• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extremum Problems of Laplacian Eigenvalues and Generalized Polya Conjecture?

    2017-07-02 07:17:58FanghuaLIN

    Fanghua LIN

    (Dedicated to Professor Haim Brezis on the occasion of his 70th birthday)

    1 Introduction

    This write up covers the author’s mini-course consisting of three lectures at the 6th-symposium on Analysis and PDEs at the Purdue University,June1st–4th,2015.A somewhat detailed expositions on the relevant works were given in a special graduate course of the author(which was first given at the Courant Institute in the spring of 2014 and then in the fall 2014 at the NYU/Shanghai).My goal here is to give a rather brief survey of some extremum problems for Laplacian eigenvalues on bounded domains in Euclidean spaces with the zero Dirichlet boundary condition.I also want to explain how the solvability(existence and regularity)of these extremum problems is related to(a stronger version)a generalized version of the Polya conjecture.

    It is with the deep respect and admiration that I write this article dedicating to Professor Haim Brezis.

    2 Some Classical Results

    2.1 Weyl’s asymptotic formula and Polya’s conjecture

    Let us start with the following simplest examples of eigenvalues and eigenfunctions.

    Example 2.1Given an ODE,?

    One has a set of(properly normalized)eigenfunctions

    and eigenvalues

    If we denote

    Here VNis the volume of the unit ballin RN,thenbe written as,for the dimension N=1,that

    Example 2.2Let Q be the unit square in R2,and we consider

    We again have a set of eigenfunctions:uk(x,y)=sin(mx)sin(ny),and corresponding eigenvaluesHere k=N(λ)is the number of lattice points in{(m,n) ∈One notices that for N=2,andThus one haswhen N=2.

    What we have described in the above examples are nothing but special cases of the well known Weyl’s asymptotic formula(see,e.g.,[1,5,16,19,25–26]and references therein).

    LetΩbe a bounded domain in RN.The eigenvalue problems

    has a sequence of(normalized)eigenfunctions:{uk(x)}that it forms an orthonormal basis of L2(Ω).In particular,

    and

    The corresponding sequence of eigenvalues{λk}satisfies in addition that 0< λ1< λ2≤λ3≤ ···.Weyl’s asymptotic formula then implies that

    Here|Ω|is the volume of Ω and N is the dimension of Ω.Weyl’s formula can be further improved(as conjectured by Weyl himself)(see[1,16,25]and references therein):

    Here N(λ)denotes number of eigenvalues≤ λ (the minus sign in the formula is for the Dirichlet eigenvalues,and the plus sign corresponds to the eigenvalues with zero Neumann boundary conditions or we simply call them the Neumann eigenvalues).

    Thus for a fixed domainΩof finite perimeter in RN,one has for the Dirichlet eigenvalues that

    where D(N,|Ω|,|?Ω|)is a positive constant depending on N,|Ω|and|?Ω|.This leads also naturally to the well-known Polya’s conjecture(for the Dirichlet eigenvalues on a bounded domainΩ?RN).

    Polya’s conjecture(see[27])is as follows:

    for every bounded domain in RNand every positive integer k.

    We note that,using the further improved expansions of Weyl’s formula,if k and|Ω|are fixed,then the optimal shape,that is,the right-hand side reaches the minimum value,of the domain Ω is a ball.Weak versions of Polya’s conjectured lower bound for Dirichlet eigenvalues are due to Berezin[4]and Li and Yau[23],with developments later by Laptev[22]and others using Riesz means and “universal” inequalities(see for example a survey article by Ashbaush[2]).Polya[27]proved the conjecture(??)for planar tiling domains(see also[22]).

    On the other hand,if we fix a k(sufficient large)and if the Weyl asymptotic formula(?)is valid(uniformly inΩ),which is obviously an unknown issue,then one would expect,as k becomes larger and larger,that the “optimal” domain Ω of a fixed volume,which realizes the least value for the tight hand side of(?),would converge to a ball which solves the isoperimetric(inequality)problem.We shall come back to this interesting and difficult point later.

    2.2 M in-M ax principle and nodal domains

    Let us recall the classical min-max principle for Laplacian eigenvalues[14]:

    (1)

    (2)

    Here

    is the Rayleigh quotient,and Ej’s are j-dimensional subspaces.

    One of the uses of(1)and(2)is to obtain estimates for both upper bounds(via(1))and lower bounds(via(2)).

    In particular,λ1=inf{R(u):andfor k=2,3,···.

    Next,we have the nodal domains theorem of Courant.

    Theorem 2.1Let u be a k-th eigenfunction,i.e.,Δu+λku=0 inΩand u?=0(identically)inΩ withthen the number of nodal domains of u≤k.Here an open connected subset D ofΩis called a nodal domain of u if u never vanishes on D and if u≡0 on?D.

    When N=1,then the above nodal domain theorem is an easy consequence of the Sturm-Liouville theory.Moreover,in the latter case,the number of nodal domains(intervals)of a k-th eigenfunction is exactly k.A simple proof of the Courant’s nodal domain theorem can be deduced from the min-max principle.

    and hence,via min-max principle,one hasConsequently,inandTherefore v vanishes on a nonempty open subsetThe latter is impossible by the analyticity of v inΩ(see[14])or by the unique continuation theorem.

    Corollary 2.1SupposeThen the number of nodal domains of u is exactly 2.

    2.3 Partitions of a domain

    In general,we let u ∈ E(λk){0}be a k-th eigenfunction of the Laplacian on Ω with Dirichlet boundary condition.Letμ(u)be the number of nodal domains of u.We say there is an m-nodal partition ofΩ if there is an eigenfunction u ∈ E(λk){0}(for some k≥ m)such that m= μ(u)(see also[17]for related discussion).A natural question is how largeμ(u)can be,for a u ∈ E(λk){0}.Courant’s nodal domain theorem says that,for any u ∈ E(λk){0},μ(u)≤ k.It turns out thatμk=max{μ(u):u ∈ E(λk){0}}is definitely smaller than k,for k large.The following elegant theorem was due to Pleijel.

    Theorem 2.2(Pleijel)

    for any bounded domainΩ in RN.Hereμkis defined above.

    Next,we apply the Faber-Krahn inequality(see discussions below)toΩjto obtain(since Ωjis a nodal domain of u ∈ E(λk){0})thatwhere Bjis a ball in RNwithTo proceed,one examines,for example,the case N=2.Then one has

    (here j0=2.4 is the first positive zero of the 0-th order Bessel function).

    On the other hand,Weyl asymptotic formula implies thatwhen N=2.Henceorwhen N=2.

    Finally,the cases N>2 can be handled in the same way,and the conclusion of the theorem follows.

    We remark that

    (a)Any l∞-minimal partition is a spectral equal partition(this may be viewed as an interesting exercise).

    (b)The existence,regularity and regularity of free interfaces of minimal partition have been studied by many authors(see,for example,the survey article[17],and also[11–12]).

    In[11],we also conjectured,in the case N=2,that

    (i)exists,and it is independent ofΩ.

    (ii)(Hexa).

    3 Extremum Problems

    3.1 Special cases

    One of the main purposes of this article is to address the following extremum problem:

    for a positive integer k and N ≥ 2.Hereλk(Ω)is the k-th Dirichlet eigenvalue of the Laplacian onΩ?RN.It is already unclear,at the first look,that what type of measurable subsetsΩin RNwith volume 1,so thatλk(Ω)would be well-defined.

    When k=1,we have the following well-known Faber-Krahn inequality:

    where B is a ball in RNwith|B|=1.Here infimum is taking among any measurable setsΩ in RNwith|Ω|=1,so that λ1(Ω)is defined.For example,Ω being a bounded,open subset of RNwill work.This inequality may be proved by many arguments including the classical symmetrization method(see[3,13,15,18,28]).

    The case k=2 is already drastically different from the case k=1.In fact,there is no connected open setΩthat could solve the extremum problem(EP)when k=2.Indeed,let us assume thatsolves(EP)with k=2,and let u2be the corresponding second eigenfunction:

    The above argument has showed also that the solution to(EP)when k=2 is given by a disjoint union of two balls of the equal volume

    These preliminary observations lead to a couple rather basis questions:

    (Q1)What type setsΩwould be admissible for the extremum problem(EP)?

    (Q2)How one can handle the usual“concentration compactness”problems when a minimizing sequence{Ωj}of(EP)in RNmay be stretched and splitted to infinitely?

    (Q3)Is it possible to find minimizersΩof(EP)such thatΩwould be open and connected?

    There were numerous works addressing the first two questions.Much of discussion of these may be find in the excellent monograph by Henrot[18]and references therein.Here we shall be concentrated mainly on the third question and to discuss some recent progress on it.Before we do so,let us discuss a couple more specific cases.

    The first special class of subsetsΩ?RNone would consider is the class of convex domains.We have the following.

    Theorem 3.1There is a convex domain that solves the(EP):

    for every positive integer k.

    ProofLet{Ωn}be a minimizing sequence.Since Ωn’s are convex andone has that eitherΩnconverges in the Hausdorff distance to a bounded convex domainΩ?with|Ω?|=1,or there is a subsequence of{Ωn?}such that Ωn?would be contained in strips(after suitable rotations and translations)of formsuch thatwhileIf the latter is the case,then an easy calculation of the first eigenvalues of the regions of the formyields that(no matter what are the sized of Ln’s).In particular,

    as n tends to infinite.This would contradict to the fact thatλk(Ωn?)converge to the value

    and hence the latter is not possible.For the former case,an easy fact in the convex geometry implies that ifΩn’s converges to Ω?(convex)with|Ω?|=1 in the Hausdorff distance,then Ωn’s are uniformly Lipschitz domains.Moreover,λk(Ωn)converges to λk(Ω?)ascan be easily established.Hence the conclusion of the theorem follows.

    The second class of subsetswe would discuss here are bounded sets.Here is one of the basis existence result(see[7–9,18]and references therein).

    Theorem 3.2 There is a quasi-open setΩ?? B that solves the following constrained extremum eigenvalue problem:

    Here B is a large ball(or any bounded,Lipschitz domain with|B|>1).

    The proof of the above theorem is contained in the references[7–9,18],and it takes some pages to describe it.Here we shall discuss the relevant notion of quasi-open sets and some properties of such sets in the next section as these would be important to other parts of discussions in the paper.

    3.2 Quasi-op en sets

    Let f(x)be a real valued continuous function on RN.Then for any c∈R,O={x∈RN:f(x)>c}is an open set.The converse is also true,that is,if O is open in RN,then there is a(smooth)continuous function on RNsuch thatTo define quasi-open subsets of RN,we introduce the notion of quasi-continuous functions.A real valued function f(x)is called quasi-continuous if and only if,there is a subsetsuch that f is continuous onΩεand that the classical capacity ofis less thanε.A subsetΩ of RNis called quasi-open,if there is a quasi-continuous function f such thatΩ={x∈RN:f(x)>0}(which is defined upto zero capacity sets).One can check that a setΩ is quasi-open,if,?ε>0,? an open set Oεsuch thatEquivalently,a setΩ is quasi-open,if there is a sequence of open sets{Ωn},such that,and that

    A theorem of Federer-Ziemer says that if f is an H1(RN)function,then f is quasi-continuous.It is then not hard to show that a subsetis quasi-open if and only if there is a nonnegative H1(RN)function f such that

    Next,it is necessary to discuss also a few natural topologies on the space of quasi-open subsets in RNin order to solve(EP).For conveniences,let us assume that these quasi-open sets are contained in a fixed bounded domain.

    Definition 3.1Let{Ωn}be a sequence of quasi-open sets in a bounded domain B.We say thatΩnisγ-convergent toΩ if and only if the associated potential functions of the domains are convergent,that is,in L2(B)as n→∞.Here

    Theorem 3.3(see[29])Let{Ωn}andΩbe quasi-open sets in B.ThenΩnisγ-convergent toΩ if and only if,?f∈L2(B),the solution of

    converges in L2(B)to v,the solution of

    We note that v,Let us sketch a proof of the above theorem when ΩnandΩ are open and smooth domains.

    ProofIt suffices to verify that ifΩnisγ-convergent toΩ,thenin L2(B).For this purpose,we consider first thatfor a large constant M.Then the maximum principle implies thatandA simple calculation yields

    One notices that the same formula is valid also for uΩand uΩn.SinceΩnisγ-convergent to Ω,henceConsequently,Therefore,the followings are true:

    Note the second item above,which follows from(i)and an integration,implies that uΩninNow(i)and the maximum principle imply also that

    and that

    Thusinin this case.

    Now for anyone can find fM∈L2(B)with|fM|≤ M.Let the corresponding solutions beand vM,then the above arguments yieldsasOn the other hand,standard elliptic estimates imply thatasWe concludein L2(B).

    Let us also introducea convergence of Hilbert spaces,in the sense defined by Mosco(see[7]),hereΩn,Ω ? B.A sequenceis called to be convergent toin the sense of Mosco,if the following two statements are held:

    (a)there is a sequencesuch that

    (b)Ifsuch that there is a subsequence{vnk}withthen

    It is not hard to show,via min-max principle,that the statement(a)above implies that

    On the other hand,the statement(b)would imply that

    Though theγ-convergence(and convergence in the sense of Masco defined above)would imply the convergence of Laplacian eigenvalues with the zero Dirichlet boundary condition,they are in a way strong convergences.Consequently,it is not easy to work with for our extremum problems.The following weak-convergence of domains would be more suitable to solve the variational problems in shape optimizations.

    Definition 3.2A sequence of quasi-open domainsΩn?B is said to converge toΩweakly withΩ?B,ifin L2(B),andΩ={x∈B:w(x)>0}.

    We note that w in general is not equal to uΩ.One also notices that potential functions are continuous from the De Girogi elliptic regularity theory.The following proposition is trivial.

    Proposition 3.1(Compactness)Let{Ωn}be a sequence of quasi-open subdomains in B.Then there is a subsequence{Ωnk}that converges weakly toΩ,a quasi-open subdomain in B.

    and we would also obtain a contradiction.For general k-th,k>1,eigenvalues,it could be also verified in the same way using the min-max principle and an induction on k.

    4 Connected Minimizers

    The existence of minimizers of(EP)without boundedness constraint has been established recently in the work of Mazzoleni and Pratelli[24]and Bucur[6].In fact,in[24]a more general class of extremum problems for Laplacian-Dirichlet eigenvalues was considered,and existence of bounded minimizers was proven.As a consequence of their proofs,they also showed that for any quasi-open set A ? RN,one hasλk(A)≤ M(k,N)λ1(A).In[6],Bucur proved that minimizers of(EP)exists.Moreover,he showed every minimizer is bounded and has a finite perimeter.The last result will be discussed in the final section of this paper.The aim of this section is to study when such minimizers are connected domains.We should also point out that in another recent work,by Bucur-Mazzoleni-Pratelli-Velichkov[10],it was shown that minimizers are open sets.

    4.1 Splitting(in)equality

    Theorem 4.1Assume that there is a multiply connected domainthat solves,for given k,the following problem:

    Denote the infimum value of above extremum problem byΛ(k,N).Then,for some 1≤m≤k,

    Herecan be decomposed into mutually disjoint subdomainssuch thatand that the positive integers k1,k2,···,kmsatisfy k1+k2+···+km=k.And eachΩkjcan be scaled properly(so that its volume becomes 1)to solve(EP)with k=kj.

    This result may be viewed as an extension of a theorem due to Keller-Wolf[20],and we shall see that it is an easy consequence of the min-max principle.On the other hand,using arguments from the proofs of concentration-compactness(see[8]),one may derive a similar statement for minimizing sequences.

    Let us sketch a proof of Theorem 4.1.

    Proof of Theorem 4.1Assume thatis not connected,and we writea union of two subdomains(which are not necessarily connected)such that|Ωi|>0(i=1,2)andLetbe an eigenfunction of the Dirichlet-Laplacian on.Thenare eigenfunctions of the Dirichlet-Laplacian on Ωialso.Assume thatis the j1-th eigenvalue on Ω1(with j1is the maximum so thatWe claim first that j1

    Next,we claim that there are at least(k?j1)eigenvalues ofΩ2which are smaller than Λ(k,N).Otherwise,for(whilethe min-max principle(here we may choose the k ? 1 dimensional subspace ofto be spanned by j1eigenfunctions onΩ1and the first k?1?j1eigenfunctions onΩ2)is as follows:

    The latter is not possible.ThusOn the other hand,ifΛ(k,N),then the other min-max principle

    would implyagain impossible.

    Finally,if we replace Ω1byandΩ2byThen we have(note thatandBy the minimality ofΛ(k,N),we thus conclude that the last two inequalities above are equalities.That is,

    An easy induction leads to the conclusion of Theorem 4.1.

    As a byproduct of the aboveproof,we have the following statement which again follow from the min-max principle.

    Proposition 4.1LetΩbe a bounded open set in RN,and assume thatΩhas m connected components Ω1,Ω2,···,Ωm.Suppose that u is the k-th eigenfunction of the Laplacian on Ω with the Dirichlet boundary condition.Thenare eigenfunctions of Dirichlet-Laplacian on Ωj’s,j=1,2,···,m(unless that u vanished identically on some of Ωj’s).Let kjbe positive integers(or zero ifsuch thatis a kj-th eigenfunction.Then

    There are a few simple consequence of the above proposition.

    Corollary 4.1The minimization problem(EP)has a solutionwhich,in general,would have at most m connected components with m≤c0k for some c0<1.

    ProofSuppose thathas m connected components.Then one of the component,saymust have its volumeIfis a k-th eigenfunction onwith the Dirichlet boundary condition,thenis a k1-th eigenfunction on Ωk1.Thus(by Faber-Krahn inequality),whereis a ball of volumeOn the other hand,for ball B of volume 1.Weyl’s asymptotic formula implies thatWe thus conclude that

    We note that the above proof is very similar in the spirit to the proof of Pleijel’s theorem.

    Corollary 4.2For every N≥2,(EP)has a solution for some k≥3,which is a connected open set.

    ProofThe existence of a bounded(depending on N and k)minimizer which is also an open set in RNfor the(EP)was known(see[6,10,24]).To show,for some k,it is connected,we assume,to the contrary,thatfor all k ≥ 3 are disconnected.Then by discussions in this section,one would conclude thatmust consist of exactly k connected components.The latter is not possible by Corollary 4.1.

    For k=3 and N=2 or 3,Keller-Wolf[20]observed earlier that solutions of(EP)are connected.Indeed,for N=2,k=3,ifis disconnected,then one would conclude that Λ(3,2)=3Λ(1,2),i.e.,is consisting of 3 disjoint equal balls of volumeeach.As Λ(1,2)=andΛ(3,2)≤ λ3(D)=46(here D is a disc in R2of area 1),one sees that it is not possible.

    For N=3,k=3,one calculatesΛ(1,3)≤ 26,and(here B is a ball in R3of volume 1).We thus haveand again it is not possible.

    4.2 Generalized Polya’s conjecture

    The classical Polya’s conjecture can be stated as follows.

    Conjecture 4.1

    Polya proved for any planar tilling domain Ω of area 1,λk(Ω)≥ C2k ≡ 4πk for k=1,2,···.In fact,one can see,for any finite k ∈ N,the strict inequality is true from Polya’s proof.We believe the following conjecture may be also valid.

    Conjecture 4.2(Generalized Polya’s Conjecture)

    for all N>2 and k>1.Hereδk,Nare positive numbers depending only on N and k.

    Proposition 4.2Assume that the generalized Polya’s conjecture is true,then there are infinitely many k’s,such that the extremum problem has a solutionwhich is a connected open set.

    ProofSuppose that the conclusion of the above proposition is not true.Then for any k≥k0,one has

    On the other hand,

    Here mjis the number of times ofΛ(kj,N)appeared in the summation of the splitting equality,where δ0=min{δk,N:1 ≤ k ≤ k0}>0.We therefore obtain an contradiction,when k is sufficiently large.

    4.3 Regularity of minimizers

    The regularity of minimizersof the extremum problem(EP)is a challenging problem.We are going to describe a work(in progress)of the author with Dennis Kriventsov.Before we do so,let us describe a recent interesting work of Bucur[6]in which he proved thatare bounded and of finite perimeter.

    We letbe a minimizer of the problem(EP).For quasi-open set Ω ? RN,we define uΩbe the potential function ofΩ:

    For A1,A2quasi-open and bounded sets,we define

    It is easy to see that a sequence{Ωn}of quasi-open sets(contained in a fixed ball),such thatΩnisγconvergent toΩ,hereΩ is a quasi-open subset(of the same ball)if and only ifas

    Definition 4.1A quasi-open set A of finite Lebesgue measure is called a local shape subsolution for E(A),if there is anη>0 andΛ>0,such that,for allandquasi-open withone has

    where

    Remark 4.1Ifis a minimizer of(EP),thenis a minimizer ofwhere A quasi-open in RN,for some dilation constant t>0.The converse is also true.Indeed,for any quasi-open set A with 0<|A|< ∞,one haswhereis a homothety of A such thatHence if we letthen

    Ifis a minimizer of(EP),thenis a minimizer of λk(A)+|A|,where t is the unique positive critical point ofConversely,if A quasi-open,0<|A|<∞ is a minimizer ofλk(A)+|A|,thenis a minimizer of(EP).Here?A is the homothety of A with

    Theorem 4.3(Bucur)If A is a quasi-open set that minimizes{λk(B)+|B|:B quasi-open in RNwith 0<|B|< ∞},then A is a local shape subsolution of E(·).

    The proof of this statement is based on the fact that

    whereare resolvent operators of Laplacian on A and?A,respectively,with the zero Dirichlet boundary condition,and whereis a constant depending only on k and N.ThusOn the other hand,(see the remark above),thus one has proven thatis a local shape subsolution of the energy E(·).

    Theorem 4.4(Bucur)If A is a local shape subsolution of the energy E(·),then A is bounded andχA∈BV.That is,A is a set of finite perimeter.

    ProofLet u=uA,uε=(u?ε)+and

    Note that asThus we obtain

    Consequently,

    Co-area formula implies that there is a sequencesuch thatfollows.Finally,a direct construction and comparison,using the property of“l(fā)ocal shape subsolution”of A,yields that forθ∈ (0,1),there is an r0>0,c0>0 such that for all x0∈RN,0

    We claim the latter implies the boundedness of A.Indeed,if there is a sequence{yn}?A such thatSince yn∈A,one hasSinceis subharmonic in RN,

    Bucur’s results described here provide a starting point for the regularity ofThe following is a statement that would be discussed in the forthcoming work(see[21]):Ifis a non-degenerate minimizer of(EP),thenis almost everywhere analytic.More precisely,away from an HN?1measure zero set,it is real analytic.A key point of the proof of this last result is to reduce it to the case of the study of certain extremum domains that are associated with their first Dirichlet eigenvalues for the Laplacian.One may ask that if in the 2D case,the boundary ofconsists of at most c(k)analytic arcs.In general,one obviously has to understand much better theproperty ofin order to study the asymptotics of these minimizers as k becomes very large.In particular,it may be closely related to both the generalized Polya conjecture and the optimal partition problems.

    [1]Arendt,W.,Nittka,R.,Peter,W.and Steiner,F.,Weyl’s Law,Spectral Properties of the Laplacian in Mathematics and Physics,Math.Anal.of Evolution,Information,and Complexty,Wiley-VCH Verlag Gmb H Co.KGaA,Weihreim,2009,1–71.

    [2]Ashbaush,M.S.,The universal eigenvalue bounds of Payne-Polya-Weinberger,Proc.Indian Acad.Sci.Math.Sci.,112,2002,3–20.

    [3]Bandle,C.,Isoperimetric Inequalities and Applications,Monographs and Studies in Math.,7,Pitman,Boston,Mass.,London,1980.

    [4]Berezin,F.,Covariant and contravariant symbols of operators,Izv.Akad.Nauk SSSR,37,1972,1134–1167(in Russian);English translation,Math.USSR–Izv.,6,1972,1117–1151.

    [5]Birman,M.S.and Solomyak,M.Z.,The principle term of spectral asymptotics for“non-smooth” elliptic problems,Functional Anal.Appl.,4,1970,1–13.

    [6]Bucur,D.,Minimization of the k-th eigenvalue of the Dirichlet Laplacian,Arch.Rat.Mech.Anal.,206,2012,1073–1083.

    [7]Bucur,D.and Buttazzo,G.,Variational methods in shape optimization problems,Progress in Nonlinear Diff.Equ.’s and their Applications,Vol.65,Birkh?user,Boston,2005.

    [8]Bucur,D.and Dal Maso,G.,An existence result of a class of shape optimization problems,Arch.Rat.Mech.Anal.,122,1993,183–195.

    [9]Bucur,D.and Henrot,A.,Minimization of the third eigenvalue of the Dirichlet Laplacian,R.Soc.London Proc.Ser.A,Math.Phys.Eng.Sci.,456,2000,985–996.

    [10]Bucur,D.,Mazzoleni,D.,Pratelli,A.and Velichkov,B.,Lipschitz regulairity of the eigenfunctions on optimal domains,Arch.Rat.Mech.Anal.,216,2015,117–151.

    [11]Caffarelli,L.and Lin,F.H.,An optimal partition problem for eigenvalues,J.Sci.Comput.,31,2007,5–18.

    [12]Caffarelli,L.and Lin,F.H.,Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries,J.Amer.Math.Soc.,21,2008,847–62.

    [13]Chavel,I.,Eigenvalues in Riemannian Geometry,Pure and Appl.Math.,115,Academic Press,New York,1984.

    [14]Courant,R.and Hilbert,D.,Methods of Mathematical Physics,Vol.1–2,Wiley,New York,1953–1962.

    [15]Davies,E.B.,Spectral Theory of Differential Operators,Cambridge Univ.Press,Cambridge,1995.

    [16]Guillemin,V.M.,Lectures on spectral theory of elliptic operators,Duke Math.J.,44,1977,485–517.

    [17]Helff er,B.,On spectral minimal partitions:A survey,Milan J.Math.,78,2010,575–590.

    [18]Henrot,A.,Extremum Problems for Eigenvalues of Elliptic Operators,Frontiers in Math.,Birkh?user Verlag,Basel-Boston-Berlin,2006.

    [19]Kac,M.,Can one hear the shape of a drum?Amer.Math.Monthly,73(3),1966,1–23.

    [20]Keller,J.B.and Wolf,S.A.,Range of the first two eigenvalues of the Laplacian,Proc.R.Soc.London A,447,1994,397–412.

    [21]Kriventsov,D.and Lin,F.H.,Regularity for shape optimizer:The non-degenerate case,2016,preprint.

    [22]Laptev,A.,Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces,J.Funct.Anal.,151,1997,531–545.

    [23]Li,P.and Yau,S.T.,On the Schrodinger equation and the eigenvalues problems,Comm.Math.Phys.,88,1983,309–318.

    [24]Mazzoleni,D.and Pratelli,A.,Existence of minimizers for spectral problems,J.Math.Pures Appl.,100,2013,433–453.

    [25]Melrose,R.,Weyl’s conjecture for manifolds with concave boundary,Proc.Sympos.Pure Math.,36,1980,257–274.

    [26]Netrusov,Y.and Safarov,Y.,Weyl asymptotic formula for the Laplacian on domains with rough boundaries,Comm.Math.Phys.,253(2),2005,481–509.

    [27]Polya,G.,On the eigenvalues of vibrating membranes,Proc.London Math.Soc.(3),11,1961,419–433.

    [28]Polya,G.and Szeg?,G.,Isoperimetric Inequalities in Mathematical Physics,AM–27,Princeton Univ.Press,Princeton,1951.

    [29]Sverak,V.,On optimal shape design,J.Math.Pures Appl.,72(6),1993,537–551.

    一级av片app| 搞女人的毛片| 亚洲国产精品999| 看黄色毛片网站| 成人综合一区亚洲| 欧美97在线视频| 亚洲丝袜综合中文字幕| 国产色婷婷99| 成人综合一区亚洲| 国产伦精品一区二区三区四那| 成人午夜精彩视频在线观看| 国产色婷婷99| 成人欧美大片| 波多野结衣巨乳人妻| 精品视频人人做人人爽| 久久久久久久亚洲中文字幕| 一级爰片在线观看| 在线观看一区二区三区激情| 真实男女啪啪啪动态图| 午夜精品一区二区三区免费看| 免费黄频网站在线观看国产| 一级爰片在线观看| 午夜视频国产福利| 亚洲欧美成人精品一区二区| 人人妻人人爽人人添夜夜欢视频 | www.色视频.com| 我的女老师完整版在线观看| 在线观看三级黄色| 久久精品综合一区二区三区| 91aial.com中文字幕在线观看| 男的添女的下面高潮视频| 久久久午夜欧美精品| 国产精品偷伦视频观看了| 亚洲天堂av无毛| 亚洲欧美成人综合另类久久久| 丰满人妻一区二区三区视频av| av又黄又爽大尺度在线免费看| 日本猛色少妇xxxxx猛交久久| 狂野欧美激情性xxxx在线观看| 超碰av人人做人人爽久久| 久久久久久久精品精品| 丝袜美腿在线中文| 久久国内精品自在自线图片| 简卡轻食公司| 国产精品国产三级国产专区5o| 欧美成人精品欧美一级黄| 直男gayav资源| 精品一区二区三卡| 熟女av电影| 岛国毛片在线播放| 黄色日韩在线| 天堂中文最新版在线下载 | 听说在线观看完整版免费高清| 最近中文字幕高清免费大全6| 亚洲国产精品成人综合色| 欧美xxxx黑人xx丫x性爽| 色婷婷久久久亚洲欧美| 久久人人爽人人片av| 久热久热在线精品观看| 久久精品国产a三级三级三级| 在线观看一区二区三区激情| 国产精品人妻久久久久久| 黄色配什么色好看| 国产老妇女一区| 国产女主播在线喷水免费视频网站| 国产极品天堂在线| 久久久久精品久久久久真实原创| 亚洲怡红院男人天堂| 国产男女内射视频| 国产精品女同一区二区软件| 91久久精品国产一区二区成人| 能在线免费看毛片的网站| 日韩 亚洲 欧美在线| 亚洲精品456在线播放app| 极品少妇高潮喷水抽搐| 联通29元200g的流量卡| 久久亚洲国产成人精品v| 大香蕉久久网| 亚洲电影在线观看av| 久久精品人妻少妇| av播播在线观看一区| 国产成人免费观看mmmm| 我的女老师完整版在线观看| 丰满乱子伦码专区| 啦啦啦中文免费视频观看日本| 最后的刺客免费高清国语| 少妇人妻精品综合一区二区| 午夜精品国产一区二区电影 | 制服丝袜香蕉在线| 男女边摸边吃奶| av免费观看日本| 久久久久久九九精品二区国产| 国产一区二区三区av在线| 久久久久久久久大av| 男女边吃奶边做爰视频| 精品少妇久久久久久888优播| 亚洲综合精品二区| 亚洲精品第二区| 久久精品国产亚洲av天美| 久久精品熟女亚洲av麻豆精品| 亚洲在久久综合| 成年女人看的毛片在线观看| 只有这里有精品99| 亚洲av.av天堂| 国产一区二区亚洲精品在线观看| 国产av国产精品国产| 久久久色成人| 欧美成人精品欧美一级黄| 青春草视频在线免费观看| 亚洲欧美日韩东京热| 人妻夜夜爽99麻豆av| av播播在线观看一区| 爱豆传媒免费全集在线观看| 国产高清国产精品国产三级 | 日韩亚洲欧美综合| 欧美3d第一页| 久久久a久久爽久久v久久| 搞女人的毛片| 在线看a的网站| 成人黄色视频免费在线看| 黑人高潮一二区| 午夜免费鲁丝| 日韩亚洲欧美综合| 晚上一个人看的免费电影| 中文字幕久久专区| 看免费成人av毛片| 成人毛片60女人毛片免费| 精华霜和精华液先用哪个| 大片电影免费在线观看免费| av国产精品久久久久影院| 简卡轻食公司| 久久精品国产亚洲av天美| 欧美日本视频| 全区人妻精品视频| 肉色欧美久久久久久久蜜桃 | 赤兔流量卡办理| 人妻制服诱惑在线中文字幕| 男的添女的下面高潮视频| 26uuu在线亚洲综合色| 高清av免费在线| 亚洲精品影视一区二区三区av| 51国产日韩欧美| 99久久人妻综合| 亚洲国产精品999| 日本黄大片高清| 国产精品av视频在线免费观看| av一本久久久久| 精品久久久精品久久久| 女人被狂操c到高潮| 日韩视频在线欧美| 伦理电影大哥的女人| 国产精品国产三级专区第一集| 免费电影在线观看免费观看| 色视频在线一区二区三区| 国产精品久久久久久精品电影小说 | www.色视频.com| 久久久精品欧美日韩精品| 春色校园在线视频观看| 又爽又黄无遮挡网站| 美女被艹到高潮喷水动态| 免费av不卡在线播放| 日本与韩国留学比较| 国产亚洲91精品色在线| 亚洲欧美日韩卡通动漫| 国产成人aa在线观看| 日日啪夜夜爽| 久久久久久久久久成人| 亚洲精品aⅴ在线观看| 美女国产视频在线观看| 嫩草影院新地址| 久久精品国产亚洲网站| 国产免费又黄又爽又色| 成人免费观看视频高清| 中文字幕av成人在线电影| 日韩三级伦理在线观看| 久久韩国三级中文字幕| 热re99久久精品国产66热6| 男人添女人高潮全过程视频| 欧美最新免费一区二区三区| 深夜a级毛片| a级毛片免费高清观看在线播放| 美女cb高潮喷水在线观看| 免费黄网站久久成人精品| 久久久久久久久久成人| 亚洲av国产av综合av卡| 在线观看三级黄色| 亚洲高清免费不卡视频| 国产69精品久久久久777片| 午夜免费观看性视频| 欧美日韩一区二区视频在线观看视频在线 | 黄片wwwwww| 久久综合国产亚洲精品| 亚洲精品日本国产第一区| 国产大屁股一区二区在线视频| 伦理电影大哥的女人| 亚洲天堂av无毛| 青春草亚洲视频在线观看| av女优亚洲男人天堂| 丝袜喷水一区| 看十八女毛片水多多多| 久久99蜜桃精品久久| 久久久精品94久久精品| 日韩亚洲欧美综合| 国产色爽女视频免费观看| 三级经典国产精品| 3wmmmm亚洲av在线观看| 综合色丁香网| 国产 精品1| 国产精品麻豆人妻色哟哟久久| 夫妻性生交免费视频一级片| 日韩伦理黄色片| 午夜免费鲁丝| 色视频www国产| 亚洲精品一二三| 久久久午夜欧美精品| 国产一区二区亚洲精品在线观看| 老司机影院成人| 国产成人精品一,二区| 三级经典国产精品| 亚洲欧洲国产日韩| 少妇猛男粗大的猛烈进出视频 | 国产精品偷伦视频观看了| 狂野欧美激情性xxxx在线观看| 亚洲人与动物交配视频| 国产淫语在线视频| 亚洲av二区三区四区| 欧美精品人与动牲交sv欧美| 精品午夜福利在线看| 亚洲最大成人手机在线| av黄色大香蕉| 一个人看的www免费观看视频| 国产精品福利在线免费观看| 国产精品精品国产色婷婷| 久久久久国产精品人妻一区二区| 午夜免费观看性视频| 在线观看av片永久免费下载| 麻豆国产97在线/欧美| 久久国内精品自在自线图片| 久久久a久久爽久久v久久| 全区人妻精品视频| 亚洲一级一片aⅴ在线观看| av国产久精品久网站免费入址| 国产久久久一区二区三区| 成年版毛片免费区| 国内揄拍国产精品人妻在线| 欧美激情在线99| 亚洲久久久久久中文字幕| 国产成人精品福利久久| 又大又黄又爽视频免费| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| 三级经典国产精品| 精品久久久久久电影网| 性插视频无遮挡在线免费观看| 欧美高清性xxxxhd video| 老司机影院毛片| 日本wwww免费看| 18禁在线无遮挡免费观看视频| 国产久久久一区二区三区| 一个人看的www免费观看视频| 亚洲美女视频黄频| 18禁在线无遮挡免费观看视频| 日日啪夜夜爽| 欧美区成人在线视频| 日本wwww免费看| 一区二区三区乱码不卡18| av在线app专区| 午夜福利在线观看免费完整高清在| av又黄又爽大尺度在线免费看| 中文乱码字字幕精品一区二区三区| 男女那种视频在线观看| 在线看a的网站| 精品久久国产蜜桃| 韩国av在线不卡| 国产成人一区二区在线| av免费观看日本| 欧美成人a在线观看| videos熟女内射| 国内精品美女久久久久久| 九色成人免费人妻av| 亚洲欧美中文字幕日韩二区| 日韩一区二区视频免费看| 亚洲精品日韩在线中文字幕| 久久久精品欧美日韩精品| 啦啦啦啦在线视频资源| 亚洲欧美日韩东京热| 少妇人妻 视频| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 国产成人精品久久久久久| 亚洲欧洲日产国产| 三级国产精品片| 人妻一区二区av| 亚洲精品成人久久久久久| 国产精品久久久久久av不卡| 涩涩av久久男人的天堂| 三级国产精品欧美在线观看| 精品久久国产蜜桃| a级毛色黄片| 欧美激情久久久久久爽电影| 国产精品av视频在线免费观看| 国产在视频线精品| 美女被艹到高潮喷水动态| 只有这里有精品99| 亚洲色图综合在线观看| 高清在线视频一区二区三区| av.在线天堂| 成人特级av手机在线观看| 男人狂女人下面高潮的视频| 少妇高潮的动态图| 免费av毛片视频| 国产淫片久久久久久久久| 欧美老熟妇乱子伦牲交| 在线观看一区二区三区| 午夜福利视频1000在线观看| 可以在线观看毛片的网站| 日韩av在线免费看完整版不卡| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 欧美精品一区二区大全| 国产高清国产精品国产三级 | 国产日韩欧美亚洲二区| 欧美xxⅹ黑人| 国产视频首页在线观看| 午夜精品国产一区二区电影 | 777米奇影视久久| 麻豆乱淫一区二区| 成人免费观看视频高清| 国产成年人精品一区二区| 水蜜桃什么品种好| 搞女人的毛片| 亚洲综合色惰| 亚洲成人久久爱视频| 国产一区二区三区综合在线观看 | 九九在线视频观看精品| 国产av不卡久久| 热re99久久精品国产66热6| 国产黄片美女视频| av又黄又爽大尺度在线免费看| 亚洲精品成人av观看孕妇| 亚洲国产日韩一区二区| 免费不卡的大黄色大毛片视频在线观看| 成年人午夜在线观看视频| 伦精品一区二区三区| 一区二区av电影网| 国产精品熟女久久久久浪| 欧美日本视频| 99久久精品热视频| 春色校园在线视频观看| kizo精华| 精品久久久久久电影网| 乱系列少妇在线播放| 国产一区二区三区综合在线观看 | 欧美日韩一区二区视频在线观看视频在线 | 大片电影免费在线观看免费| 久久精品久久久久久久性| 欧美最新免费一区二区三区| 有码 亚洲区| 在线亚洲精品国产二区图片欧美 | 美女国产视频在线观看| 最近2019中文字幕mv第一页| 亚洲欧美日韩东京热| 亚洲精品色激情综合| 成年免费大片在线观看| 欧美区成人在线视频| 一级毛片电影观看| 国产久久久一区二区三区| 中文字幕av成人在线电影| 国产成人免费无遮挡视频| 联通29元200g的流量卡| 亚洲成人中文字幕在线播放| 卡戴珊不雅视频在线播放| 精品视频人人做人人爽| 国产一区二区在线观看日韩| 成年人午夜在线观看视频| 亚洲欧美日韩东京热| 久久久国产一区二区| 亚洲成人一二三区av| 亚洲第一区二区三区不卡| 黄色怎么调成土黄色| 国产免费又黄又爽又色| 久久国产乱子免费精品| 婷婷色综合www| 在线精品无人区一区二区三 | 精品久久国产蜜桃| 高清毛片免费看| 国产黄色免费在线视频| 性插视频无遮挡在线免费观看| 少妇人妻精品综合一区二区| 免费看光身美女| 大码成人一级视频| 嘟嘟电影网在线观看| 永久网站在线| 少妇裸体淫交视频免费看高清| 又黄又爽又刺激的免费视频.| 国产精品福利在线免费观看| 日韩免费高清中文字幕av| 97超碰精品成人国产| 亚洲伊人久久精品综合| 日韩一区二区三区影片| 99精国产麻豆久久婷婷| 亚洲av电影在线观看一区二区三区 | 国产白丝娇喘喷水9色精品| 日本猛色少妇xxxxx猛交久久| 免费黄网站久久成人精品| 亚洲av中文av极速乱| 国产在视频线精品| 天天一区二区日本电影三级| 国产成人精品婷婷| 亚洲精品国产av蜜桃| 亚洲一区二区三区欧美精品 | 精品国产露脸久久av麻豆| 一级毛片久久久久久久久女| 夜夜爽夜夜爽视频| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲网站| 成年女人看的毛片在线观看| 久久精品久久精品一区二区三区| 亚洲三级黄色毛片| 最新中文字幕久久久久| 狂野欧美白嫩少妇大欣赏| 高清午夜精品一区二区三区| 久久99热这里只频精品6学生| 一级毛片aaaaaa免费看小| 国产伦精品一区二区三区视频9| 少妇熟女欧美另类| 国产免费福利视频在线观看| 国产成人a∨麻豆精品| 亚洲无线观看免费| 亚洲内射少妇av| 涩涩av久久男人的天堂| 精华霜和精华液先用哪个| 日韩 亚洲 欧美在线| 高清午夜精品一区二区三区| 久久精品久久精品一区二区三区| 赤兔流量卡办理| 五月玫瑰六月丁香| 亚洲精品乱码久久久v下载方式| 一区二区三区精品91| 99久国产av精品国产电影| 三级经典国产精品| 观看美女的网站| 另类亚洲欧美激情| 爱豆传媒免费全集在线观看| 内地一区二区视频在线| 国产精品福利在线免费观看| 久久久久精品性色| 国产精品久久久久久久电影| 青青草视频在线视频观看| 亚洲丝袜综合中文字幕| 中国三级夫妇交换| 亚洲美女搞黄在线观看| 成人黄色视频免费在线看| 少妇人妻精品综合一区二区| 真实男女啪啪啪动态图| 身体一侧抽搐| 男男h啪啪无遮挡| 国产又色又爽无遮挡免| 欧美精品国产亚洲| 内地一区二区视频在线| 亚洲自拍偷在线| 黄色视频在线播放观看不卡| 人体艺术视频欧美日本| 欧美激情在线99| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 国产色爽女视频免费观看| 日韩精品有码人妻一区| 一级av片app| 汤姆久久久久久久影院中文字幕| 午夜福利视频1000在线观看| 夫妻性生交免费视频一级片| 国产高清有码在线观看视频| 久久久欧美国产精品| 一级a做视频免费观看| 精品久久久噜噜| 99热网站在线观看| 91精品国产九色| 街头女战士在线观看网站| 黄色视频在线播放观看不卡| 大话2 男鬼变身卡| 亚洲va在线va天堂va国产| 成人免费观看视频高清| 国产黄片视频在线免费观看| 国产精品人妻久久久久久| 亚洲国产欧美人成| 免费少妇av软件| 黑人高潮一二区| 国产 一区 欧美 日韩| 日韩精品有码人妻一区| 中文字幕亚洲精品专区| 国产精品福利在线免费观看| 51国产日韩欧美| 男的添女的下面高潮视频| 春色校园在线视频观看| 夫妻性生交免费视频一级片| 91精品伊人久久大香线蕉| 内射极品少妇av片p| 美女xxoo啪啪120秒动态图| 亚洲av中文字字幕乱码综合| 一级片'在线观看视频| 国产亚洲av片在线观看秒播厂| 亚洲怡红院男人天堂| 欧美高清性xxxxhd video| 在线观看一区二区三区| 嘟嘟电影网在线观看| 亚洲欧美精品专区久久| 秋霞在线观看毛片| 日韩av不卡免费在线播放| 熟女人妻精品中文字幕| 国内精品美女久久久久久| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 欧美xxxx黑人xx丫x性爽| 国产黄片美女视频| 在线观看免费高清a一片| 国产毛片a区久久久久| 在线观看美女被高潮喷水网站| av在线亚洲专区| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 一级毛片电影观看| 看黄色毛片网站| 日韩强制内射视频| 午夜免费男女啪啪视频观看| 日韩三级伦理在线观看| 欧美3d第一页| 中文字幕av成人在线电影| 国产美女午夜福利| 国产成人精品福利久久| 男女边吃奶边做爰视频| 日韩欧美一区视频在线观看 | 岛国毛片在线播放| 欧美zozozo另类| 亚洲经典国产精华液单| 少妇猛男粗大的猛烈进出视频 | 男男h啪啪无遮挡| 国产精品一区二区在线观看99| 丝袜美腿在线中文| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 能在线免费看毛片的网站| 国产老妇女一区| 午夜福利视频1000在线观看| 免费观看在线日韩| 一本一本综合久久| 国产免费福利视频在线观看| 大香蕉97超碰在线| 欧美三级亚洲精品| 欧美日韩一区二区视频在线观看视频在线 | 少妇猛男粗大的猛烈进出视频 | 综合色丁香网| 精品少妇黑人巨大在线播放| 久久影院123| 熟女av电影| 亚洲av一区综合| 看免费成人av毛片| 国产精品久久久久久av不卡| 欧美激情久久久久久爽电影| 亚洲精品久久午夜乱码| 特级一级黄色大片| 久久精品久久精品一区二区三区| 黄色配什么色好看| 日日摸夜夜添夜夜爱| 黄色配什么色好看| 午夜福利视频精品| 亚洲经典国产精华液单| av卡一久久| 欧美区成人在线视频| 日本一二三区视频观看| 九九在线视频观看精品| 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| 18禁裸乳无遮挡免费网站照片| 大陆偷拍与自拍| 国产在视频线精品| 欧美精品一区二区大全| 狂野欧美白嫩少妇大欣赏| 午夜日本视频在线| 热re99久久精品国产66热6| 国产 一区精品| 欧美极品一区二区三区四区| 国产成人免费观看mmmm| 国产精品麻豆人妻色哟哟久久| 五月玫瑰六月丁香| 国产成人午夜福利电影在线观看| 综合色丁香网| 大香蕉久久网| 丰满少妇做爰视频| av在线蜜桃| 国产 精品1| 久久99蜜桃精品久久| 女的被弄到高潮叫床怎么办| 一区二区av电影网| tube8黄色片| 一级a做视频免费观看| 免费看不卡的av| 成人漫画全彩无遮挡| 大香蕉久久网| 一区二区三区乱码不卡18| 麻豆久久精品国产亚洲av| 欧美xxxx性猛交bbbb| 亚洲真实伦在线观看| 男人狂女人下面高潮的视频| 亚洲欧洲国产日韩| 观看免费一级毛片| 亚洲欧洲日产国产| 精品少妇黑人巨大在线播放| 国产成人免费无遮挡视频| 国产有黄有色有爽视频| 男人爽女人下面视频在线观看| 神马国产精品三级电影在线观看| 亚洲精品456在线播放app| 久久久久久伊人网av|