• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Boundary Controllability for a Coupled System of Wave Equations with Neumann Boundary Controls?

    2017-07-02 07:17:40TatsienLIBopengRAO

    Tatsien LI Bopeng RAO

    (Dedicated to Professor Haim Brezis on the occasion of his 70th birthday)

    1 Introduction

    Since the pioneering work of Russell[25],and the celebrated paper of Lions[19]in which a systematic approach,the so-called Hilbert Uniqueness Method,was developed,the control of wave equations has undergone a significant progress.In the last decades,the control of systems has become a very challenging issue.The aim of this paper is to investigate the exact boundary controllability and the non-exact boundary controllability for the following coupled system of wave equations with Neumann boundary controls:

    where??Rnis a bounded domain with smooth boundaryΓ=Γ1∪Γ0such that?νdenotes the outward normal derivative on the boundary,A is a matrix of order N with constant elements,D is a full column-rank matrix of order N×M(M≤N)with constant elements,denote the state variables and the boundary controls,respectively.Here,the introduction of the boundary control matrix D makes the discussion on the control problem more flexible.

    Let us denote

    whereis the subspace of H1(?)composed of functions with null trace on Γ0.We will show the exact boundary controllability of(1.1)for any given initial datavia the HUM approach.To this end,we first establish the following theorem.

    Theorem 1.1There exist positive constants T>0 and C>0 independent of initial data,such that the following observability inequality

    holds for all solutionsto the corresponding adjoint problem:

    wheredenotes the adjoint variables,H?1is the dual space of H1,and the initial data(Φ0,Φ1)is taken in a subspace F ? H0×H?1.

    Recall that without any assumption on the coupling matrix A,the usual multiplier method can not be applied directly.The absorption of coupling lower terms is a delicate issue even for a single wave equation(see[9,13]).In order to deal with the lower order terms,we propose a method based on the compactness-uniqueness argument that we formulate in the following lemma.

    Lemma 1.1Let F be a Hilbert space endowed with the p-norm.Assume that

    where⊕denotes the direct sum and L is a finite co-dimensional closed subspace in F.Assume that q is another norm in F such that the projection from F into N is continuous with respect to the q-norm.Assume furthermore that

    Then there exists a positive constant C>0 such that

    Following the above lemma,we have to first show the observability inequality for the initial data with higher frequencies in L.In order to extend it to the whole space F,it is sufficient to verify the continuity of the projection from F into N for the q-norm.In many situations,it often occurs that the subspaces N and L are mutually orthogonal with respect to the q-inner product,and this is true in the present case.This new approach turns out to be particularly simple and efficient for getting the observability of some distributed systems with lower order terms.

    As for the Dirichlet boundary problem(see[15–16]),we show the non-exact boundary controllability for the Neumann boundary problem(1.1)in the case of fewer boundary controls,i.e.,M

    Let us comment the related literatures.The exact boundary controllability and the approximate boundary controllability for a coupled system of wave equations with Dirichlet boundary controls were established by Li and Rao in[14–16].Moreover,in the case of fewer boundary controls,the authors also obtained various results on the exact boundary synchronization and the approximate boundary synchronization for the same system.Using Carleman estimates,Duyckaerts,Zhang and Zuazua studied in[7]the observability inequality for a coupled system of wave equations with Dirichlet boundary condition by means of internal or boundary observation.The optimality of the observability inequality was proved in even space dimensions.In a similar work[27],Zhang and Zuazua established the sharp observability inequality for Kirchhoff plate systems in any space dimensions.In a recent work[6],Dehman,Le Rousseau and Léautaud established the controllability of two coupled wave equations on a compact manifold with only one local distributed control.The optimal time of controllability and the controllable spaces were given in the cases that the waves propagate with the same speed or with different speeds.Using the Riemannian geometry method,Yao established in[26]the controllability of wave equation with variable coefficients for Dirichlet or Neumann boundary condition.We finally mention the work of Hu,Ji and Wang[8]for the exact boundary controllability of one space-dimensional quasilinear system of wave equations with various boundary controls.

    The non-exact boundary controllability for a coupled system of wave equations depends on the level of energy and the property of controllability.In fact,if the components of initial data are allowed to have different levels of energy,then the exact boundary controllability for a system of two wave equations was established by means of only one boundary control in[1,21,24],or more recently,for a cascade system of N wave equations by means of only one boundary control in[2].In contrast with the exact boundary controllability,the approximate boundary controllability for a coupled system of wave equations is more flexible with respect to the number of boundary controls.It was recently shown in[17]that for Dirichlet boundary controls,this property could be characterized by means of the famous Kalman’s criterion on the rank of an enlarged matrix composed of the coupling matrix A and the boundary control matrix D.

    Differently from the hyperbolic systems,the exact boundary null controllability of coupled systems of parabolic equations can be realized in the case of fewer controls for the initial data with the same level of energy.There are a number of works on this topic.We only quote[3]and the references therein for the null controllability of coupled systems of parabolic equations with a local distributed control or with a boundary control.

    The paper is organized as follows.In Section 2,we give the proof of the basic lemma of compact perturbation.Section 3 is devoted to the proof of Theorem 1.1.In order to clarify the idea,we divide the proof into several propositions.In Section 4,we prove the exact boundary controllability(see Theorem 4.1)and the non-exact boundary controllability(see Theorem 4.2)for a system of wave equations with Neumann boundary condition.

    2 Proof of Lemma 1.1

    Assume that(1.7)fails,then there exists a sequence zn∈F such that

    Using(1.5),we write zn=xn+ynwith xn∈N and yn∈L.Since the projection from F into N is continuous with respect to the q-norm,there exists a positive constant c>0 such that

    Since N is of finite dimension,we may assume that there exists x∈N such thatin N.Then,since the second relation of(2.1)means thatin F,we deduce thatin L for the p-norm.Therefore,we get x∈L∩N,which leads to x=0.Then,we have

    Then using(1.6),we get a contradiction:

    The proof is then complete.

    Remark 2.1Noting that L is not necessarily closed with respect to the weaker q-norm,so,a priori,the projectionis not continuous with respect to the q-norm(see[5]).

    3 Proof of Theorem 1.1

    Theorem 1.1 will be proved at the end of this section.We first start with some useful preliminary results.

    Let? ? Rnbe a bounded open set with smooth boundaryΓ.Letbe a partition ofΓsuch thatThroughout this paper,we assume that? satisfies the usual geometric control condition(see[4]).More precisely,assume that there exists x0∈Rn,such that setting m=x?x0,we have

    where(·,·)denotes the inner product in Rn.

    Let

    We consider the following homogenous adjoint problem:

    Let

    We define the linear unbounded operator?? in H0by

    Clearly,?? is a densely defined self-adjoint and coercive operator with a compact resolvent in H0.Then we can define the power operatorfor any given s∈R(see[18]).Moreover,the domainendowed with the normbeing the norm of H0,is a Hilbert space,and its dual space with respect to the pivot spaceIn particular,we have

    Then we formulate(3.3)into an abstract evolution problem:

    Clearly,the problem(3.7)generates a C0-semigroup in the space Hs× Hs?1.Moreover,we have the following result(see[18,Chapter III-8]and[23,Chapter III]).

    Proposition 3.1For any given initial datawith s∈ R,the problem(3.7)admits a unique weak solution in the sense of C0-semigroups,such that

    Now let embe the normalized eigenfunction defined by

    where the sequence of positive terms{μm}m≥1is increasing so thatClearly,{em}m≥1is a Hilbert basis in L2(?).

    For each m≥1,we define the subspace Zmby

    It is clear that the subspaces Zm(m≥1)are invariant with respect to AT.Moreover,for any given integersand any given vectors α,β ∈ RN,we have

    Then the subspaces Zm(m≥1)are mutually orthogonal in the Hilbert space Hswith any given s∈R and in particular,we have

    Proposition 3.2LetΦ be the solution to the problem(3.7)with the initial data(Φ0,Φ1)∈H1×H0,which satisfies an additional condition:

    for T>0 large enough.Then,we haveΦ0≡Φ1≡0,i.e.,Φ≡0.

    ProofBy Schur’s theorem,we may assume that A is an upper triangular matrix so that the problem(3.7)with the additional condition(3.13)can be rewritten as

    for k=1,···,N.Then using Holmgren’s uniqueness theorem(see[20,Chapter I-8]),there exists a positive constant T>0 large enough and independent of the initial datasuch that?(1)≡ 0.Then,we get successively ?(k)≡ 0 for k=1,···,N.The proof is then complete.

    Letσdenote the Euclidian norm of the matrix A.Then we have the following energy estimates:

    ProofFirst,a straightforward computation yields

    Then,using(3.12),we get

    It follows that

    Therefore,the functionis increasing,while,the functionis decreasing,which implies(3.16).The proof is then complete.

    Proposition 3.4There exist an integer m0≥1 and positive constants T>0 and C>0 independent of initial data,such that the following observability inequality:

    ProofFirst we write(3.7)as

    for=1,2,···,N.Then,multiplying the k-th equation of(3.21)by

    and integrating by parts over the domain[0,T]×?,we get easily the following identities(see[9,Chapter III],[20,Chapter III]):

    Noting the geometrical control condition(3.1),we have

    then,it follows from(3.23)that

    Taking the summation of(3.25)with respect to k=1,···,N,we get

    where M is the vector composed of

    Next,we estimate the last two terms on the right-hand side of(3.26).First,it follows from(3.22)that

    where R= ∥m∥∞is the diameter of? and

    Similarly,we have

    Thus,setting

    and noting(3.16),we get

    Inserting(3.29)and(3.32)into(3.26)gives

    Thus,we have

    provided that m0is so large that

    Now,integrating the inequality on the left-hand side of(3.16)over[0,T],we get

    then,noting(3.31),we get

    Thus,it follows from(3.34)and(3.37)that

    which is guaranteed by the following choice(see(3.31),(3.35)and(3.39)):

    The proof is then complete.

    Proposition 3.5There exist an integer m0≥1 and positive constants T>0 and C>0 independent of initial data,such that the following observability inequality:

    ProofNoting that Ker(??+AT)is of finite dimension,there exists an integer m0≥ 1 so large that

    Let

    We have

    Next letΨ be the solution of the problem(3.7)with the initial data(Ψ0,Ψ1)given by(3.45).We have

    By the well-posedness,we get

    Then,applying(3.20)toΨ,we get

    Thus,using(3.46)and(3.48),we get immediately(3.41).The proof is finished.

    Finally,we give the proof of Theorem 1.1.

    We next define

    with

    Clearly,N is a finite-dimensional subspace and L is a closed subspace in F.In particular,the observability inequality(3.41)can be extended to all initial data(Φ0,Φ1)in the whole subspace L.

    Now we introduce the q-norm by

    By(3.11),the subspaces(Zm×Zm)are mutually orthogonal infor all m≥1,then the subspace N is an orthogonal complement of L in H0×H?1.In particular,the projection from F into N is continuous with respect to the q-norm.On the other hand,since the observability inequality(3.41)holds for all initial data(Φ0,Φ1)in the subspace L,the condition(1.6)is verified.Then,applying Lemma 1.1,we get the inequality(1.7),which precisely means that(3.41)can be extended to all(Φ0,Φ1)∈ F,we then get(1.3).The proof of Theorem 1.1 is now completed.

    Remark 3.1Without any additional assumptions on the coupling matrix A,the adjoint system(3.7)is not conservative and the usual multiplier method can not be applied directly.However,since each subspace Zmis invariant with respect to the matrix AT,for any given initial data(Φ0,Φ1)∈ Zm×Zm,the corresponding solution Φ of(3.7)still lies in the subspace Zm.Then because of the identity(3.12),the coupling termis negligible comparing withTherefore,we first expect the observability inequality(3.15)only for the initial data⊕(Φ0,Φ1)with higher frequencies lying in the sub-linear hullwith an integer m0≥1 large enough.We next extend it to the closure of the whole linear hullby an argument of compact perturbation as shown in Lemma 1.1.

    Remark 3.2The compactness-uniqueness arguments are frequently used in the study of the observability of distributed parameter systems.It turns out that this method is particularly simple and efficient for dealing with some systems with lower order terms.A natural formulation is to consider the problem as a compact perturbation of a skew-adjoint operator(see[10,22]).This approach requests that the eigen-system of the underlying system forms a Riesz basis in the energy space.Since the Riesz basis is not stable even for the compact perturbation,this may cause serious problems in the application.By contrast,the method proposed here does not require any spectral conditions on the underlying system.In particular,instead of Riesz basis property,we assume only that the projection from F into N is continuous with respect to the q-norm.Moreover,it often occurs that the subspaces N and L are mutually orthogonal with respect to the q-inner product,hence,the continuity of the projection from F into N is much easier to be checked than the Riesz basis property.

    Remark 3.3The present method can be generalized to a larger class of problems,for example,to the coupled system of wave equations with different speeds of propagation,which will be considered in a forthcoming work.

    Remark 3.4As to the optimality of controllability time T,we refer to[6–7,27]for some related discussions.

    4 Exact Boundary Controllability with Neumann Boundary Controls

    Let D be a boundary control matrix of order N×M(M≤N)and denote

    We consider the following inhomogeneous problem:

    We will first show the exact boundary controllability of(4.2)by a standard application of the HUM method of Lions[20].We next show the non-exact boundary controllability in the case of fewer boundary controls(M

    Obviously,we have

    On the other hand,by(1.3)and the trace embeddingfor all,we get the following continuous embedding:

    Multiplying the equation in(4.2)by a solutionΦof the adjoint problem(3.7)and integrating by parts,we get

    Taking H0as the pivot space and noting(4.4),(4.5)can be written as

    Definition 4.1U is a weak solution to the problem(4.2),if

    such that the variational equation(4.6)holds for any given

    Proposition 4.1For any givenand any givenwiththe problem(4.2)admits a unique weak solution U.Moreover,the linear map

    is continuous with respect to the corresponding topologies.

    ProofDefine the linear form

    By the definition(3.51)of the p-norm and the continuous embedding(4.4),the linear form Ltis bounded infor any given t ≥ 0.Let Stbe the semi-group associated to the homogeneous problem(3.7)on the Hilbert spacewhich is an isomorphism onThe composed linear formis bounded inThen,by Riesz-Frêchet’s representation theorem,there exists a unique elementsuch that

    for any given.Since

    we get(4.6)for any givenMoreover,we have

    Then,by a classic argument of density,we get the regularity(4.7).The proof is thus complete.

    Definition 4.2The problem(4.2)is exactly null controllable at the time T in the space H0×H1,if for any given(U1,U0)∈ H0×H1,there exists a boundary control H ∈ L2(0,T;L2(Γ1))Msuch that the problem(4.2)admits a unique weak solution U satisfying the final condition

    and the continuous dependance

    Theorem 4.1Assume that M=N.Then there exists a positive constant T>0 such that the problem(4.2)is exactly null controllable at the time T for any given initial data(U1,U0)∈H0×H1.

    ProofLetΦ be the solution to the adjoint problem(3.7)inwith.Let

    Because of the first inclusion in(4.4),we have H ∈ L2(0,T;L2(Γ1))N.Then by Proposition 4.1,the corresponding backward problem

    admits a unique weak solution U with(4.7).Accordingly,we define the linear map

    Clearly,Λis a continuous map from

    Next,using(4.6),it follows that

    whereΨ is the solution to the problem(3.7)with the initial data(Ψ0,Ψ1).It follows that

    By definition,is dense in F,then the linear form

    can be continuously extended to F,so thatMoreover,we have

    Once again,by the density of Hs×Hs?1in F,the linear map Λ can be continuously extended to F,so thatΛ becomes a continuous linear map from F to F′.Therefore,the symmetric bilinear formis continuous and coercive in the product space F × F.By Lax and Milgram’s lemma,Λ is an isomorphism from F onto F′.Then for any giventhere exists an element(Φ0,Φ1)∈ F,such that

    This is precisely the exact boundary null controllability of the problem(4.2)for any given initial data(U1,?U0)∈ F′,in particular,for any given initial data(U1,?U0)∈ H0×H1? F′,because of the second inclusion in(4.4).

    Finally,from(4.13)and(4.16),we deduce the continuous dependance

    The proof is thus complete.

    In the case of fewer boundary controls,we have the following negative result.

    Theorem 4.2Assume that M0.

    ProofSince M

    whereθ∈ D(?)is arbitrarily given.If the problem(4.2)is exactly null controllable,we can find a boundary control H with the least norm such that

    Then,by Proposition 4.1,we have

    Now,taking the inner product of e with(4.2)and noting?=(e,U),we get

    Noting(4.3),by the well-posedness,we get

    for any givenθ∈ D(?).Choosingwe have 2?s>1.This gives a contradiction.The proof is then complete.

    Remark 4.1As shown in the proof of Theorem 4.1,a weaker regularity such as(U′,U)∈C0([0,T];H?1×H0)is sufficient to make sense to the value(U′(0),U(0)),therefore,sufficient for proving the exact boundary controllability.At this stage,it is not necessary to pay much attention to the regularity of the weak solution with respect to the space variable.However,in order to establish the non-exact boundary controllability in Theorem 4.2,this regularity becomes indispensable for the argument of compact perturbation.In the case of Dirichlet boundary controls,the weak solution has the same smoothness as the controllable initial data.This regularity yields the non-exact boundary controllability in the case of fewer boundary controls(see[14–16]).But for Neumann boundary controls,the direct inequality is much weaker than the inverse inequality.For example,in Proposition 4.1,we can get only(U′,U)∈for anywhile,the controllable initial data(U1,U0)lies in the space H0×H1.Even though this regularity is not sharp in general(see[11,Theorem 1.1]and[12,Main Theorems 1.2–1.3]),it is already sufficient for the proof of the non-exact boundary controllability of the problem(4.2).

    Remark 4.2As for the case of Dirichlet boundary controls discussed in[14–16],we have shown in Theorems 4.1–4.2 that for Neumann boundary controls the problem(4.2)is exactly null controllable if and only if the boundary controls have the same number as the state variables or the wave equations.Of course,the non-exact boundary controllability is valid only in the framework that all the components of the initial data are in the same energy space.In fact,if the components of the initial data are allowed to have different levels of finite energy,then we can realize the exact boundary controllability by means of only one boundary control for a system of two wave equations(see[1,21]),or more generally,for a cascade system of N wave equations(see[2]).On the other hand,in contrast with the exact boundary controllability,the approximate boundary controllability is more flexible with respect to the number of boundary controls,and is closely related to the so-called Kalman’s criterion on the rank of an enlarged matrix composed of the coupling matrix A and the boundary control matrix D(see[15,17]).

    AcknowledgementsPart of the work was done during the visit of the second author at the Laboratoire International Associé Sino-Fran?cais de Mathématiques Appliquées(LIASFMA)and the School of Mathematical Sciences of Fudan University during June–August 2014.He would like to thank their hospitality and support.

    The authors are very grateful to Professor Xu Zhang for bringing their attention to the references[11,12]and for the valuable discussions on several occasions,and would like also to thank the referees for their very valuable comments and remarks,which were greatly appreciated to improve the presentation of the paper.

    [1]Alabau-Boussouira,F.,A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems,SIAM J.Control Optim.,42,2003,871–904.

    [2]Alabau-Boussouira,F.,A hierarchic multi-level energy method for the control of bidiagonal and mixed ncoupled cascade systems of PDEs by a reduced number of controls,Adv.Diff.Equ.,18,2013,1005–1072.

    [3]Ammar Khodja,F.,Benabdallah,A.,González-Burgos,M.and de Teresa,L.,Recent results on the controllability of linear coupled parabolic problems:A survey,Math.Control Relat.Fields,1,2011,267–306.

    [4]Bardos,C.,Lebeau,G.and Rauch,J.,Sharp sufficient conditions for the observation,control,and stabilization of waves from the boundary,SIAM J.Control Optim.,30,1992,1024–1064.

    [5]Brezis,H.,Functional Analysis,Sobolev Spaces and Partial Differential Equations,Springer-Verlag,New York,2011.

    [6]Dehman,B.,Le Rousseau,J.and Léautaud,M.,Controllability of two coupled wave equations on a compact manifold,Arch.Ration.Mech.Anal.,211,2014,113–187.

    [7]Duyckaerts,T.,Zhang,X.and Zuazua,E.,On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials,Ann.Inst.H.Poincaré Anal.Non Linéaire,25,2008,1–41.

    [8]Hu,L.,Ji,F.Q.and Wang,K.,Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations,Chin.Ann.Math.,Ser.B,34(4),2013,479–490.

    [9]Komornik,V.,Exact Controllability and Stabilization,The Multiplier Method,Masson,Paris,1994.

    [10]Komornik,V.and Loreti,P.,Observability of compactly perturbed systems,J.Math.Anal.Appl.,243,2000,409–428.

    [11]Lasiecka,I.and Triggiani,R.,Trace regularity of the solutions of the wave equation with homogeneous Neumann boundary conditions and data supported away from the boundary,J.Math.Anal.Appl.,141,1989,49–71.

    [12]Lasiecka,I.and Triggiani,R.,Sharp regularity for mixed second-order hyperbolic equations of Neumann type,I.L2nonhomogeneous data,Ann.Mat.Pura Appl.,157,1990,285–367.

    [13]Lasiecka,I.,Triggiani,R.and Zhang,X.,Nonconservative wave equations with unobserved Neumann B.C.:Global uniqueness and observability in one shot,Differential geometric methods in the control of partial differential equations,Contemp.Math.,268,A.M.S.,Providence,RI,2000,227–325.

    [14]Li,T.-T.and Rao,B.P.,Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,Chin.Ann.Math.,Ser.B,34(1),2013,139–160.

    [15]Li,T.-T.and Rao,B.P.,Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls,Asym.Anal.,86,2014,199–226.

    [16]Li,T.-T.and Rao,B.P.,A note on the exact synchronization by groups for a coupled system of wave equations,Math.Methods Appl.Sci.,38,2015,241–246.

    [17]Li,T.-T.and Rao,B.P.,Criteria of Kalman’s type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls,C.R.Acad.Sci.Paris,Ser.I,353,2015,63–68.

    [18]Lions,J.-L.and Magenes,E.,Problèmes aux Limites Non Homogènes et Applications,Vol.1,Dunod,Paris,1968.

    [19]Lions,J.-L.,Exact controllability,stabilization and perturbations for distributed systems,SIAM Rev.,30,1988,1–68.

    [20]Lions,J.-L.,Contr?labilité Exacte,Perturbations et Stabilisation de Systes Distribués,Vol.1,Masson,Paris,1988.

    [21]Liu,Z.and Rao,B.P.,A spectral approach to the indirect boundary control of a system of weakly coupled wave equations,Discrete Contin.Dyn.Syst.,23,2009,399–414.

    [22]Mehrenberger,M.,Observability of coupled systems,Acta Math.Hungar.,103,2004,321–348.

    [23]Pazy,A.,Semigroups of Linear Operators and Applications to Partial Differential Equations,Springer-Verlag,New York,1983.

    [24]Rosier,L.and de Teresa,L.,Exact controllability of a cascade system of conservative equations,C.R.Math.Acad.Sci.,Paris,349,2011,291–296.

    [25]Russell,D.L.,Controllability and stabilization theory for linear partial differential equations:Recent progress and open questions,SIAM Rev.,20,1978,639–739.

    [26]Yao,P.F.,On the observability inequalities for exact controllability of wave equations with variable coefficients,SIAM J.Control Optim.,37,1999,1568–1599.

    [27]Zhang,X.and Zuazua,E.,A sharp observability inequality for Kirchhoff plate systems with potentials,Comput.Appl.Math.,25,2006,353–373.

    亚洲,欧美精品.| АⅤ资源中文在线天堂| 久久久久久国产a免费观看| 狠狠狠狠99中文字幕| 久久久国产成人免费| 国内久久婷婷六月综合欲色啪| 又黄又粗又硬又大视频| 91成人精品电影| 久久精品影院6| 欧美成人一区二区免费高清观看 | 美女高潮到喷水免费观看| 午夜福利在线观看吧| 亚洲第一欧美日韩一区二区三区| 欧美成人免费av一区二区三区| 中文字幕av电影在线播放| 亚洲电影在线观看av| 一级a爱片免费观看的视频| 老汉色av国产亚洲站长工具| 精品熟女少妇八av免费久了| 一区二区三区国产精品乱码| av中文乱码字幕在线| 琪琪午夜伦伦电影理论片6080| 国产亚洲av嫩草精品影院| 日韩欧美国产在线观看| 亚洲精品在线美女| 亚洲熟妇熟女久久| 亚洲成av人片免费观看| 国产激情欧美一区二区| 国产精品久久久久久亚洲av鲁大| 国内毛片毛片毛片毛片毛片| 老司机午夜福利在线观看视频| 韩国av一区二区三区四区| 男人舔女人的私密视频| 久久久精品欧美日韩精品| 国产麻豆成人av免费视频| 欧美最黄视频在线播放免费| 亚洲国产高清在线一区二区三 | 国产亚洲欧美98| 可以在线观看毛片的网站| 亚洲中文字幕一区二区三区有码在线看 | 国产精品 欧美亚洲| 色婷婷久久久亚洲欧美| 一区二区日韩欧美中文字幕| a在线观看视频网站| 亚洲第一电影网av| 国产精品99久久99久久久不卡| 巨乳人妻的诱惑在线观看| 少妇裸体淫交视频免费看高清 | www.熟女人妻精品国产| 国产精品99久久99久久久不卡| 亚洲片人在线观看| 一区二区三区精品91| 久久午夜综合久久蜜桃| 亚洲专区国产一区二区| 天堂√8在线中文| 在线观看免费日韩欧美大片| 一级毛片精品| 亚洲专区中文字幕在线| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 日韩国内少妇激情av| 午夜影院日韩av| 欧美日韩乱码在线| 制服丝袜大香蕉在线| 一区二区三区精品91| 最近最新中文字幕大全电影3 | 少妇裸体淫交视频免费看高清 | 久久午夜综合久久蜜桃| 午夜福利高清视频| 一个人免费在线观看的高清视频| 欧美一级毛片孕妇| 手机成人av网站| 一区福利在线观看| 国产色视频综合| 九色国产91popny在线| 亚洲电影在线观看av| 国产精品免费一区二区三区在线| 听说在线观看完整版免费高清| 母亲3免费完整高清在线观看| АⅤ资源中文在线天堂| 十八禁网站免费在线| 极品教师在线免费播放| 在线观看午夜福利视频| 精品一区二区三区四区五区乱码| 午夜成年电影在线免费观看| 99国产精品99久久久久| 欧美精品亚洲一区二区| 韩国精品一区二区三区| 午夜福利一区二区在线看| a级毛片a级免费在线| 久久性视频一级片| 精品久久蜜臀av无| 淫妇啪啪啪对白视频| 美国免费a级毛片| 999久久久精品免费观看国产| 国产av在哪里看| 琪琪午夜伦伦电影理论片6080| aaaaa片日本免费| 国产伦一二天堂av在线观看| 国产蜜桃级精品一区二区三区| 男人的好看免费观看在线视频 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产看品久久| 成年人黄色毛片网站| 亚洲精品av麻豆狂野| 国产精品久久久久久亚洲av鲁大| 色播亚洲综合网| 色尼玛亚洲综合影院| 久久香蕉精品热| 男女做爰动态图高潮gif福利片| 亚洲av熟女| 欧美黄色淫秽网站| 亚洲午夜理论影院| 嫩草影视91久久| a级毛片a级免费在线| 国产精品亚洲av一区麻豆| 美女国产高潮福利片在线看| 男女床上黄色一级片免费看| 99热6这里只有精品| 看黄色毛片网站| 国产三级在线视频| 19禁男女啪啪无遮挡网站| 2021天堂中文幕一二区在线观 | 亚洲中文字幕日韩| 美女免费视频网站| 男女床上黄色一级片免费看| 亚洲精品中文字幕一二三四区| 久久草成人影院| 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| e午夜精品久久久久久久| 女性被躁到高潮视频| 国产精品久久久久久精品电影 | 亚洲自拍偷在线| 亚洲国产精品成人综合色| 国产片内射在线| 国产99白浆流出| 色综合站精品国产| 亚洲第一电影网av| 亚洲精品在线观看二区| 久久久久九九精品影院| 看片在线看免费视频| 在线视频色国产色| 久久性视频一级片| 韩国av一区二区三区四区| 巨乳人妻的诱惑在线观看| 99riav亚洲国产免费| 亚洲 欧美一区二区三区| 午夜免费成人在线视频| 免费看十八禁软件| 99久久99久久久精品蜜桃| 国产精品久久久av美女十八| 国产色视频综合| 精品卡一卡二卡四卡免费| 国产不卡一卡二| 91国产中文字幕| 成人精品一区二区免费| 他把我摸到了高潮在线观看| 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影| 欧美激情 高清一区二区三区| 亚洲成人久久爱视频| 一本综合久久免费| 午夜免费观看网址| 成年免费大片在线观看| 成人特级黄色片久久久久久久| 久久久国产精品麻豆| 成人亚洲精品av一区二区| 妹子高潮喷水视频| 国产一区二区三区在线臀色熟女| 在线播放国产精品三级| 欧美日本亚洲视频在线播放| a在线观看视频网站| 成人精品一区二区免费| 少妇被粗大的猛进出69影院| 在线看三级毛片| 成年版毛片免费区| 淫秽高清视频在线观看| 熟女少妇亚洲综合色aaa.| 日本黄色视频三级网站网址| 丝袜美腿诱惑在线| 国产成人av激情在线播放| 国产亚洲精品第一综合不卡| 成人手机av| 91在线观看av| 国产欧美日韩一区二区三| 国产国语露脸激情在线看| 日韩精品中文字幕看吧| 日韩三级视频一区二区三区| 色尼玛亚洲综合影院| 久久久久久九九精品二区国产 | 国产激情久久老熟女| 身体一侧抽搐| 中亚洲国语对白在线视频| 一级毛片精品| 国产精品,欧美在线| 三级毛片av免费| 激情在线观看视频在线高清| 一个人免费在线观看的高清视频| 我的亚洲天堂| 丰满的人妻完整版| 精品久久蜜臀av无| 亚洲专区中文字幕在线| 久久性视频一级片| 国产精品99久久99久久久不卡| 欧美黑人欧美精品刺激| 久久九九热精品免费| 久久草成人影院| 黄色毛片三级朝国网站| 欧美激情久久久久久爽电影| 亚洲午夜精品一区,二区,三区| 精品国产超薄肉色丝袜足j| 亚洲片人在线观看| 国产黄色小视频在线观看| xxxwww97欧美| 搡老熟女国产l中国老女人| av天堂在线播放| 91成年电影在线观看| 亚洲欧美激情综合另类| 国产熟女xx| 巨乳人妻的诱惑在线观看| 日本 欧美在线| 久久国产精品人妻蜜桃| 欧美+亚洲+日韩+国产| 国内毛片毛片毛片毛片毛片| 伦理电影免费视频| 成人国产一区最新在线观看| 久久香蕉国产精品| x7x7x7水蜜桃| 国语自产精品视频在线第100页| 日本精品一区二区三区蜜桃| 午夜激情福利司机影院| 在线观看舔阴道视频| 中文字幕人成人乱码亚洲影| 欧美成狂野欧美在线观看| 国产亚洲精品综合一区在线观看 | 最好的美女福利视频网| 亚洲精品粉嫩美女一区| 亚洲成a人片在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 一a级毛片在线观看| 色播亚洲综合网| 国产精品久久电影中文字幕| 久热爱精品视频在线9| 丰满的人妻完整版| 久久久精品欧美日韩精品| 国产精品美女特级片免费视频播放器 | 韩国精品一区二区三区| 久久精品影院6| av福利片在线| xxx96com| 精品国产超薄肉色丝袜足j| 亚洲国产欧洲综合997久久, | 成人特级黄色片久久久久久久| 国产精品二区激情视频| 国产真实乱freesex| 中文字幕高清在线视频| 少妇粗大呻吟视频| АⅤ资源中文在线天堂| 在线观看免费日韩欧美大片| 人妻丰满熟妇av一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美激情综合另类| 国产熟女xx| 搡老岳熟女国产| 69av精品久久久久久| 亚洲avbb在线观看| 一本综合久久免费| 欧美av亚洲av综合av国产av| 免费看美女性在线毛片视频| 可以免费在线观看a视频的电影网站| 成人永久免费在线观看视频| 波多野结衣av一区二区av| 视频在线观看一区二区三区| 一本综合久久免费| 国产精品精品国产色婷婷| 看免费av毛片| www.999成人在线观看| 亚洲男人的天堂狠狠| 人人妻,人人澡人人爽秒播| 精品欧美国产一区二区三| 国产精品免费视频内射| 一级片免费观看大全| 国产熟女xx| 女生性感内裤真人,穿戴方法视频| 成人18禁在线播放| 国产高清激情床上av| 性欧美人与动物交配| 亚洲专区中文字幕在线| 在线观看日韩欧美| 丝袜在线中文字幕| 两性夫妻黄色片| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久人妻精品电影| 男男h啪啪无遮挡| 国产精品二区激情视频| 亚洲在线自拍视频| 99热只有精品国产| 久久午夜综合久久蜜桃| 国产私拍福利视频在线观看| 亚洲国产精品久久男人天堂| 日本 av在线| 首页视频小说图片口味搜索| 久久人人精品亚洲av| 在线观看日韩欧美| 欧美一区二区精品小视频在线| 黄片大片在线免费观看| 黄网站色视频无遮挡免费观看| 一个人观看的视频www高清免费观看 | 亚洲五月天丁香| 老司机深夜福利视频在线观看| 久久久久久国产a免费观看| 人人澡人人妻人| 他把我摸到了高潮在线观看| 伦理电影免费视频| 国产私拍福利视频在线观看| 欧美大码av| 久久精品国产亚洲av香蕉五月| 91麻豆av在线| 丁香欧美五月| 婷婷丁香在线五月| 亚洲第一av免费看| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 精品欧美一区二区三区在线| 亚洲国产精品999在线| 午夜激情福利司机影院| 婷婷精品国产亚洲av在线| 国产精品美女特级片免费视频播放器 | 午夜成年电影在线免费观看| 婷婷六月久久综合丁香| √禁漫天堂资源中文www| 国产又爽黄色视频| 99久久综合精品五月天人人| 国产又色又爽无遮挡免费看| 亚洲avbb在线观看| 99re在线观看精品视频| 国产激情久久老熟女| 巨乳人妻的诱惑在线观看| 女人被狂操c到高潮| 免费看a级黄色片| 很黄的视频免费| 天天躁夜夜躁狠狠躁躁| 99热6这里只有精品| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 麻豆久久精品国产亚洲av| 午夜福利视频1000在线观看| 亚洲电影在线观看av| 高清毛片免费观看视频网站| 亚洲成人免费电影在线观看| 国产色视频综合| 黑人巨大精品欧美一区二区mp4| 最近最新免费中文字幕在线| 亚洲熟女毛片儿| 亚洲精品久久国产高清桃花| 日本黄色视频三级网站网址| 欧美色视频一区免费| 久久久久久免费高清国产稀缺| 在线观看免费日韩欧美大片| 黄色 视频免费看| 1024手机看黄色片| 久久久久久九九精品二区国产 | 亚洲av中文字字幕乱码综合 | 不卡av一区二区三区| 成在线人永久免费视频| 99久久99久久久精品蜜桃| 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| 亚洲专区字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 成人亚洲精品av一区二区| 99久久99久久久精品蜜桃| 老司机靠b影院| 一个人免费在线观看的高清视频| 人妻久久中文字幕网| 精品一区二区三区视频在线观看免费| 亚洲欧美一区二区三区黑人| 欧美一级a爱片免费观看看 | 亚洲成人精品中文字幕电影| 久久精品成人免费网站| 91麻豆av在线| 欧美 亚洲 国产 日韩一| 亚洲成av片中文字幕在线观看| 国产成人一区二区三区免费视频网站| 亚洲国产欧美网| 国产精品久久久久久精品电影 | 中文字幕精品亚洲无线码一区 | 神马国产精品三级电影在线观看 | 看黄色毛片网站| 免费高清在线观看日韩| 搡老熟女国产l中国老女人| 国内毛片毛片毛片毛片毛片| 曰老女人黄片| 免费看十八禁软件| 久久婷婷成人综合色麻豆| 精品熟女少妇八av免费久了| 免费看a级黄色片| 久久久国产成人精品二区| 亚洲国产精品999在线| 精品日产1卡2卡| 久久狼人影院| 中文在线观看免费www的网站 | 国产熟女午夜一区二区三区| 欧美又色又爽又黄视频| 欧美一级毛片孕妇| 草草在线视频免费看| 色尼玛亚洲综合影院| 亚洲,欧美精品.| 免费观看精品视频网站| 91成年电影在线观看| 国产伦一二天堂av在线观看| 夜夜爽天天搞| 国产99白浆流出| 免费在线观看黄色视频的| 男人舔奶头视频| 国产精品亚洲av一区麻豆| 午夜福利欧美成人| 欧美大码av| 亚洲精品美女久久久久99蜜臀| 免费在线观看日本一区| 99国产综合亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看 | 狠狠狠狠99中文字幕| 午夜激情av网站| 午夜免费激情av| 国产成人欧美| 非洲黑人性xxxx精品又粗又长| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 美女高潮喷水抽搐中文字幕| 亚洲av中文字字幕乱码综合 | 国产精品九九99| 91老司机精品| 亚洲无线在线观看| 欧美乱码精品一区二区三区| 啪啪无遮挡十八禁网站| 黄网站色视频无遮挡免费观看| 麻豆成人午夜福利视频| 午夜免费成人在线视频| 精品日产1卡2卡| 他把我摸到了高潮在线观看| 国产精品电影一区二区三区| 久久中文字幕一级| 亚洲国产精品合色在线| 99riav亚洲国产免费| 一区二区三区高清视频在线| 性欧美人与动物交配| 日韩欧美一区视频在线观看| 男女那种视频在线观看| 女性生殖器流出的白浆| 一本大道久久a久久精品| 啪啪无遮挡十八禁网站| 精品国产超薄肉色丝袜足j| 日本一区二区免费在线视频| 18禁黄网站禁片免费观看直播| 在线播放国产精品三级| 长腿黑丝高跟| 亚洲专区字幕在线| 最近最新免费中文字幕在线| 日韩欧美 国产精品| x7x7x7水蜜桃| 一区二区日韩欧美中文字幕| 一级毛片女人18水好多| 俄罗斯特黄特色一大片| 午夜激情av网站| 香蕉国产在线看| 男人舔奶头视频| 特大巨黑吊av在线直播 | 午夜久久久久精精品| 十八禁网站免费在线| 黄色丝袜av网址大全| 变态另类丝袜制服| 又黄又粗又硬又大视频| 1024视频免费在线观看| 丝袜在线中文字幕| 首页视频小说图片口味搜索| 宅男免费午夜| 一级毛片高清免费大全| 18禁美女被吸乳视频| 国产视频一区二区在线看| 精品熟女少妇八av免费久了| 啦啦啦免费观看视频1| 一卡2卡三卡四卡精品乱码亚洲| 1024香蕉在线观看| 热re99久久国产66热| 大型av网站在线播放| 亚洲中文字幕一区二区三区有码在线看 | 90打野战视频偷拍视频| 久久久久国产精品人妻aⅴ院| 91国产中文字幕| 亚洲真实伦在线观看| 久久伊人香网站| АⅤ资源中文在线天堂| 亚洲自偷自拍图片 自拍| 国产成人影院久久av| 韩国精品一区二区三区| 美女扒开内裤让男人捅视频| 长腿黑丝高跟| 在线十欧美十亚洲十日本专区| www.www免费av| 男人舔奶头视频| 国产成人啪精品午夜网站| 亚洲熟妇熟女久久| 少妇熟女aⅴ在线视频| 给我免费播放毛片高清在线观看| 人人妻,人人澡人人爽秒播| 久久伊人香网站| 19禁男女啪啪无遮挡网站| 欧美国产精品va在线观看不卡| 午夜免费激情av| 婷婷精品国产亚洲av在线| 久久伊人香网站| 国产亚洲欧美在线一区二区| 国产乱人伦免费视频| 久久久国产成人免费| 18禁黄网站禁片免费观看直播| 91老司机精品| 51午夜福利影视在线观看| 妹子高潮喷水视频| 少妇的丰满在线观看| 免费在线观看完整版高清| 欧美日本视频| 久久久久九九精品影院| 人人妻人人澡欧美一区二区| 观看免费一级毛片| 久久人妻福利社区极品人妻图片| 亚洲成人免费电影在线观看| 亚洲一区高清亚洲精品| 国产精品,欧美在线| 国产熟女xx| 男人的好看免费观看在线视频 | 性色av乱码一区二区三区2| 久久香蕉精品热| x7x7x7水蜜桃| 国产91精品成人一区二区三区| 久久精品国产综合久久久| 中亚洲国语对白在线视频| 韩国精品一区二区三区| www.熟女人妻精品国产| 成在线人永久免费视频| 亚洲三区欧美一区| 女人被狂操c到高潮| 男女床上黄色一级片免费看| 亚洲最大成人中文| 后天国语完整版免费观看| www日本黄色视频网| 成人一区二区视频在线观看| cao死你这个sao货| 欧美+亚洲+日韩+国产| 久久久久精品国产欧美久久久| 一个人免费在线观看的高清视频| 一边摸一边做爽爽视频免费| 亚洲成a人片在线一区二区| 欧美激情 高清一区二区三区| 国产成+人综合+亚洲专区| 两性夫妻黄色片| 巨乳人妻的诱惑在线观看| 国产激情欧美一区二区| 久久亚洲真实| 日韩欧美国产一区二区入口| 国产aⅴ精品一区二区三区波| 成在线人永久免费视频| 在线观看www视频免费| 欧美一级毛片孕妇| 亚洲中文av在线| 侵犯人妻中文字幕一二三四区| 午夜激情福利司机影院| 免费电影在线观看免费观看| 99国产精品一区二区三区| 国产熟女午夜一区二区三区| 国产高清激情床上av| netflix在线观看网站| 青草久久国产| 日韩 欧美 亚洲 中文字幕| 国产1区2区3区精品| 久久精品成人免费网站| 久久国产乱子伦精品免费另类| 精品一区二区三区av网在线观看| av视频在线观看入口| 好男人电影高清在线观看| 天堂影院成人在线观看| 性色av乱码一区二区三区2| 欧美一区二区精品小视频在线| 欧美国产日韩亚洲一区| 99国产综合亚洲精品| 欧美亚洲日本最大视频资源| 欧洲精品卡2卡3卡4卡5卡区| 俄罗斯特黄特色一大片| 黄色 视频免费看| 国产精品 欧美亚洲| 欧美日韩亚洲综合一区二区三区_| 动漫黄色视频在线观看| 精品久久蜜臀av无| videosex国产| 在线观看www视频免费| 精品久久久久久成人av| 久久久精品欧美日韩精品| 国产一级毛片七仙女欲春2 | 国产午夜精品久久久久久| 又紧又爽又黄一区二区| 一进一出好大好爽视频| netflix在线观看网站| 精品欧美国产一区二区三| 一区二区日韩欧美中文字幕| 久久久久免费精品人妻一区二区 | 一二三四在线观看免费中文在| 欧美丝袜亚洲另类 | 国产真人三级小视频在线观看| 麻豆一二三区av精品| 一本久久中文字幕| 国产又色又爽无遮挡免费看| 黑人操中国人逼视频| 一区二区三区精品91|