混合制冷工質(zhì)的表面張力,根據(jù)計(jì)算值和實(shí)驗(yàn)值之間的相對(duì)平均偏差,尋求適用于計(jì)算新型環(huán)?;旌现评涔べ|(zhì)表面張力的摩爾表面積模型。并得到結(jié)論:基團(tuán)貢獻(xiàn)法,二元、三元混合制冷工質(zhì)表面張力最小相對(duì)平均偏差為Rasmussen摩爾表面積模型,能夠用于計(jì)算新型環(huán)保混合制冷工質(zhì)表面張力。

      表4 在四種摩爾面積模型下二元混合制冷工質(zhì)表面張力的平均偏差

      Table 4 Average deviations for binary refrigerant mixtures by different surface area models

      制冷工質(zhì)測(cè)量方法①數(shù)據(jù)點(diǎn)數(shù)dσ(7)/mN·m-1dσ(8)/mN·m-1dσ(9)/mN·m-1dσ(10)/mN·m-1R290和R600a[14]DCRM390.02320.01140.0030-0.0608R290和R152a[15]DCRM510.53610.52110.52610.3768R152a和R134a[16]DCRM210.25800.25390.24840.1923R134a和R125[16]DCRM210.15180.11980.0905-0.3273R152a和R125[16],[17]DCRM750.05590.0083-0.0418-0.5538R134a和R143a[16],[18]DCRM124-0.1528-0.1772-0.2096-0.3599R32和R134a[16],[19]DCRM1500.09360.09130.09190.1166R32和R125[16],[20],[21]DCRM1690.34650.32740.3119-0.0556RE170和R290[22]DCRM57-0.1228-0.1590-0.2228-0.4867R22和R115[23]DCRM160.96550.94070.91720.6088R23和R116[24]DCRM101.08371.01860.88920.4840R143a和R227ea[25]DCRM121-0.0467-0.0568-0.0624-0.0628R143a和R125[16],[26],[27]DCRM,SLS35-0.2239-0.2254-0.2275-0.2485R290和R32[28]DCRM991.45051.45031.45031.4478R32和R227ea[29]DCRM2050.64370.64170.63960.6167 總計(jì)11930.31520.30100.28620.1477

      注 DCRM:差分毛細(xì)管法;SLS:激光散射法。

      表5 在四種摩爾面積模型下三元混合制冷工質(zhì)表面張力的平均偏差

      Table 5 Average deviations for ternary refrigerant mixtures by different surface area models

      制冷工質(zhì)測(cè)量方法數(shù)據(jù)點(diǎn)數(shù)dσ(7)/mN·m-1dσ(8)/mN·m-1dσ(9)/mN·m-1dσ(10)/mN·m-1 R404a[16],[26],[27]DCRM,SLS30-0.1785-0.1835-0.1888-0.2346 R407C[16],[21],[26]DCRM,SLS480.16560.14080.1257-0.1755 R417A[30]SLS120.50970.47010.48220.1581 R417B[30]SLS100.39170.36060.34950.1237 總計(jì)1000.22210.19700.1922-0.0321

      圖1 Rasmussen摩爾表面積模型下二元混合制冷工質(zhì)表面張力的相對(duì)偏差Figure 1 Deviations for binary refrigerant mixitures by Rasmussen model

      圖2 Rasmussen摩爾表面積模型下三元混合制冷工質(zhì)表面張力的相對(duì)偏差Figure 2 Deviations for ternary refrigerant mixtures by Rasmussen model

      [1] Hulse R,Singh R,Pham H.Physical properties of HFO-1234yf[C]∥Proceedings of the 3rd IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants.2009:21-26

      [2] 雷靜,張功學(xué),安秋鳳.新型制冷劑 HFO-1234yf[J].化工新型材料,2010(001):35-37

      [3] Minor B,Spatz M.HFO-1234yf low GWP refrigerant update[J].2008

      [4] Nath S,Shishodia V.Surface tension of nonelectrolyte solutions[J].Journal of colloid and interface science,1993,156(2):498-503

      [5] Sprow F B,Prausnitz J M,Rasmussen P.Surface thermodynamics of liquid mixtures[J].The Canadian Journal of Chemical Engineering,1967,45(1):25-28

      [6] Goldsack D E,Sarvas C D.Volume fraction statistics and the surface tensions of non-electrolyte solutions[J].Canadian Journal of Chemistry,1981,59(20):2968-2980

      [7] Larsen B L,Rasmussen P,F(xiàn)redenslund A.A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing[J].Industrial & engineering chemistry research,1987,26(11):2274-2286

      [8] Bongiorno V.Modified van der Waals theory of fluid interfaces[J].Physical Review A,1975,12(5):2213

      [9] Paquette L J,An anisotropic model for the surface properties of a liquid[D].Laurentian University,Canada,1982

      [10] Poling B E,Prausnitz J M,John Paul O C,et al.The properties of gases and liquids[M].New York:McGraw-Hill,2001

      [11] Kleiber M.An extension to the UNIFAC group assignment for prediction of vapor-liquid equilibria of mixtures containing refrigerants[J].Fluid phase equilibria,1995,107(2):161-188

      [12] Kang J W,Abildskov J,Gani R,et al.Estimation of mixture properties from first-and second-order group contributions with the UNIFAC model[J].Industrial & engineering chemistry research,2002,41(13):3260-3273

      [13] 吳獻(xiàn)忠,崔曉鈺,李美玲.UNIFAC 基團(tuán)貢獻(xiàn)法預(yù)測(cè)混合制冷劑的氣液相平衡[J].化工學(xué)報(bào),2005,56(10):1832-1836

      [14] Tanaka K,Higashi Y.Measurements of the surface tension for R290,R600a and R290/R600a mixture[J].International journal of refrigeration,2007,30(8):1368-1373

      [15] Zhao G,Bi S,Wu J,et al.Surface tension of propane(R-290)+1,1-difluoroethane(R-152a)from(248 to 328)K[J].Journal of Chemical & Engineering Data,2010,55(9):3077-3079

      [16] Heide R.The surface tension of HFC refrigerants and mixtures[J].International journal of refrigeration,1997,20(7):496-503

      [17] Bi S,Zhao G,Wu J.Surface tension of pentafluoroethane+1,1-difluoroethane from(243 to 328)K[J].Fluid Phase Equilibria,2009,287(1):23-25

      [18] Lin H,Duan Y Y.Surface Tension for the 1,1,1-Trifluoroethane(R-143a)+1,1,1,2-Tetrafluoroethane(R-134a)System[J].Journal of Chemical & Engineering Data,2004,49(2):372-375

      [19] Duan Y Y,Lin H,Wang Z W.Surface tension measurements of difluoromethane(R-32)and the binary mixture difluoromethane(R-32)+1,1,1,2-tetrafluoroethane(R-134a)from(253 to 333)K[J].Journal of Chemical & Engineering Data,2003,48(4):1068-1072

      [20] Duan Y Y,Lin H.Surface tension of the binary refrigerant mixture HFC-32+ HFC-125[J].Fluid phase equilibria,2003,213(1):89-98

      [21] Froba A P,Leipertz A.Thermophysical properties of the refrigerant mixtures R410A and R407C from dynamic light scattering(DLS)[J].International journal of thermophysics,2003,24(5):1185-1206

      [22] Bi S,Li X,Zhao G,et al.Surface tension of dimethyl ether+propane from 243 to 333K[J].Fluid Phase Equilibria,2010,298(1):150-153

      [23] Okada M,Arima T,Hattori M,et al.Measurements of the surface tension of three refrigerants,R22,R115,and R502[J].Journal of Chemical and Engineering Data,1988,33(4):399-401

      [24] Geller V Z,Zhelezny V P,Bivens D B,et al.Transport properties and surface tension of R23/116 azeotropic mixture[J].1996

      [25] Lin H,Duan Y Y.Surface Tension of 1,1,1-Trifluoroethane(HFC-143a),1,1,1,2,3,3,3-Heptafluoropropane(HFC-227ea),and Their Binary Mixture HFC-143a/227ea[J].International Journal of Thermophysics,2003,24(6):1495-1508

      [26] Okada M,Shibata T,Sato Y,et al.Surface tension of HFC refrigerant mixtures[J].International journal of thermophysics,1999,20(1):119-127

      [27] Froba A P,Will S,Leipertz A.Thermophysical properties of binary and ternary fluid mixtures from dynamic light scattering[J].International journal of thermophysics,2001,22(5):1349-1368

      [28] Tanaka K,Higashi Y.Measurements of the Surface Tension for the R290+R32 Mixture[J].Journal of Chemical & Engineering Data,2008,54(6):1656-1659

      [29] Lin H,Duan Y Y.Surface Tension of Difluoromethane(R-32)+1,1,1,2,3,3,3-Heptafluoropropane(R-227ea)from(253 to 333)K[J].Journal of Chemical & Engineering Data,2005,50(1):182-186

      Prediction of the Surface Tension of Refrigerant mixtures with Group Contribution Method

      ZHAO Yifeng,ZHENG Xuelin

      ( Shanghai Maritime University,Shanghai 201306 )

      Based on group contribution method,the surface tension of 15 kinds of binary and 4 kinds of ternary refrigerant mixtures are calculated for existing molar surface area models of pure component.The calculation accuracy of four molar surface area models are compared and the one proposed by Rasmussen shows a better prediction of the surface tension for both binary and ternary refrigerant mixtures.1193 and 100 surface tension date for binary and ternary refrigerant mixtures are collected from the literatures to check the reliability and accuracy of the applied method.The results show that total average deviations from Rasmussen′s model are 0.15mN·m-1and -0.03mN·m-1,respectively.Therefore,the group contribution method with Rasmussen′s surface model is suitable for the prediction of the surface tension of new environmentally friendly refrigerant mixtures.

      Group contribution method;Surface tension;Refrigerant mixtures

      2016-7-27

      趙義逢(1990-),男,碩士研究生,研究方向:制冷與空調(diào)的節(jié)能和蓄能技術(shù)。Email:yifengzhao90@163.com

      ISSN1005-9180(2017)02-032-06

      TQ413.22 文獻(xiàn)標(biāo)示碼:A

      10.3969/J.ISSN.1005-9180.2017.02.007

      猜你喜歡
      平均偏差表面張力工質(zhì)
      海洋溫差能發(fā)電熱力循環(huán)系統(tǒng)的工質(zhì)優(yōu)選
      河北地方性震級(jí)量規(guī)函數(shù)與方位角校正值研究1
      FY-3C/VIRR西北太平洋區(qū)域海表溫度精度評(píng)估?
      采用R1234ze(E)/R245fa的非共沸混合工質(zhì)有機(jī)朗肯循環(huán)系統(tǒng)實(shí)驗(yàn)研究
      采用二元非共沸工質(zhì)的有機(jī)朗肯循環(huán)熱力學(xué)分析
      若干低GWP 純工質(zhì)在空調(diào)系統(tǒng)上的應(yīng)用分析
      神奇的表面張力
      小布老虎(2016年4期)2016-12-01 05:46:08
      MgO-B2O3-SiO2三元體系熔渣表面張力計(jì)算
      上海金屬(2016年2期)2016-11-23 05:34:45
      脛前動(dòng)脈穿刺可行性及心肺流轉(zhuǎn)下脛前動(dòng)脈與橈動(dòng)脈壓力監(jiān)測(cè)的一致性研究
      CaF2-CaO-Al2O3-MgO-SiO2渣系表面張力計(jì)算模型
      上海金屬(2014年3期)2014-12-19 13:09:06
      抚顺县| 垣曲县| 额济纳旗| 三原县| 云霄县| 东辽县| 科尔| 济源市| 武陟县| 治多县| 双江| 固阳县| 鄂伦春自治旗| 陆川县| 毕节市| 滦南县| 方正县| 桐乡市| 仙居县| 博兴县| 宝丰县| 常宁市| 孟津县| 名山县| 灌阳县| 巫山县| 招远市| 宁国市| 米易县| 浦城县| 闸北区| 泊头市| 蒲城县| 广安市| 隆安县| 滨海县| 琼中| 巴东县| 松滋市| 屏边| 凭祥市|