• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Affinely Prime Dynamical Systems

    2017-07-02 07:17:10HillelFURSTENBERGEliGLASNERBenjaminWEISS

    Hillel FURSTENBERG Eli GLASNER Benjamin WEISS

    (Dedicated to Professor Haim Brezis on the occasion of his 70th birthday)

    1 Introduction

    The classical theory of group representations deals with representing a group as automorphisms of vector spaces.In principle,one can take any category with its morphisms and study representing a group by automorphisms of objects in this category.In what follows,we shall do this for the category of compact convex spaces with morphisms preserving the affine structure.There is particular interest in the “irreducible” representations where no proper “subobject”is invariant under the action.A pleasant aspect of this theory is that for any group,there is a “universal” irreducible representation from which all others can be derived.Moreover,for many groups,the universal irreducible representation can be described explicitly.Following our preliminary discussion,we focus on the group PSL(2,R),or equivalently,on the M?bius group of analytic maps preserving the unit disc of the complex plane.Denote the latter group by G.We show,following[3],that each bounded harmonic function on the disc leads to an irreducible representation of G on a compact,convex subset of L∞(G).Since there is an abundance of bounded harmonic functions on the disc,we might expect to find a great variety of non-equivalent irreducible representations of PSL(2,R).This was our initial guess and the motivation for the ensuing research.As it turns out,the universal irreducible representation of the M?bius group is given by the natural action on probability measures on the unit circle.Moreover,we show that this representation is “prime”,meaning that no other irreducible representation can be derived from this one.This means,in particular,that all non-constant harmonic functions lead to equivalent irreducible representations.

    In Section 2,we develop the rudiments of the theory of irreducible affine dynamical systems and introduce the notion of an affinely prime dynamical system.In Section 3,we consider the group G of M?bius transformations preserving the unit disk D ? C,which is topologically isomorphic to the group PSL(2,R).As was shown in[3],the action of G on the boundary S1of D is minimal and strongly proximal,and moreover the system(S1,G)is the universal minimal and strongly proximal G-action,denoted asΠs(G).This is the same as saying that the induced action of G on the space M(S1)of probability measures on S1is the universal irreducible affine action of G.We prove that in fact,up to affine isomorphism,the irreducible affine system(M(Πs(G)),G)=(M(S1),G)is the unique irreducible affine G-system.In the last section we show,following[3],that there is a one-to-one correspondence between bounded harmonic functions h on the unit disk D~=G/K(where K?G is the subgroup of rotations of D)and irreducible affine systems(Qh,G)in L∞(G),where each such irreducible system contains a unique K invariant function which is the lift of h from G/K to G.Moreover,as a consequence of the analysis of the previous section,all the affine systems Qhare isomorphic to the universal irreducible affine system(M(S1),G)=(M(Πs(G)),G).

    We thank David Kazhdan and Erez Lapid for several helpful conversations that,eventually,led us to a simpler and more elegant proof of Theorem 3.1.

    2 Affinely Prime Dynamical Systems

    A dynamical system(X,G,ψ)is a triple consisting of a compact metric space X,a topological group G and a continuous homomorphismψ:G→Homeo(X),the Polish group of homeomorphisms of X equipped with the compact open topology.As a rule,we will suppress the homomorphismψand,given x∈X and g∈G,write gx forψ(g)(x).A dynamical system is nontrivial when it contains more than one point.Given two G dynamical systems,a homomorphismπ:(X,G)→(Y,G)is a continuous map of X into Y which intertwines the G-actions.Whenπis surjective we say that it is a factor map and that Y is a factor of X.A dynamical system(X,G)is prime if every factor mapπ:(X,G)→(Y,G)with Y nontrivial is one-to-one.

    If(X,G)is a dynamical system and Y?X is an invariant closed subset,we say that(Y,G),the restriction of the action of G to Y,is a subsystem.When(X,G)has no proper subsystems,we say that it is minimal.This is of course the case if and only if the orbit Gx of every point x∈X is dense.We say that two points x,y in a system X are proximal,if there exists a point z∈X and a sequence gn∈G such that lim gnx=lim gny=z.The system(X,G)is proximal,if every pair of points in X is proximal.

    Lemma 2.1A nontrivial prime dynamical system is either minimal,or it has a unique fixed point,and every other point has a dense orbit.

    ProofLet(X,G)be a nontrivial prime dynamical system.If X properly contains a closed G-invariant subset,which contains more than one point,form the set

    This is an icer(i.e.,an invariant closed equivalence relation)on X,and the corresponding homomorphismπ:X→X/R is non-trivial,contradicting primality.

    Thus every proper closed invariant subset of X is a singleton.It follows that if X is not minimal,then it has a unique fixed point,and every other point has a dense orbit,as claimed.

    The space M(X)of probability measures on X will be equipped with its natural weak?topology which is inherited from C(X)?where a measure is identified with the corresponding linear functional on C(X),the Banach algebra of real valued continuous functions on X.The compact metric space M(X)also supports an affine structure and the G-action on X induces a continuous affine action of G on M(X).In general,if Q is a compact convex metrisable subset of a locally convex topological vector space,and G acts on Q as a group of continuous affine maps(i.e.,each g∈G preserves convex combinations),we say that(Q,G)is an affine dynamical system.

    For more details on the notions and results introduced below,see,e.g.,[6].

    Definition 2.1(1)Let(X,G)be a dynamical system and(Q,G)be an affine dynamical system.We say that Q is an affine compactification of X,if there is a homomorphism?:X→Q such thatwhere fordenotes the closed convex hull of the set A.When?is one-to-one,we say that it is faithful(or that it is an affine embedding).

    (2)An affine dynamical system(Q,G)is irreducible,if it does not contain properly any affine subsystem,i.e.,if whenever Q′? Q is a closed convex and G-invariant subset,then Q′=Q.

    (3)An affine dynamical system(Q,G)is affinely prime,if it does not admit any proper factor affine system,i.e.,if wheneverπ:Q → Q′is an affine surjective homomorphism with Q′nontrivial,thenπis one-to-one.

    (4)A dynamical system(X,G)is affinely prime,if with respect to the canonical faithful affine compactification ?:X →M(X)given by?(x)=δx,the associated affine system(M(X),G)is affinely prime.

    (5)A dynamical system(X,G)is strongly proximal,if for everyμ∈M(X),there is a sequence of elements gn∈G and a point x∈X such that lim gnμ=δx,the point mass at x.

    The next proposition follows easily from Choquet’s theory(see,e.g.,[8]).

    Proposition 2.1(1)If Q is an affine dynamical system and(where ext(Q)denotes the set of extreme points of Q),then Q is a faithful affine compactification of X.

    (2)For a dynamical system(X,G),the canonical affine compactification defined on(M(X),G)is universal,i.e.,for any affine compactification?:X→Q,there is a uniquely defined(barycenter)mapβ :M(X)→ Q withβ(δx)= ?(x)for every x∈ X.

    Lemma 2.2If(Q,G)is an irreducible affine system and A?Q is any closed G-invariant subset,then A contains ext(Q).

    ProofThe barycenter map takes M(A)onto Q,so,in particular,each extremal is the barycenter of a measure on A which by extremality must be the corresponding point mass.

    Lemma 2.3For a dynamical system(X,G),the affine compactification M(X)is irreducible if and only if(X,G)is minimal and strongly proximal.

    ProofIf Y?X is a proper closed invariant subset,then M(Y)(M(X).Thus irreducibility of M(X)implies minimality of X.Given any elementμ∈M(X),letandThe latter is an affine sub-system of M(X).If M(X)is irreducible,it follows that Qμ=M(X).From Lemma 2.2,we have Zμ? ext(M(X))={δx:x∈ X},whence X is strongly proximal.

    Conversely,if(X,G)is minimal and strongly proximal,then it is easy to see that every Qμ=M(X),i.e.,M(X)is irreducible.

    In the following lemma,we recall some basic facts about affine systems and also provide the short proofs.

    Lemma 2.4(1)A proximal system contains exactly one minimal subsystem.

    (2)A minimal proximal system admits no endomorphisms other than the identity automorphism.

    (3)A system(X,T)is strongly proximal if and only if the system(M(X),G)is proximal.In particular,a strongly proximal system is proximal.

    (4)For an affine irreducible system(Q,G),let X denote the closure of the extreme points of Q.Then X is the unique minimal subsystem of Q and the system(X,G)is strongly proximal.

    (5)If there is a homomorphismπ:Q→P,where(Q,G)and(P,G)are irreducible affine systems then it is unique.In particular,the only affine endomorphism of an irreducible affine system is the identity.

    Proof(1)By Zorn’s lemma,every dynamical system contains at least one minimal subsystem.But if x,y∈X belong to two distinct minimal subsystems,they can not be proximal.

    (2)Suppose that(X,G)is minimal and proximal,and that?:X→X is an endomorphism.Since the pair(x,?(x))is proximal,there is a sequence gn∈ G with lim gn(x,?(x))=(z,z)for some z∈X,whence z=?(z).Since X is minimal,this implies that?=id.

    (3)Clearly proximality of M(X)implies strong proximality of X.Conversely,let(X,G)be a strongly proximal system.Given x,y∈X,form the measure.There exists a point z∈ X and a sequence gn∈ G with lim gnμ = δz,and,asδzis an extreme point of M(X),it is easy to see that this implies that lim gnx=lim gny=z.Thus any two points in X are proximal,i.e.,X is a proximal system.It is now easy to see that M(X)is also proximal.

    (4)By Proposition 2.1 there is an affine surjective homomorphismβ:M(X)→Q.Givenμ∈M(X),letThen,by the irreducibility of Q,we have β(Qμ)=Q.In particular,for every extreme point w ∈ext(Q)? X,there isν ∈Qμwith β(ν)=w.As w is an extreme point,this implies thatν = δw∈ X.It follows that X ? Qμ,whence Qμ=M(X).Thus M(X)isalso irreducible and an application of Lemma 2.3 concludes the proof.

    (5)Supposethatπ:Q→P andσ:Q→P are two affine homomorphisms.LetandWe know that both X and Y are proximal and minimal systems.For every x ∈ X,we consider the pair(π(x),σ(x)).This is a proximal pair in Y and thus for some sequence gn∈ G,we have lim(gnπ(x),gnσ(x))=(y,y)for some y∈ Y.However,we can also assume that the limit lim gnx=z ∈ X exists,and then(y,y)=(π(z),σ(z)),henceπ(z)= σ(z).X being minimal,this implies that π(z′)= σ(z′)for every z′∈ X,and finally,as π and σ are affine maps,this leads to the conclusion thatπ=σ.

    For any topological group G there exists a universal minimal strongly proximal system which we denote by Πs(G).Recalling the fact that a group G is amenable if and only if every compact dynamical system(X,G)admits an invariant probability measure,we see that a group G is amenable if and only if the space Πs(G)is a trivial one point space.The following is a consequence of(4).

    Corollary 2.1The affine dynamical system(M(Πs(G)),G)is irreducible and it is the universal affine system for irreducible affine G systems,i.e.,for any irreducible affine G system Q,there is a unique surjective affine homomorphism Θ :M(Πs(G))→ Q.In particular,if Πs(G)is affinely prime,then M(Πs(G))is the only nontrivial irreducible affine G-system.

    The next definition is reminiscent of the classical Stone-Weierstrass theorem.

    Definition 2.2We say that a dynamical system(X,G)has the linear Stone-Weierstrass property(LSW),if for every non-constant function f∈C(X)the uniformly closed linear span Vfof the set{fg:g∈G}∪{1}is all of C(X)(here fg(x)=f(gx)).

    Proposition 2.2A dynamical system has LSW if and only if it is affinely prime.ProofFor a function f∈C(X),we denote by∈Aff(M(X))the map

    Suppose first that X has the LSW property,and letπ:M(X)→Q be an affine homomorphism with nontrivial Q.Let Aff(Q)denote the collection of continuous affine real valued functions on Q,and let

    The LSW property implies that A(Q)=C(X).Suppose now that π(μ)= π(ν)andThen there is f ∈ C(X)withfor some F ∈ Aff(Q),we havea contradiction.Thusπ is indeed one-to-one.

    Conversely,suppose that(X,G)is affinely prime,and let f be a non-constant function in C(X).Let Vfbe as in Definition 2.2.If Vfis a proper subspace of C(X),then the restriction mapμ→μ?Vf,M(X)→Q,where the latter is the state space of Vf,yields a non-injective affine homomorphism of M(X).

    Proposition 2.3If(X,G)is affinely prime,then it is prime,whence it is either minimal or it has a unique fixed point and every other point has a dense orbit.

    ProofObserve that ifπ:(X,G)→(Y,G)isa surjectivebut non-injective factor map,then the induced mapπ?:M(X)→ M(Y)is a surjective but non-injective affine homomorphism.Thus an affinely prime system is prime.The rest follows from Lemma 2.1.

    Definition 2.3We say that a dynamical system(X,G)is completely uniquely ergodic,if it admits a unique G-invariant probability measure,say η,and{η}is the only irreducible affine subsystem of M(X).

    Proposition 2.4If(X,G)is affinely prime,then the dynamical system(X,G)satisfies

    (1)It is prime;

    (2)It is either minimal,or it has a unique fixed point,and every other point has a dense orbit;

    (3)It is either completely uniquely ergodic,or it is strongly proximal;

    (4)For a minimal affinely prime system which is not completely uniquely ergodic,M(X)is irreducible.

    Proof(1)Observe that ifπ:(X,G)→(Y,G)is a surjective but non-injective factor map,then the induced mapπ?:M(X)→ M(Y)is a surjective but non-injective affine homomorphism.Thus an affinely prime system is prime.

    (2)This now follows from Lemma 2.1.

    (3)Assume that X is not strongly proximal.Then there is a probability measureξ∈M(X)whose orbit closuredoes not meet X.It follows thatis a nonempty closed convex and G-invariant proper subset of M(X).

    Now given any nonempty closed convex and G-invariant proper subset Q of M(X),set

    Suppose first that L=C(X)?.Then in particular,every point mass δxis in L,and there is a sequencesuch that.Letwithand an,bn≥0.It follows that bnνn→ 0 and μn→ δx.We conclude that Q=M(X).Thus in this case X is minimal and strongly proximal.

    Suppose next that L is a proper subspace of C(X)?.Fix some ? ∈ C(X)?L.By the Hahn-Banach separation theorem(see,e.g.,[2,Corollary 11,p.418]),there is a function f∈C(X)such that?(f)=1 andψ(f)≥ 0 for allψ ∈ L.Since L is a subspace,it follows thatψ(f)=0 for allψ∈L.

    Thus f is an element of the norm closed G-invariant subspace L⊥?C(X)defined by

    Next define V=L⊥⊕R1,where the latter stands for the space of constant functions.If V is a proper subspace of C(X),this contradicts the assumption that X has the LSW property.So we now assume that V=C(X).

    Case 1There exists Q as above which contains more than one element.

    Let ν1,ν2be two distinct elements of Q,and let F ∈ C(X)be such thatWe write F=h+c1 with h∈L⊥and c∈R,and then get

    a contradiction.

    Case 2Every closed G-invariant convex proper subset of M(X)is a singleton.

    In this case,the collection K of G-invariant probability measures is a closed convex G-invariant subspace of M(X).Now,as we assume that(X,G)is not trivial,the case where K is not a singleton can be ruled out,as in Case 1 above,and we are left with the case,where K=Q={η}is the only closed convex G-invariant subset of M(X),which is,by definition,the case of complete unique ergodicity.

    (4)This follows from part(3)and Lemma 2.3.

    The following diagram sums up the various possible situations described in Proposition 2.4.

    Table 1 Affinely prime systems

    Remark 2.1The converse of Proposition 2.4(4),of course,does not hold.There are many minimal strongly proximal systems(so with M(X)irreducible)which are not even prime(see,e.g.,Examples 3.1 and 3.2 below).

    Example 2.1(1)For every prime p,the map Tx=x+1(mod p)generatesa primesystem(Zp,T).It is affinely prime(over R)only for p=2,3.

    (2)Let X be the Cantor set and G=Homeo(X),the group of self-homeomorphisms of X.The system(X,G)has LSW.

    (3)Let X=S2,the two dimensional sphere in R3,and G=Homeo(X),the group of self-homeomorphisms of X.The system(X,G)has LSW.

    (4)Take X=S2again,but now consider the action of H

    (5)Let X=Z∪{∞}be the one point compactification of the integers,and T be the translation Tx=x+1 on Z which fixes the point at infinity.It is easy to check that X is prime and strongly proximal.However,it does not have the LSW property.

    Proof(1)It is clear when one considers the associated Koopman representation on

    (2)Let f be a non-constant function in C(X).Rescaling we can assume that 0≤f(x)≤1 for every x∈X,and that the values 0 and 1 are attained,say f(x0)=0 and f(x1)=1.

    Suppose

    Then there exists a functional 0μ ∈ C(X)?such thatμ(h)=0 for every h ∈ Vf.We think ofμas a signed measure and writeμ=μ0?μ1,whereμ0andμ1are non-negative measures,such that for some Borel set B ? X,μ0(B)= μ0(X)andμ1(XB)= μ1(X).Since 1∈ Vf,we haveμ(X)= μ0(X)? μ1(X)=0,whence μ0(X)= μ1(X)=a>0.Again without loss of generality,we assume thatμ0(X)= μ1(X)=a=1.

    Given,we can find closed subsets K0?B and K1?XB,such thatμi(Ki)>(1??),i=0,1.

    Next choose a sequence gn∈G,such that,1,in the sense that for every two open neighbourhoods Uiof xi,there is n0with gnKi?Vifor all n≥n0.

    We also assume,as we may,that the limitsexist,and that νi=where(1??)

    Now

    But,as f∈Vf,these two limits are equal,and we arrive at the absurd inequality

    (3)As in the previous proof,given f a non-constant function is C(X),we rescale f,form the space Vfand proceed as above.When we choose the closed disjoint sets K0,K1,we can assume that they are Cantor sets.We claim that there is a smooth closed simple Jordan curve with A ? ins(γ)and B ? out(γ).In fact,this follows easily e.g.from[1,Proposition 1.8,p.4].Now we again proceed as in part(2)above,and choose the homeomorphisms gn,so that their restriction to a sufficiently small neighborhood ofγis the identity.The rest of the proof goes verbatim as in part(2).

    (4)A similar argument.

    (5)In order to see this observe first that C(X)~=c(Z),the Banach space of converging sequences in RZ.It is now sufficient to show that the closed Banach subspace c0(Z)(consisting of those sequences whose limit is zero)contains a closed T-invariant proper subspace.However,such(even symmetric,i.e.,S∞(Z)-invariant)subspaces exist in abundance(see,e.g.,[4–5]).

    Remark 2.2(1)For the case where X=S1and G=Homeo(S1),see Corollary 3.2 below.

    (2)With some more work,one can show that,with X=Sn,n=3,4,···,or X=Q,the Hilbert cube,the systems(X,Homeo(X))are affinely prime.

    Problem 2.1Is there a non-trivial,minimal,weakly mixing,uniquely ergodic cascade(X,T)which is affinely prime?

    Remark 2.3We note that if a cascade(X,T)as in Problem 2.1 exists and μ is its unique invariant measure,then the ergodic measure preserving system(X,μ,T)has necessarily simple spectrum.

    3 The Group of M?bius Transformations Preserving the Unit Disc

    Let G be the group of M?bius transformations preserving the unit disk D={z ∈ C:|z|<1}(see,e.g.,[7,p.72]),

    G also acts on the circle S1={ζ∈ C:|ζ|=1}.As was shown in[3],the system(S1,G)is the universal minimal strongly proximal G-system,Πs(G).Another representation of this system is as the group PSL(2,R)acting on the projective line P1comprising the lines through the origin in R2.

    Theorem 3.1The system(P1,PSL(2,R))is affinely prime.Equivalently,the group G of M?bius transformations preserving the unit disk acting on the circle S1has the LSW property.

    ProofWe will work with the version,where G is the M?bius group acting on X=S1.

    We begin by analyzing the case of complex valued functions.Let V be a closed linear subspace of C(S1,C)invariant under G that contains a non-constant function f.For all 0n∈Z,the convolution of f with einθ

    is also contained in V.Therefore,ifit follows that the function einθis in V.As f is not a constant,there is somefor which.We fix such an n,and,applying the transformationwe see that for all t,the functionbelongs to V.Upon differentiating with respect to t at t=0,we see that the function,and hence also the functions,are all in V.

    This procedure can be iterated,and we conclude that V contains either Of course in the latter case,we have V=C(S1,C).

    The first alternative happens when V consists of the boundary values of analytic functions in D which are continuous onthe second happens,when V consists of the boundary values of anti-analytic functions in D which are continuous on

    Now,for real valued functions,these first two cases do not apply since a non-constant analytic function cannot map the boundary to the real line.Thus starting with a G-invariant closed subspace U?C(S1,R)which contains a non-constant function and considering its complexification,we conclude that U=C(S1,R)as claimed.

    From Corollary 2.1,we now get the following result.

    Corollary 3.1For G=PSL(2,R),the affine system M(Πs(G))=M(P1)is the only nontrivial irreducible affine G-system.

    Another immediate consequence of Theorem 3.1 is the following.

    Corollary 3.2The dynamical system(S1,Homeo(S1))is affinely prime.

    Example 3.1As was shown in[3],Πs(G),the universal minimal strongly proximal dynamical system for the group G=PSL(3,R)is the flag manifold,

    The dynamical system(F,G)however is not affinely prime,since it admits(up to conjugacy)two(isomorphic)proper factors,namely the actions of G on the Grassman varieties Gr(3,1)and Gr(3,2)consisting of the lines and planes through the origin in R3,respectively(both are copies of the projective plane P2).More generally,the corresponding flag manifold is the universal minimal strongly proximal dynamical system for all the groups G=PSL(d+1,R),d≥2 and a similar situation occurs.See Remark 3.1 below.

    Remark 3.1Let G=PSL(d+1,R),d≥2 and X=Pdbe the projective space.With the natural action of G on X,the system(X,G)is minimal,strongly proximal and prime.In fact,we can show that these actions as well are affinely prime.We plan to return to this in a future work.

    Example 3.2Let X denotetheone-sided reduced sequenceson the symbols{a,a?1,b,b?1},and let G=F2,the free group on the symbols a and b,act on X by concatenation and cancelation.The dynamical system(X,G)is minimal and strongly proximal(see,e.g.,[6,pp.26,41]).However,it is not prime and a fortiori,not affinely prime.To see this,let x=a∞=aaa···andand consider the set

    It is easy to see that this is a closed G-invariant equivalence relation on X,and consequently the induced mapπ:X→X/R yields a proper factor of X.

    4 Harmonic Functions and Irreducible Affine Dynamical Systems

    Let G be the group of M?bius transformations which preserve the unit disk D={z∈C:|z|<1},as in Theorem 3.1.We let K denote the subgroup of rotations in G.The disk D can be identified with the quotient G/K by the map g 7→ g(0)∈ D.G is a locally compact,unimodular group with Haar measure dg,and we can associate G with the Banach spaces L1(G)and its dual L∞(G).With respect to the weak?topology,BR,the ball of radius R centered at the origin in L∞(G),is compact and metrizable.The group G operates on BRbywhere

    Recall that a real valued function h on D is harmonic,if it satisfies the mean value property:

    We will show that a harmonic function f(z),z∈D,|f(z)|≤R induces an irreducible affine dynamical system(Qf,G)with Qf?BR.Moreover,we will see that any irreducible affine subsystem Q?BRcontains a unique function arising from a bounded harmonic function on D.For more background and details on the topic of this section,see[3].

    Given f bounded harmonic on D,defineThat is,is the function on G obtained by lifting f from G/K to G.The mean value property of harmonic functions implies that for z′∈ D,

    Setting z′=g′(0),we have

    and since for any g∈G,f?g is again harmonic

    or

    Now let Qfdenote the closed,convex span ofEquation(4.1)implies that for any F∈Qf,

    Thusbelongs to the closed convex span of{kF:k∈K}for any F∈Qf.This shows that(Qf,G)is an irreducible affine system.

    Now let Q?L∞(G)be any invariant closed convex subset,such that(Q,G)is irreducible.The universal minimal strongly proximal space,Πs(G)is the unit circle S1and so,by Corollary 2.1,(M(S1),G)is the universal irreducible affine system for G.In M(S1),there is a unique K-invariant measure,and it follows that in Q as well,there is a unique K-invariant point.As Q is a space of functions on G,its unique K fixed point is a function H(g)satisfying H(gk)=H(g)for g∈G,k∈K.Thus H depends on gK and is the pullback of a function h on D.For any fixed g′∈ G,consider the function

    We have H′∈ Q and for k ∈ K,H′(gk)=H′(g).So H′is K-invariant.But this function is unique.So H′=H.We have H(g)=∫KH(gkg′)d k or

    for any z′∈ D.But,in fact,equation(4.2)characterises harmonic functions.

    This discussion,combined with Theorem 3.1 proves the following result.

    Theorem 4.1There is a one-to-one correspondence between bounded(non-constant)harmonic functions h on D and irreducible affine subsystems(Q,G)of L∞(G).Namely,

    wherethe lift of h to G,is the unique K-invariant function in Q.Moreover,all the affine systems Qhare isomorphic to the universal irreducible affine system

    [1]Conway,J.B.,Functions of one complex variable.II,Graduate Texts in Mathematics,159,Springer-Verlag,New York,1995.

    [2]Dunford,N.and Schwartz,J.,Linear Operators,Part I,3rd printing,Interscience,New York,1966.

    [3]Furstenberg,H.,A Poisson formula for semi-simple Lie groups,Ann.of Math.,77,1963,335–386.

    [4]Garling,D.J.H.,On symmetric sequence spaces,Proc.London Math.Soc.,16(3),1966,85–106.

    [5]Garling,D.J.H.,On ideals of operators in Hilbert space,Proc.London Math.Soc.,17(3),1967,115–138.

    [6]Glasner,S.,Proximal flows,Lecture Notes in Math.,517,Springer-Verlag,New York,1976.

    [7]Lehner,J.,Discontinuous groups and automorphic functions,Mathematical Surveys,No.VIII,American Mathematical Society,Providence,RI,1964.

    [8]Phelps,R.R.,Choquet’s theorem,2nd edition,Lecture Notes in Mathematics,1757,Springer-Verlag,Berlin,2001.

    国产男人的电影天堂91| 国产精品一区二区精品视频观看| 99国产精品一区二区蜜桃av | 国产在线免费精品| 黄网站色视频无遮挡免费观看| 搡老乐熟女国产| 精品久久久久久电影网| 国内毛片毛片毛片毛片毛片| 一本一本久久a久久精品综合妖精| 久久人人97超碰香蕉20202| 午夜激情av网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产一区二区精华液| 成人黄色视频免费在线看| 91成年电影在线观看| kizo精华| 男人添女人高潮全过程视频| 天堂俺去俺来也www色官网| 国产免费一区二区三区四区乱码| 久久人人爽av亚洲精品天堂| 久久性视频一级片| 国产男女超爽视频在线观看| 男女床上黄色一级片免费看| 国产精品麻豆人妻色哟哟久久| 国产在线一区二区三区精| 在线亚洲精品国产二区图片欧美| 精品国产国语对白av| 欧美日韩福利视频一区二区| 亚洲av国产av综合av卡| 黄色视频,在线免费观看| 亚洲精品国产av蜜桃| 国产精品1区2区在线观看. | 亚洲中文字幕日韩| 啦啦啦在线免费观看视频4| 久久久久久久精品精品| 精品一区二区三区av网在线观看 | 精品少妇黑人巨大在线播放| 国产主播在线观看一区二区| 欧美日韩黄片免| 亚洲国产欧美网| 国产精品秋霞免费鲁丝片| 成年美女黄网站色视频大全免费| av视频免费观看在线观看| 亚洲精品第二区| 久久久久精品国产欧美久久久 | 久久久久国产一级毛片高清牌| 最近最新中文字幕大全免费视频| 青春草视频在线免费观看| 欧美性长视频在线观看| 免费久久久久久久精品成人欧美视频| 久久久久久久久久久久大奶| 国产91精品成人一区二区三区 | 国产一级毛片在线| 亚洲午夜精品一区,二区,三区| 99久久综合免费| 国产精品一区二区在线不卡| tocl精华| 久久性视频一级片| 女性生殖器流出的白浆| 乱人伦中国视频| 亚洲成人免费电影在线观看| 美女国产高潮福利片在线看| 久久 成人 亚洲| 久久精品亚洲av国产电影网| 日韩欧美免费精品| 国产精品久久久av美女十八| 超碰97精品在线观看| 亚洲av电影在线观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产极品粉嫩免费观看在线| 国产97色在线日韩免费| 日韩有码中文字幕| 久久人妻熟女aⅴ| 在线精品无人区一区二区三| 涩涩av久久男人的天堂| 下体分泌物呈黄色| 久久久久精品国产欧美久久久 | 国产亚洲午夜精品一区二区久久| 国产区一区二久久| 天天操日日干夜夜撸| 热99久久久久精品小说推荐| 一边摸一边做爽爽视频免费| 国产免费一区二区三区四区乱码| 色综合欧美亚洲国产小说| 狠狠狠狠99中文字幕| 国产一卡二卡三卡精品| 美女午夜性视频免费| 亚洲 国产 在线| 亚洲欧美精品综合一区二区三区| 亚洲va日本ⅴa欧美va伊人久久 | 多毛熟女@视频| 欧美成狂野欧美在线观看| av超薄肉色丝袜交足视频| 高清视频免费观看一区二区| 日韩欧美国产一区二区入口| a 毛片基地| 国产免费一区二区三区四区乱码| 久久国产精品人妻蜜桃| svipshipincom国产片| 爱豆传媒免费全集在线观看| 三级毛片av免费| 一级,二级,三级黄色视频| 国产av精品麻豆| 一二三四社区在线视频社区8| 国产在线一区二区三区精| 日韩中文字幕欧美一区二区| 性少妇av在线| 精品国产一区二区三区四区第35| 在线观看www视频免费| 日韩一区二区三区影片| 我要看黄色一级片免费的| 精品一区二区三区av网在线观看 | 中文字幕人妻丝袜制服| 国产亚洲欧美在线一区二区| 精品乱码久久久久久99久播| 在线观看人妻少妇| 国产一级毛片在线| 韩国高清视频一区二区三区| 国产欧美日韩一区二区三区在线| 999久久久国产精品视频| 国产av国产精品国产| 欧美另类亚洲清纯唯美| 女人精品久久久久毛片| 免费人妻精品一区二区三区视频| 天堂中文最新版在线下载| 精品久久久久久久毛片微露脸 | 男女之事视频高清在线观看| 啪啪无遮挡十八禁网站| 男女免费视频国产| 日韩大码丰满熟妇| 51午夜福利影视在线观看| 国产精品 国内视频| 精品国产一区二区三区久久久樱花| 亚洲中文av在线| 国产精品自产拍在线观看55亚洲 | 2018国产大陆天天弄谢| 成人国产av品久久久| 俄罗斯特黄特色一大片| 久热这里只有精品99| 久久av网站| 亚洲国产看品久久| 男女午夜视频在线观看| 亚洲av成人不卡在线观看播放网 | 大陆偷拍与自拍| 国产主播在线观看一区二区| 国产不卡av网站在线观看| 欧美黄色片欧美黄色片| 91成年电影在线观看| 亚洲七黄色美女视频| 嫁个100分男人电影在线观看| 欧美日韩成人在线一区二区| 亚洲av国产av综合av卡| 交换朋友夫妻互换小说| 亚洲人成电影免费在线| 中文字幕最新亚洲高清| av在线播放精品| 无限看片的www在线观看| www.精华液| 高潮久久久久久久久久久不卡| 久久午夜综合久久蜜桃| 亚洲激情五月婷婷啪啪| 少妇裸体淫交视频免费看高清 | 最新的欧美精品一区二区| 亚洲av电影在线进入| 在线精品无人区一区二区三| 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 美女大奶头黄色视频| 人成视频在线观看免费观看| 日本a在线网址| 久久精品人人爽人人爽视色| 一级片免费观看大全| 免费在线观看黄色视频的| av一本久久久久| 色综合欧美亚洲国产小说| tube8黄色片| 国产三级黄色录像| 亚洲国产成人一精品久久久| 午夜两性在线视频| 天堂俺去俺来也www色官网| 久久久精品区二区三区| 啦啦啦啦在线视频资源| 精品福利观看| 国产精品熟女久久久久浪| 亚洲自偷自拍图片 自拍| 久久国产亚洲av麻豆专区| 99久久精品国产亚洲精品| 精品福利永久在线观看| 亚洲欧美精品自产自拍| 亚洲一区二区三区欧美精品| 免费不卡黄色视频| 亚洲精品国产色婷婷电影| 王馨瑶露胸无遮挡在线观看| 91精品伊人久久大香线蕉| av免费在线观看网站| 悠悠久久av| 精品亚洲成国产av| 国产精品国产av在线观看| 亚洲第一青青草原| 免费观看人在逋| 成人黄色视频免费在线看| 成人国产av品久久久| www.av在线官网国产| 久久人妻熟女aⅴ| 欧美精品一区二区免费开放| 满18在线观看网站| 1024视频免费在线观看| 99精品久久久久人妻精品| 国产成人av教育| 最新在线观看一区二区三区| 91麻豆av在线| 午夜成年电影在线免费观看| 天堂8中文在线网| 一区二区三区四区激情视频| 咕卡用的链子| 成年人午夜在线观看视频| 狂野欧美激情性bbbbbb| 新久久久久国产一级毛片| 搡老岳熟女国产| 成年动漫av网址| 亚洲精品美女久久av网站| 视频区欧美日本亚洲| 国产精品av久久久久免费| a在线观看视频网站| 亚洲伊人久久精品综合| 91老司机精品| 国产精品久久久久成人av| av电影中文网址| 99国产精品一区二区三区| 久久国产精品影院| 成年av动漫网址| 午夜免费观看性视频| 午夜福利免费观看在线| 伊人亚洲综合成人网| 久久香蕉激情| 国产精品免费大片| 国产成人a∨麻豆精品| 久久国产精品影院| 亚洲少妇的诱惑av| 久久亚洲国产成人精品v| 午夜福利在线免费观看网站| 亚洲精华国产精华精| 日韩有码中文字幕| 国产男人的电影天堂91| 精品卡一卡二卡四卡免费| 国产欧美日韩一区二区三区在线| 美女高潮喷水抽搐中文字幕| 亚洲激情五月婷婷啪啪| 精品欧美一区二区三区在线| 亚洲精品国产av成人精品| 男女午夜视频在线观看| 国产亚洲欧美在线一区二区| 成年人黄色毛片网站| 欧美精品av麻豆av| 午夜激情av网站| 涩涩av久久男人的天堂| 亚洲精品国产精品久久久不卡| 欧美xxⅹ黑人| 国产国语露脸激情在线看| 啦啦啦中文免费视频观看日本| 一边摸一边抽搐一进一出视频| 纯流量卡能插随身wifi吗| 久久av网站| 大香蕉久久成人网| 2018国产大陆天天弄谢| 五月天丁香电影| 国产无遮挡羞羞视频在线观看| 午夜福利一区二区在线看| 中国美女看黄片| 国产97色在线日韩免费| 亚洲 欧美一区二区三区| 欧美 日韩 精品 国产| 欧美97在线视频| 一个人免费在线观看的高清视频 | e午夜精品久久久久久久| 精品高清国产在线一区| 韩国高清视频一区二区三区| 日韩视频在线欧美| 狠狠狠狠99中文字幕| 国产欧美日韩综合在线一区二区| 亚洲av电影在线观看一区二区三区| 国产精品久久久久成人av| 亚洲 国产 在线| 亚洲精品美女久久久久99蜜臀| 久久免费观看电影| 在线av久久热| 午夜日韩欧美国产| 欧美日韩黄片免| 高清av免费在线| 在线观看舔阴道视频| 飞空精品影院首页| 亚洲精品一二三| 亚洲精品自拍成人| 国产高清videossex| 一本大道久久a久久精品| 久久久精品区二区三区| 搡老岳熟女国产| 肉色欧美久久久久久久蜜桃| 国产欧美日韩综合在线一区二区| 制服人妻中文乱码| 久久久久网色| 99国产极品粉嫩在线观看| 亚洲成人国产一区在线观看| 丝袜美腿诱惑在线| 男人操女人黄网站| 精品一区在线观看国产| 99九九在线精品视频| 久久久久久久大尺度免费视频| 日韩欧美一区视频在线观看| 美女脱内裤让男人舔精品视频| 最黄视频免费看| 丰满迷人的少妇在线观看| 亚洲午夜精品一区,二区,三区| 精品人妻1区二区| 亚洲国产日韩一区二区| 大香蕉久久成人网| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 午夜精品国产一区二区电影| 宅男免费午夜| 男女边摸边吃奶| 熟女少妇亚洲综合色aaa.| 咕卡用的链子| 美女中出高潮动态图| 精品国产一区二区三区久久久樱花| 美女主播在线视频| 热re99久久国产66热| 午夜精品国产一区二区电影| 女性生殖器流出的白浆| 男人操女人黄网站| 黄片播放在线免费| 成年人午夜在线观看视频| 少妇精品久久久久久久| 亚洲欧美精品自产自拍| 欧美日韩视频精品一区| 男女高潮啪啪啪动态图| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产毛片av蜜桃av| 欧美日韩亚洲综合一区二区三区_| 操美女的视频在线观看| 一区二区三区乱码不卡18| 国产亚洲精品第一综合不卡| 大型av网站在线播放| 日韩大片免费观看网站| 欧美性长视频在线观看| 午夜福利乱码中文字幕| 午夜福利在线观看吧| 久久国产精品人妻蜜桃| 韩国高清视频一区二区三区| 免费在线观看完整版高清| 国产黄色免费在线视频| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品古装| 欧美日本中文国产一区发布| 99久久国产精品久久久| 午夜91福利影院| 国产成人系列免费观看| 69av精品久久久久久 | av网站在线播放免费| 国产精品一区二区精品视频观看| 他把我摸到了高潮在线观看 | 电影成人av| 国产精品 欧美亚洲| 亚洲精品中文字幕在线视频| www.999成人在线观看| 女警被强在线播放| 亚洲av成人一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 制服人妻中文乱码| 丝袜在线中文字幕| 天天添夜夜摸| 欧美另类亚洲清纯唯美| 一边摸一边做爽爽视频免费| 国产一区二区激情短视频 | 99国产极品粉嫩在线观看| 啪啪无遮挡十八禁网站| xxxhd国产人妻xxx| 日本欧美视频一区| 后天国语完整版免费观看| 欧美乱码精品一区二区三区| av欧美777| 国产极品粉嫩免费观看在线| 岛国在线观看网站| 国产伦理片在线播放av一区| 国产成人一区二区三区免费视频网站| 在线十欧美十亚洲十日本专区| 18禁国产床啪视频网站| 99香蕉大伊视频| 国产在视频线精品| 亚洲av美国av| 久久这里只有精品19| 欧美人与性动交α欧美软件| 91精品三级在线观看| 日韩制服骚丝袜av| 侵犯人妻中文字幕一二三四区| 久久av网站| 操美女的视频在线观看| 999久久久国产精品视频| 久久中文字幕一级| 国产高清videossex| 啦啦啦免费观看视频1| 欧美日韩成人在线一区二区| 咕卡用的链子| 老汉色av国产亚洲站长工具| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 高清黄色对白视频在线免费看| 高潮久久久久久久久久久不卡| 巨乳人妻的诱惑在线观看| 精品熟女少妇八av免费久了| 色老头精品视频在线观看| 国产欧美日韩精品亚洲av| 日韩大片免费观看网站| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区久久久樱花| 欧美精品av麻豆av| www.自偷自拍.com| 高清黄色对白视频在线免费看| 黄色怎么调成土黄色| 丁香六月天网| 两性夫妻黄色片| 黑人操中国人逼视频| 久久精品aⅴ一区二区三区四区| 亚洲人成电影免费在线| 国产精品熟女久久久久浪| 亚洲第一青青草原| 国产成人免费观看mmmm| 亚洲成人免费电影在线观看| 欧美日韩亚洲综合一区二区三区_| 久久综合国产亚洲精品| av在线app专区| 如日韩欧美国产精品一区二区三区| 一区二区三区乱码不卡18| 美女高潮喷水抽搐中文字幕| 亚洲av男天堂| 国产亚洲av高清不卡| 久久久水蜜桃国产精品网| 国产精品免费大片| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产欧美一区二区综合| 91九色精品人成在线观看| 十八禁网站免费在线| av在线播放精品| 成人av一区二区三区在线看 | 亚洲欧美日韩高清在线视频 | 在线观看免费视频网站a站| 在线观看免费午夜福利视频| 成年人午夜在线观看视频| videosex国产| av天堂久久9| 日韩视频在线欧美| 日本vs欧美在线观看视频| 婷婷成人精品国产| 久久精品成人免费网站| 国产成+人综合+亚洲专区| 国产精品二区激情视频| 午夜成年电影在线免费观看| 国产亚洲av片在线观看秒播厂| 久久性视频一级片| 亚洲va日本ⅴa欧美va伊人久久 | 成人手机av| 亚洲一区中文字幕在线| 成年人免费黄色播放视频| 亚洲avbb在线观看| 极品少妇高潮喷水抽搐| 中文字幕人妻熟女乱码| 侵犯人妻中文字幕一二三四区| 免费观看人在逋| 真人做人爱边吃奶动态| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| www.自偷自拍.com| 欧美成狂野欧美在线观看| 黄色视频在线播放观看不卡| 91av网站免费观看| 丝袜美足系列| 精品少妇黑人巨大在线播放| 老司机午夜福利在线观看视频 | 女人爽到高潮嗷嗷叫在线视频| 亚洲精品粉嫩美女一区| 夫妻午夜视频| 免费少妇av软件| 国产成人av教育| 亚洲精品在线美女| 一级片免费观看大全| 丰满少妇做爰视频| 19禁男女啪啪无遮挡网站| 久久热在线av| 两个人免费观看高清视频| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| 最黄视频免费看| 亚洲熟女毛片儿| 国产精品 国内视频| 国产精品久久久久成人av| 成人免费观看视频高清| 黑人欧美特级aaaaaa片| av欧美777| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一区蜜桃| 国产欧美日韩综合在线一区二区| 韩国高清视频一区二区三区| 久久免费观看电影| 国产精品熟女久久久久浪| 香蕉丝袜av| 国产成人免费无遮挡视频| 精品乱码久久久久久99久播| 夫妻午夜视频| 精品一区二区三卡| av又黄又爽大尺度在线免费看| 好男人电影高清在线观看| 99精品久久久久人妻精品| 妹子高潮喷水视频| 日韩大码丰满熟妇| 黄色视频在线播放观看不卡| 男女下面插进去视频免费观看| 午夜91福利影院| 国产三级黄色录像| 看免费av毛片| 在线精品无人区一区二区三| 精品第一国产精品| 考比视频在线观看| 亚洲欧洲日产国产| 啦啦啦免费观看视频1| 成人国产av品久久久| av免费在线观看网站| 欧美在线一区亚洲| 99国产精品一区二区三区| 国产亚洲精品久久久久5区| 高清欧美精品videossex| 国产精品一区二区在线观看99| 50天的宝宝边吃奶边哭怎么回事| 国产一卡二卡三卡精品| 国产人伦9x9x在线观看| 热99久久久久精品小说推荐| 一级毛片电影观看| av视频免费观看在线观看| 午夜成年电影在线免费观看| 在线永久观看黄色视频| 久久午夜综合久久蜜桃| 欧美老熟妇乱子伦牲交| 中国国产av一级| 他把我摸到了高潮在线观看 | 一级片'在线观看视频| 波多野结衣av一区二区av| 最新在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 免费不卡黄色视频| 男女午夜视频在线观看| 国产97色在线日韩免费| 日本91视频免费播放| 十分钟在线观看高清视频www| 国产野战对白在线观看| av片东京热男人的天堂| 99久久人妻综合| 99热网站在线观看| 亚洲成人免费av在线播放| 99久久精品国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 少妇的丰满在线观看| 涩涩av久久男人的天堂| 别揉我奶头~嗯~啊~动态视频 | 国产黄色免费在线视频| 97人妻天天添夜夜摸| 99国产精品一区二区蜜桃av | 国产片内射在线| 午夜免费观看性视频| 亚洲精品国产一区二区精华液| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 午夜影院在线不卡| 可以免费在线观看a视频的电影网站| 精品人妻1区二区| 国产精品秋霞免费鲁丝片| www.自偷自拍.com| 国产区一区二久久| 少妇精品久久久久久久| 首页视频小说图片口味搜索| 91成人精品电影| 亚洲精品乱久久久久久| 国产在线观看jvid| 777米奇影视久久| 欧美97在线视频| 午夜久久久在线观看| 国产免费av片在线观看野外av| 高清在线国产一区| 亚洲成人国产一区在线观看| 人人澡人人妻人| 亚洲精品美女久久av网站| 亚洲色图综合在线观看| www.av在线官网国产| 91精品伊人久久大香线蕉| 99精国产麻豆久久婷婷| 国产成+人综合+亚洲专区| 久久精品国产亚洲av高清一级| 99国产精品一区二区三区| cao死你这个sao货| 一级a爱视频在线免费观看| 丝袜人妻中文字幕| 久久久久国产精品人妻一区二区| 又大又爽又粗| 999精品在线视频| 久久精品久久久久久噜噜老黄| 成人国产一区最新在线观看| 免费不卡黄色视频| 巨乳人妻的诱惑在线观看| 国产激情久久老熟女| 80岁老熟妇乱子伦牲交| 久久久久久久久免费视频了| 在线天堂中文资源库| 精品少妇内射三级| 欧美激情高清一区二区三区| 欧美精品亚洲一区二区| 国产黄频视频在线观看|