• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative Stability of the Brunn-Minkowski Inequality for Sets of Equal Volume?

    2017-07-02 07:17:00AlessioFIGALLIDavidJERISON

    Alessio FIGALLI David JERISON

    (Dedicated to Professor Haim Brezis on the occasion of his 70th birthday)

    1 Introduction

    The Brunn-Minkowskiinequality is a very classical and powerful inequality in convex geometry that has found important applications in analysis,statistics,and information theory.We refer the reader to[14]for an extended exposition on the Brunn-Minkowski inequality and its relation to several other famous inequalities(see also[6–7]).

    To state the inequality,we first need some basic notation.Given two subset A,B?Rn,and c>0,we define the set sum and scalar multiple by

    We shall use|E|to denote the Lebesgue measure of a set E.(If E is not measurable,|E|denotes the outer Lebesgue measure of E.)The Brunn-Minkowski inequality says that,given A,B?Rnmeasurable sets,

    In addition,if|A|,|B|>0,then equality holds if and only if there exists a convex set K?Rn,λA,λB>0,and vA,vB∈ Rn,such that

    In other words,if equality holds in(1.2),then A and B are subsets of full measure in homothetic convex sets.

    Because of the variety of applications of(1.2)as well as the fact the one can characterize the case of equality,a natural stability question that one would like to address is the following.

    Let A,B be two sets for which equality in(1.2)almost holds.Is it true that,up to translations and dilations,A and B are close to the same convex set?

    This question has a long history.First of all,when n=1 and A=B,inequality(1.2)reduces to|A+A|≥2|A|.If one approximates sets in R with finite unions of intervals,then one can translate the problem to Z,and in the discrete setting the question becomes a well studied problem in additive combinatorics.There are many results on this topic,usually called Freiman-type theorems.The precise statement in one dimension is the following.

    Theorem 1.1Let A?R be a measurable set,and denote by co(A)its convex hull.Then

    or,equivalently,if|A|>0,then

    This theorem can be obtained as a corollary of a result of Freiman[12]about the structure of additive subsets of Z(see[13]or[17,Theorem 5.11]for a statement and a proof).However,it turns out that to prove Theorem 1.1,one only needs weaker results,and one can find an elementary self-contained proof of Theorem 1.1 in[8,Section 2].

    In the case n=1 but AB,the following sharp stability result holds again as a consequence of classical theorems in additive combinatorics(an elementary proof of this result can be given using Kemperman’s theorem in[3–4].

    Theorem 1.2Let A,B?R be measurable sets.If|A+B|<|A|+|B|+δfor some δ≤ min{|A|,|B|},then|co(A)A|≤ δand|co(B)B|≤ δ.

    Concerning the higher dimensional case,in[1–2],Christ proved a qualitative stability result for(1.2),giving a positive answer to the stability question raised above.However,his results do not provide any quantitative control.

    On the quantitative side,Diskant[5]and Groemer[15]obtained some stability results for convex sets in terms of the Hausdorff distance.More recently,in[10–11],the first author together with Maggi and Pratelli obtained a sharp stability result in terms of the L1distance,still on convex sets.Since this last result will be used later in our proofs,we state it in detail.(Here and from now on,E?F denotes the symmetric difference between sets E and F,that is,E?F=(EF)∪(FE).)

    Theorem 1.3Let A,B?Rnbe convex sets,and define

    There exists a computable dimensional constant C0(n)such that

    Morerecently,in[8,Theorem 1.2 and Remark 3.2],the present authorsproved a quantitative stability result when A=B:Given a measurable set A?Rnwith|A|>0,set

    Then,a power ofδ(A)dominates the measure of the difference between A and its convex hull co(A).

    Theorem 1.4Let A?Rnbe a measurable set of positive measure.There exist computable dimensional constants δn,cn>0,such that ifδ(A)≤ δn,then

    In addition,there exists a convex set K?Rnsuch that

    After that,we investigated the general case AB.Notice that,after a dilation,one can always assume|A|=|B|=1 while replacing the sum A+B by a convex combination St:=tA+(1?t)B.It follows by(1.2)that|St|=1+δfor someδ≥0.The main theorem in[9]is a quantitative version of Christ’s result.Since the proof is by induction on the dimension,it is convenient to allow the measures of|A|and|B|not to be exactly equal,but just close in terms ofδ.Here is the main result of that paper.

    Theorem 1.5Let n≥2,let A,B?Rnbe measurable sets,and define St:=tA+(1?t)B for someThere are computable dimensional constants Nnand computable functions Mn(τ),εn(τ)>0,such that if

    for somethen there exists a convex set K ? Rnsuch that,up to a translation,

    Explicitly,we may take

    In particular,the measure of the difference between the sets A and B and their convex hull is bounded by a power δ?,confirming a conjecture of Christ[1].

    The result above provides a general quantitative stability for the Brunn-Minkowski inequality in arbitrary dimension.However,the exponent degenerates very quickly as the dimension increases(much faster than in Theorem 1.4),and,in addition,the argument in[9]is very long and involved.The aim of this paper is to provide a shorter and more elementary proof when|A|=|B|>0,that we believe to be of independent interest.

    After a dilation,one can assume with no loss of generality that|A|=|B|=1.In this case,it follows by(1.2)thatfor someδ≥0,and we want to show that a power ofδcontrols the closeness of A and B to the same convex set K.Again,as in the previous theorem,it will be convenient to allow the measures of|A|and|B|not to be exactly equal,but just close in terms ofδ.

    Here is the main result of this paper.

    Theorem 1.6Let A,B?Rnbe measurable sets,and define their semi-sumThere exist computable dimensional constantsδn,Cn>0,such that if

    for someδ≤ δn,then there exists a convex set K ?Rnsuch that,up to a translation,

    where

    andαkis given by Theorem 1.4.(Recall that|S|is the outer measure of S if S is not measurable.)

    The proof of this theorem is specific to the case|A|near|B|.It uses a symmetrization and other techniques introduced by Christ[2–3],Theorems 1.3–1.4,and two propositions of independent interest,Propositions 2.1–2.2 below.See Section 3 for further discussion of the strategy of the proof.

    2 Notation and Preliminary Results

    Let Hkdenote the k-dimensional Hausdorff measure on Rn.Denote by x=(y,t)∈ Rn?1×R a point in Rn,and letanddenote the canonical projections,i.e.,

    Given a compact set E ?Rn,y∈Rn?1,andλ>0,we use the notation

    Following Christ[2],we consider two symmetrizations and combine them.For our purposes(see the proof of Proposition 2.1),it is convenient to use a definition of Schwarz symmetrization that is slightly different from the classical one.(In the usual definition of Schwarz symmetrization,E?(t)= ? whenever Hd?1(E(t))=0.)

    Definition 2.1Let E?Rnbe a compact set.We define the Schwarz symmetrization E?of E as follows.For each t∈R,

    (1)If Hd?1(E(t))>0,then E?(t)is the closed disk centered at 0 ∈ Rn?1with the same measure.

    (2)If Hd?1(E(t))=0 but E(t)is non-empty,then E?(t)={0}.

    (3)If E(t)is empty,then E?(t)is empty as well.

    We define the Steiner symmetrization E?of E so that for each y∈Rn?1,the setis empty if H1(Ey)=0;otherwise it is the closed interval of length H1(Ey)centered at 0∈R.Finally,we define E?:=(E?)?.

    As for instance in[2,Section 2],both the Schwarz and the Steiner symmetrization preserve the measure of sets,and the ?-symmetrization preserves the measure of the sets E(λ).The following statement collects all these results.

    Lemma 2.1Let A,B ? Rnbe compact sets.Then|A|=|A?|=|A?|=|A?|,

    and,for almost everyλ>0,

    where

    Another important fact is that a bound on the measure of A+B in terms of the measures of A and B gives bounds relating the sizes of

    We refer to[9,Lemma 3.2]for a proof.

    Lemma 2.2Let A,B?Rnbe compact sets such thatand

    There exists a dimensional constant M>1,such that

    Thus,up a measure preserving affine transformation of the formwith τ>0,all the quantitiesare of order one.

    In particular,

    In this case,we say that A and B are M-normalized.

    Lemma 2.3Let A,B?Rnbe compact sets,defineand assume that(1.5)holds for someAlso,suppose that A and B are M-normalized as defined in Lemma 2.2.

    Then,there exists a dimensional constant C>0 such that

    Two other key ingredients in our proof of Theorem 1.6 are the following propositions,whose proofs are postponed to Section 4.

    Proposition 2.1Let A,B?Rnbe compact sets,defineand assume that(1.5)holds for someAlso,suppose that we can find a convex set K?Rnsuch that

    for someα>0,where C>0 is a dimensional constant.Then there exists a dimensional constant C′>0 such that

    Proposition 2.2Let A,B?Rnbe compact sets,define,and assume that(1.5)holds for someAlso,suppose that

    for someβ>0,where C>0 is a dimensional constant.Then,up to a translation,

    and there exists a convex set K containing both A and B such that

    for some dimensional constant C′>0.

    3 Proof of Theorem 1.6

    As explained in[8],by inner approximation1The approximation of A(and analogously for B)is by a sequence of compact sets A k?A such thatandOne way to construct such sets is to definewhereare compact sets satisfyingand V k ? V k+1 ? A are finite sets satisfyingit suffices to prove the result when A,B are compact sets.Hence,let A and B be compact,define,and assume that(1.5)holds.We want to prove that there exists a convex set K such that,up to a translation,Moreover,since the statement and the conclusions are invariant under measure preserving affine transformations,by Lemma 2.2,we can assume that A and B are M-normalized(see(2.3)).

    Ultimately,we wish to show that,up to translation,each of A,B,and S is of nearly full measure in the same convex set.The strategy of the proof is to show first that S is close to a convex set,and then apply Propositions 2.1–2.2.To obtain the closeness of S to a convex set,we would like prove thatis close to|S|and then apply Theorem 1.4.It is simpler,however,to construct a subsetsuch thatis small andis close to

    To carry out our argument,one important ingredient will be to use the inductive hypothesis on the level sets A(λ)and B(λ)defined in(2.2).However,two difficulties arise here:First of all,to apply the inductive hypothesis,we need to know that Hn?1(A(λ))and Hn?1(B(λ))are close.In addition,the Brunn-Minkowski inequality does not have a natural proof by induction unless the measures of all the level sets Hn?1(A(λ))and Hn?1(B(λ))are the nearly same(see(3.11)below).Hence,it is important for us to have a preliminary quantitative estimate on the difference between Hn?1(A(λ))and Hn?1(B(λ))for most λ >0.For this,we follow an approach used first in[2]and readapted in[9],in which we begin by showing our theorem in the special case of symmetrized sets A=A?and B=B?(recall Definition 2.1).Thanks to Lemma 2.1,this will give us the desired closeness between Hn?1(A(λ))and Hn?1(B(λ))for mostλ>0,which allows us to apply the strategy described above and prove the theorem in the general case.

    Throughout the proof,C will denote a generic constant depending only on the dimension,which may change from line to line.

    3.1 The case A=A?and B=B?

    Let A,B ? Rnbe compact sets satisfying A=A?,B=B?.Sinceandare disks centered at the origin,applying Lemma 2.3,we deduce that

    Hence,if we define

    thenfor all y∈Rn?1.In addition,using(1.5),(2.3),and(3.1),we have

    which implies(since S?S)

    Furthermore,since each section Syis an interval centered at 0 ∈ R,for all y′,y′′∈ π(A)∩ π(B)such that

    which gives

    Recalling(1.3),by(3.2)–(3.3),we obtain that.Hence,we can apply Theorem 1.4 toto find a convex setsuch that

    Hence,by(3.3),

    and using Propositions 2.1–2.2,we deduce that,up to a translation,there exists a convex set K such that A∪B?K and

    Notice that,becauseandit is easy to check that the above properties still hold within place of K.Hence,in this case,without loss of generality,one can assume that

    3.2 The general case

    Since,by Theorem 1.2,the result is true when n=1,we may assume that we already proved Theorem 1.6 through n?1,and we want to show its validity for n.

    Step 1There exist a dimensional constantζ>0 andsuch that we can apply the inductive hypothesis to

    Let A?and B?be as in Definition 2.1 and denote

    Thanks to Lemma 2.1,A?and B?still satisfy(1.5),so we can apply the result proved in Section 3.1 above to get(see(3.4))

    and

    for some convex set K=K?.

    In addition,because A and B are M-normalized(see(2.3)),so are A?and B?,and by(3.7)we deduce that there exists a dimensional constant Rn>0 such that

    Also,by(3.6)and Chebyshev’s inequality,we obtain that,except for a set of measure

    Thus,recalling Lemma 2.1,for almost everyλ>0,

    Since,by(2.3),

    by Chebyshev’s inequality,we deduce that

    for allλoutside a set of measureExchanging the roles of A and B,we obtain that there exists a set F?[0,M],such that

    Using the elementary inequality

    and replacing a and b withrespectively,we get

    (notice thatFinally,it is easy to check that

    Hence,by the Brunn-Minkowski inequality(1.2)applied to A(λ)and B(λ),using(1.5),(2.3)and(3.9)–(3.10),we get

    We also observe that,since K=K?,by Lemma 2.1,(3.8),and[2,Lemma 4.3],for almost every λ>0,we have

    and analogously for B.Also,by(3.7),

    Define

    and note that.Let ζ∈ (0,η)to be fixed later.Then by(3.9),(3.11)–(3.13),and by Chebyshev’s inequality,we can find a level

    such that

    In addition,from thepropertiesfor any λ >0(see(2.3)),=|A|≥ 1 ? δ,andis a decreasing function,we deduce that

    The same holds for B and S,hence

    By(3.16)–(3.17),we get

    while,by(1.2),

    therefore

    Thus,by the inductive hypothesis of Theorem 1.6,up to a translation there exists an(n?1)-dimensional convex set?′,such that

    and definingwe obtain(recall that

    Step 2We apply Theorem 1.2 to the sets Ayand Byfor most

    DefineBy(3.18)–(3.19)and(2.3),we have

    provided that we choose

    (recall thatβn?1≤ 1).Hence,by(1.5)and(3.20),

    Write C as C1∪C2,where

    By Chebyshev’s inequality and(3.22),

    while,recalling(3.15),

    Hence,by Theorem 1.2 applied to Ay,By?R for y∈C1,we deduce that

    Letdenote the set ofsuch that

    and notice that,by(3.22)and Chebyshev’s inequality,.Then choose a compact setsuch thatto obtain

    Step 3We findso thatandare small.

    Define the compact set

    Observe,thanks to(3.20),(3.23),(3.26),(2.3)and(1.5),

    So,since

    Now,we want to estimate the measure ofFirst of all,since

    by(3.25),we get

    Also,if we define the characteristic functions

    and analogously for By,by(3.24)we have the following estimate on their convolutions:

    Recalling thatis the orthogonal projection onto the last component(that is,we denote by[a,b]the interval,and notice that,since by construction

    (see(3.15)),this interval has length greater thanAlso,it is easy to check that the functionis supported on[a,b],has slope equal to 1(resp.?1)in[a,a+3δζ](resp.and it is greater than 3δζin[a+3δζ,b?3δζ].Hence,sincecontains the setby(3.30),we deduce that

    which implies in particular that

    Also,by the same argument as in[8,Step 2-a],if we denote by

    using(3.25)and(3.31),we have

    (Compare with[8,(3.25)].)

    Hence,by(3.33),we deduce that each of the latter sets is contained inside the convex setso also their semi-sum is contained in the same set,and using(3.32)with y′=y′′=y,we get

    (notice thatExchanging the role of A and B and adding up the two inequalities,we deduce that

    As shown in[8,Step 3],this estimate combined with the fact thatis almost of full measure inside the convex set ?(see(3.19),(3.23)and(3.26))proves that,up to an affine transformation of the form

    withandthe set S is universally bounded,sayfor some dimensional constant R.This implies that[?R,R],so

    Hence,sinceby(3.34),(3.19)and(3.21),

    that is,

    Step 4Conclusion

    By the previous step,we have thatHence,applying Theorem 1.4 towe find a convex setsuch that

    so,by(3.27),

    Using this estimate together with Propositions 2.1–2.2,we deduce that,up to a translation,there exists a convex set K convex such that A∪B?K and

    Recalling the definition ofζ(see(3.5),(3.14),(3.21)),we see that

    Sinceβ1=1(by Theorem 1.2),it is easy to check that

    concluding the proof.

    4 Technical Results

    As in the previous section,we use C to denote a generic constant depending only on the dimension,which may change from line to line.

    4.1 Proof of Proposition 2.1

    Assume that

    for some α ∈ (0,1].By John’s lemma(see[16]),after a volume preserving affine transformation,we can assume that,with rbounded above and below by positive dimensional constants.Note,however,that with this normalization,we will not be able to assume that A and B are M-normalized,since we have already chosen a different affine normalization.

    We want to prove that

    Letand setWithout loss of generality,we can assume thatfor someWe need to prove that

    Let us consider the setsobtained from A,B,S,K performing a Schwarz symmetrization around the en-axis(see Definition 2.1).SetSince

    and,by(1.5)(notice that S′? S?and that|S′|≥ 1?Cδby(1.2)),

    we get thatIn addition,Hence,without loss of generality,we can assume from the beginning that A=A?,B=B?,S=and K=K?.

    For a compact set E ? Rn,recall the notation E(t)? Rn?1×{t}in(2.1),and define E[s]?R by

    Sincewe have

    so,by(1.2),we deduce that

    Hence

    and integrating with respect to s,by(1.5),we get

    Recall that K=K?,so that the canonical projection π(K)onto Rn?1is a ball.We denote it BR:= π(K),and note that R ≤ nrn,with rn=rn(K)given by John’s lemma at the beginning of this proof.Then,since|S?K|≤ Cδα,we have

    so,by(4.3),

    Hence,recalling that|A|and|B|are≥1?δ,we deduce that

    and since R is universally bounded(being less than nrn)and both functions

    are decreasing,there exists a small dimensional constant c′>0,such that

    Also,by(4.4),

    and since|S?K|≤ Cδαand K ?{xn≤ τ},

    Hence,thanks to(4.6)–(4.8),we use Theorem 1.2 and Chebishev’s inequality to find a value

    such that

    (notice thatα≤1)and

    Sincethis implies

    Hence,after applying opposite translations along the en-axis to A and B,i.e.,

    for some?∈R,we can assume that

    Since the setsare decreasing,we deduce that

    In addition,sinceπ(A)andπ(B)are(n?1)-dimensional disks centered on the en-axis,|S?K|≤Cδαand,we easily deduce that

    provided thatδis small enough.Hence,combining(4.11)and(4.12),we deduce that Hn?1(π(B))is bounded from away from zero by a dimensional constant,thus

    Hence,by(4.5),(4.10),(4.13)and(4.9),

    and,analogously,

    Now,given r≥0,let us define the sets

    By(4.14)–(4.15),we know that

    and it is immediate to check that

    Also,since K is a convex set satisfying Brn?K?Bnrn,there exists a dimensional constant cn>0 such that

    Hence

    and by(1.2)applied towe get

    which gives

    (and analogously for B).

    Since the pointbelongs to,there as to be a pointsuch thatWithout loss of generality,assume thatThen,by(4.16)applied with r=ρ,we get

    so

    which impliesproving(4.1).

    Hence,from which the result follows immediately.

    4.2 Proof of Proposition 2.2

    Since

    by(1.2),(2.4)–(1.5),we have

    from which we deduce that

    Also,by Theorem 1.3 and the fact that||co(A)|? |co(B)||≤ Cδβαn(see(4.17)),we obtain that,up to a translation,

    This estimate combined with(4.17)implies that

    In addition,if we define K:=co(A∪B),then we will conclude our argument by showing that

    Indeed,by John’s lemma(see[16]),after a volume preserving affine transformation,we can assume that Br?co(A)?Bnrfor some radius r bounded above and below by positive dimensional constants.By(4.18)and a simple geometric argument,we easily deduce that

    Thus and(4.19)follows by(4.17)–(4.18).

    AcknowledgementsThis work started during Alessio Figalli’s visit at MIT during the fall 2012.Alessio Figalli wishes to thank the Mathematics Department at MIT for its warm hospitality.

    [1]Christ,M.,Near equality in the two-dimensional Brunn-Minkowskiinequality,Preprint,2012.http://arxiv.org/abs/1206.1965

    [2]Christ,M.,Near equality in the Brunn-Minkowski inequality,Preprint,2012.http://arxiv.org/abs/1207.5062

    [3]Christ,M.,An approximate inverse Riesz-Sobolev inequality,Preprint,2011.http://arxiv.org/abs/1112.3715

    [4]Christ,M.,Personal communication.

    [5]Diskant,V.I.,Stability of the solution of a Minkowski equation(in Russian),Sibirsk.Mat.?.,14,1973,669–673,696.

    [6]Figalli,A.,Stability results for the Brunn-Minkowski inequality,Colloquium De Giorgi 2013 and 2014,119–127,Colloquia,5,Ed.Norm.,Pisa,2014.

    [7]Figalli,A.,Quantitative stability results for the Brunn-Minkowski inequality,Proceedings of the ICM 2014,to appear.

    [8]Figalli,A.and Jerison D.,Quantitative stability for sumsets in Rn,J.Eur.Math.Soc.(JEMS),17(5),2015,1079–1106.

    [9]Figalli,A.and Jerison,D.,Quantitative stability for the Brunn-Minkowski inequality,Adv.Math.,to appear.

    [10]Figalli,A.,Maggi,F.and Pratelli,A.,A mass transportation approach to quantitative isoperimetric inequalities,Invent.Math.,182(1),2010,167–211.

    [11]Figalli,A.,Maggi,F.and Pratelli,A.,A refined Brunn-Minkowski inequality for convex sets,Ann.Inst.H.Poincaré Anal.Non Linéaire,26(6),2009,2511–2519.

    [12]Freiman,G.A.,The addition of finite sets.I(in Russian),Izv.Vyss.Ucebn.Zaved.Matematika,13(6),1959,202–213.

    [13]Freiman,G.A.,Foundations of a structural theory of set addition,Translated from the Russian,Translations of Mathematical Monographs,Vol.37.American Mathematical Society,Providence,RI,1973.

    [14]Gardner,R.J.,The Brunn-Minkowski inequality,Bull.Amer.Math.Soc.(N.S.),39(3),2002,355–405.

    [15]Groemer,H.,On the Brunn-Minkowski theorem,Geom.Dedicata,27(3),1988,357–371.

    [16]John F.,Extremum problems with inequalities as subsidiary conditions,Studies and Essays Presented to R.Courant on his 60th Birthday,January 8,1948,187–204;Interscience,New York,1948.

    [17]Tao,T.and Vu,V.,Additive combinatorics,Cambridge Studies in Advanced Mathematics,105,Cambridge University Press,Cambridge,2006.

    一区二区av电影网| 久久99精品国语久久久| 色5月婷婷丁香| 女人久久www免费人成看片| 我的老师免费观看完整版| 欧美3d第一页| 欧美日韩亚洲高清精品| 国产av一区二区精品久久 | 毛片一级片免费看久久久久| 三级国产精品片| 国产黄频视频在线观看| 97超视频在线观看视频| 国产成人a∨麻豆精品| 亚洲欧美精品自产自拍| 久久国产乱子免费精品| 国产成人午夜福利电影在线观看| 亚洲电影在线观看av| freevideosex欧美| 成人一区二区视频在线观看| 老司机影院毛片| 黄色视频在线播放观看不卡| 丝瓜视频免费看黄片| 人人妻人人看人人澡| 高清不卡的av网站| 亚洲av综合色区一区| 国产成人精品婷婷| 能在线免费看毛片的网站| 亚洲真实伦在线观看| 搡女人真爽免费视频火全软件| 国产午夜精品一二区理论片| 欧美激情极品国产一区二区三区 | 日日啪夜夜撸| 亚洲丝袜综合中文字幕| 麻豆成人午夜福利视频| 欧美最新免费一区二区三区| 国产久久久一区二区三区| 国产成人aa在线观看| 久久99精品国语久久久| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩卡通动漫| 看免费成人av毛片| 男男h啪啪无遮挡| 男女国产视频网站| av天堂中文字幕网| 日本vs欧美在线观看视频 | 激情五月婷婷亚洲| 久久人妻熟女aⅴ| 亚洲av成人精品一区久久| 欧美xxxx黑人xx丫x性爽| 夜夜看夜夜爽夜夜摸| 日日撸夜夜添| 色婷婷av一区二区三区视频| 日韩 亚洲 欧美在线| 女性生殖器流出的白浆| 国产v大片淫在线免费观看| 久久99热这里只频精品6学生| 最近最新中文字幕免费大全7| 亚洲美女搞黄在线观看| 干丝袜人妻中文字幕| 青青草视频在线视频观看| 亚洲欧美成人精品一区二区| 高清在线视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 国产乱来视频区| 亚洲av电影在线观看一区二区三区| 亚洲欧美成人精品一区二区| 国产国拍精品亚洲av在线观看| 日本av免费视频播放| 黄色配什么色好看| 国产av国产精品国产| 久久久亚洲精品成人影院| 国产欧美日韩精品一区二区| 精品人妻熟女av久视频| 久久久久久九九精品二区国产| 久久人人爽人人爽人人片va| 韩国高清视频一区二区三区| 99久久精品国产国产毛片| 国产成人精品久久久久久| 亚洲中文av在线| 午夜福利视频精品| 91午夜精品亚洲一区二区三区| 久久国产亚洲av麻豆专区| 国产精品国产三级专区第一集| 亚洲国产毛片av蜜桃av| 大话2 男鬼变身卡| 亚洲欧美日韩东京热| 国产精品久久久久成人av| 人妻夜夜爽99麻豆av| 国产av精品麻豆| 午夜免费鲁丝| 久久久精品94久久精品| 国产高清三级在线| 色视频www国产| 超碰av人人做人人爽久久| 熟女电影av网| 成年女人在线观看亚洲视频| 一本久久精品| 欧美xxⅹ黑人| 亚洲精品成人av观看孕妇| a级毛色黄片| 国产欧美亚洲国产| 国产 一区精品| 美女cb高潮喷水在线观看| 亚洲综合色惰| 26uuu在线亚洲综合色| 国产v大片淫在线免费观看| 不卡视频在线观看欧美| 少妇人妻久久综合中文| 国产色婷婷99| 人妻夜夜爽99麻豆av| 亚洲精品国产av蜜桃| 99精国产麻豆久久婷婷| 国产在视频线精品| 99热这里只有是精品50| 亚洲怡红院男人天堂| 五月天丁香电影| 黄色一级大片看看| 美女cb高潮喷水在线观看| 国产精品不卡视频一区二区| 麻豆成人午夜福利视频| 午夜免费观看性视频| 欧美亚洲 丝袜 人妻 在线| 成人美女网站在线观看视频| 高清黄色对白视频在线免费看 | 精品亚洲成a人片在线观看 | 我要看日韩黄色一级片| 成人漫画全彩无遮挡| 综合色丁香网| 亚洲三级黄色毛片| 日韩av在线免费看完整版不卡| 大片电影免费在线观看免费| 精品一区二区免费观看| 激情五月婷婷亚洲| 亚洲av中文av极速乱| 美女视频免费永久观看网站| 国产精品嫩草影院av在线观看| 亚洲欧洲国产日韩| 国产探花极品一区二区| 国产精品久久久久久精品电影小说 | 成人美女网站在线观看视频| 一区二区三区精品91| 亚洲电影在线观看av| 99热这里只有是精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| 久久精品熟女亚洲av麻豆精品| 一区二区三区免费毛片| 亚洲国产精品999| 欧美成人精品欧美一级黄| 一级毛片 在线播放| 亚洲无线观看免费| 久久国产精品男人的天堂亚洲 | 精品国产三级普通话版| 精品久久久久久久久av| 人人妻人人看人人澡| 久久青草综合色| 97在线人人人人妻| 亚洲精品国产色婷婷电影| 国产精品蜜桃在线观看| 我的女老师完整版在线观看| 国产欧美日韩精品一区二区| 少妇被粗大猛烈的视频| 国产毛片在线视频| 中文字幕精品免费在线观看视频 | 91狼人影院| 美女国产视频在线观看| 亚洲欧美精品专区久久| 久久99热这里只频精品6学生| 熟女电影av网| 国产精品欧美亚洲77777| 日韩伦理黄色片| 免费少妇av软件| 久久 成人 亚洲| 一区二区三区精品91| 99热这里只有是精品在线观看| 亚洲精品国产av成人精品| 亚洲激情五月婷婷啪啪| tube8黄色片| 国产精品av视频在线免费观看| 美女福利国产在线 | 久久女婷五月综合色啪小说| 欧美成人一区二区免费高清观看| 26uuu在线亚洲综合色| 又黄又爽又刺激的免费视频.| 18禁动态无遮挡网站| 男人舔奶头视频| 国产在线男女| 亚洲va在线va天堂va国产| 我的女老师完整版在线观看| 99热全是精品| 深爱激情五月婷婷| 亚洲av日韩在线播放| 大话2 男鬼变身卡| 国产片特级美女逼逼视频| freevideosex欧美| 黄色怎么调成土黄色| 国产成人一区二区在线| 高清欧美精品videossex| 黄色怎么调成土黄色| 欧美成人精品欧美一级黄| 国产熟女欧美一区二区| 亚洲成人av在线免费| 在线 av 中文字幕| 草草在线视频免费看| 亚洲国产精品999| 国产亚洲一区二区精品| 国产精品熟女久久久久浪| 国产黄频视频在线观看| 一级爰片在线观看| 大片免费播放器 马上看| freevideosex欧美| 久久99热这里只有精品18| 午夜免费男女啪啪视频观看| 中文乱码字字幕精品一区二区三区| 亚洲av成人精品一二三区| 日日摸夜夜添夜夜添av毛片| 国精品久久久久久国模美| 欧美精品一区二区免费开放| 国产亚洲精品久久久com| 黄片无遮挡物在线观看| 成人一区二区视频在线观看| 99re6热这里在线精品视频| 永久免费av网站大全| 亚洲丝袜综合中文字幕| 在线免费十八禁| 五月玫瑰六月丁香| 国产免费福利视频在线观看| 精品视频人人做人人爽| 成人国产av品久久久| 在线播放无遮挡| 另类亚洲欧美激情| 97热精品久久久久久| 国产精品国产三级国产av玫瑰| 国产精品伦人一区二区| 99九九线精品视频在线观看视频| 深夜a级毛片| 久久99热这里只有精品18| 搡老乐熟女国产| 精品久久久精品久久久| 欧美日韩在线观看h| 午夜免费男女啪啪视频观看| 国产v大片淫在线免费观看| 亚洲国产欧美在线一区| 男人舔奶头视频| 午夜免费观看性视频| 欧美日韩视频高清一区二区三区二| 国产av码专区亚洲av| 国产高清三级在线| 亚洲怡红院男人天堂| av免费在线看不卡| 亚洲欧美日韩东京热| 国产爽快片一区二区三区| 交换朋友夫妻互换小说| 国产精品麻豆人妻色哟哟久久| 99久国产av精品国产电影| 久久久色成人| 夫妻性生交免费视频一级片| 尤物成人国产欧美一区二区三区| 亚洲,一卡二卡三卡| 欧美xxxx黑人xx丫x性爽| 日韩一本色道免费dvd| 成年女人在线观看亚洲视频| av国产精品久久久久影院| 国产成人精品久久久久久| 久久久a久久爽久久v久久| 亚洲国产色片| 亚洲av电影在线观看一区二区三区| 国产成人精品一,二区| 十分钟在线观看高清视频www | 下体分泌物呈黄色| 成人国产麻豆网| 免费看光身美女| 国产成人a∨麻豆精品| 日韩av在线免费看完整版不卡| 观看免费一级毛片| 亚洲av免费高清在线观看| 婷婷色综合www| 中文字幕av成人在线电影| av又黄又爽大尺度在线免费看| 老熟女久久久| 日产精品乱码卡一卡2卡三| 女性生殖器流出的白浆| 最近2019中文字幕mv第一页| 亚洲精品久久久久久婷婷小说| 联通29元200g的流量卡| 欧美丝袜亚洲另类| 日韩av免费高清视频| 亚洲av成人精品一区久久| 久久6这里有精品| 免费播放大片免费观看视频在线观看| 欧美日本视频| 久久精品夜色国产| 日韩强制内射视频| 日韩视频在线欧美| 国产精品熟女久久久久浪| 日本wwww免费看| 亚洲经典国产精华液单| 亚洲图色成人| 最近手机中文字幕大全| 国产黄色免费在线视频| 九九久久精品国产亚洲av麻豆| 国产一区二区三区综合在线观看 | 国产 精品1| 国产av码专区亚洲av| 免费少妇av软件| 亚洲va在线va天堂va国产| 国产成人免费观看mmmm| 韩国av在线不卡| 国产精品欧美亚洲77777| 最近最新中文字幕大全电影3| 亚洲经典国产精华液单| 久久综合国产亚洲精品| 不卡视频在线观看欧美| 国产成人aa在线观看| 少妇人妻 视频| 亚洲国产精品国产精品| 一级毛片我不卡| 欧美bdsm另类| av福利片在线观看| 日韩人妻高清精品专区| 欧美精品亚洲一区二区| 啦啦啦在线观看免费高清www| 中国三级夫妇交换| 中文字幕久久专区| 高清不卡的av网站| 国产精品福利在线免费观看| 欧美zozozo另类| 人妻一区二区av| 亚洲精品日韩av片在线观看| 黄色配什么色好看| 国产无遮挡羞羞视频在线观看| 亚洲电影在线观看av| 韩国av在线不卡| 99久久人妻综合| 亚洲精品,欧美精品| 尤物成人国产欧美一区二区三区| 亚洲国产精品一区三区| 国产永久视频网站| 新久久久久国产一级毛片| 国产综合精华液| 欧美日韩在线观看h| 亚洲精品国产av成人精品| xxx大片免费视频| 狂野欧美激情性xxxx在线观看| av视频免费观看在线观看| 久久久精品94久久精品| 人妻夜夜爽99麻豆av| 性色av一级| 国模一区二区三区四区视频| 爱豆传媒免费全集在线观看| 伊人久久国产一区二区| 亚洲人与动物交配视频| 高清黄色对白视频在线免费看 | 国产黄色免费在线视频| 一级黄片播放器| 天美传媒精品一区二区| 久久久久久久久久人人人人人人| 中文字幕久久专区| 亚洲图色成人| 精品午夜福利在线看| av免费观看日本| 国产一级毛片在线| 热99国产精品久久久久久7| 免费大片18禁| 日本黄色日本黄色录像| 国产成人a区在线观看| 免费久久久久久久精品成人欧美视频 | 国产淫语在线视频| 毛片一级片免费看久久久久| 色5月婷婷丁香| 亚洲精品中文字幕在线视频 | 熟女人妻精品中文字幕| 久久人人爽人人爽人人片va| 国产成人精品久久久久久| 日韩强制内射视频| 精品视频人人做人人爽| 日本与韩国留学比较| 好男人视频免费观看在线| 永久免费av网站大全| 久久久a久久爽久久v久久| 欧美区成人在线视频| 777米奇影视久久| 国产亚洲一区二区精品| 看十八女毛片水多多多| 自拍欧美九色日韩亚洲蝌蚪91 | a 毛片基地| 亚洲久久久国产精品| 美女国产视频在线观看| 国产美女午夜福利| 99re6热这里在线精品视频| 精品久久久久久电影网| 在线免费十八禁| 国产精品99久久久久久久久| 亚洲综合色惰| 水蜜桃什么品种好| 亚洲久久久国产精品| www.色视频.com| 亚洲人与动物交配视频| 成人免费观看视频高清| 欧美精品国产亚洲| 国产一级毛片在线| 身体一侧抽搐| 在线观看美女被高潮喷水网站| 精品人妻一区二区三区麻豆| 亚洲精品亚洲一区二区| 五月玫瑰六月丁香| 亚洲精品第二区| 夫妻性生交免费视频一级片| 精品午夜福利在线看| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| 日韩强制内射视频| 国产在线一区二区三区精| 国产爱豆传媒在线观看| 亚洲aⅴ乱码一区二区在线播放| av在线app专区| 只有这里有精品99| 97热精品久久久久久| 日韩在线高清观看一区二区三区| 日韩不卡一区二区三区视频在线| 国产精品一区www在线观看| 久久久久国产网址| 黑人高潮一二区| 免费看av在线观看网站| 一级毛片黄色毛片免费观看视频| 精品一区在线观看国产| 99久久人妻综合| 婷婷色麻豆天堂久久| 久久午夜福利片| 亚洲性久久影院| 色吧在线观看| 麻豆精品久久久久久蜜桃| 人体艺术视频欧美日本| a级毛片免费高清观看在线播放| 国产精品蜜桃在线观看| 男女免费视频国产| 久久人人爽av亚洲精品天堂 | 日韩精品有码人妻一区| 国产老妇伦熟女老妇高清| 国产一区二区三区综合在线观看 | 国产男女内射视频| 91精品国产九色| 天天躁夜夜躁狠狠久久av| 欧美xxxx黑人xx丫x性爽| 亚洲精华国产精华液的使用体验| 在线观看一区二区三区| 日韩 亚洲 欧美在线| 国产av精品麻豆| 国产精品爽爽va在线观看网站| 亚洲图色成人| 久久99蜜桃精品久久| 国产亚洲精品久久久com| 九草在线视频观看| 久久ye,这里只有精品| 又黄又爽又刺激的免费视频.| 国产真实伦视频高清在线观看| 国产精品嫩草影院av在线观看| 97超碰精品成人国产| 一本—道久久a久久精品蜜桃钙片| 免费看日本二区| 亚洲一区二区三区欧美精品| 天天躁日日操中文字幕| 午夜免费男女啪啪视频观看| 国产伦精品一区二区三区视频9| 春色校园在线视频观看| 黄色一级大片看看| 毛片女人毛片| 伦精品一区二区三区| 麻豆国产97在线/欧美| 伊人久久国产一区二区| 国产 一区精品| 97精品久久久久久久久久精品| 免费观看在线日韩| 好男人视频免费观看在线| 高清视频免费观看一区二区| 黑人猛操日本美女一级片| 在线观看人妻少妇| 成人国产麻豆网| 嘟嘟电影网在线观看| 男人舔奶头视频| 老司机影院成人| 网址你懂的国产日韩在线| 国产精品女同一区二区软件| 国产欧美日韩精品一区二区| 国产成人91sexporn| 久热久热在线精品观看| 亚洲av不卡在线观看| 国产永久视频网站| 亚洲av免费高清在线观看| 精品酒店卫生间| 成人18禁高潮啪啪吃奶动态图 | freevideosex欧美| 婷婷色综合www| 波野结衣二区三区在线| 国产黄片视频在线免费观看| av专区在线播放| 日韩中文字幕视频在线看片 | 亚洲av成人精品一二三区| 久久99热6这里只有精品| 国产乱人视频| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看 | 午夜精品国产一区二区电影| 婷婷色麻豆天堂久久| 国产精品熟女久久久久浪| 插逼视频在线观看| 六月丁香七月| www.av在线官网国产| 美女xxoo啪啪120秒动态图| 日韩欧美一区视频在线观看 | 色哟哟·www| 免费少妇av软件| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av天美| 欧美日韩精品成人综合77777| 免费看av在线观看网站| 日日啪夜夜撸| 精品人妻熟女av久视频| 在线看a的网站| 色婷婷久久久亚洲欧美| 欧美日韩一区二区视频在线观看视频在线| 在线观看免费高清a一片| 国产探花极品一区二区| 偷拍熟女少妇极品色| 久久这里有精品视频免费| 中文精品一卡2卡3卡4更新| 国产大屁股一区二区在线视频| 亚洲国产av新网站| 精品99又大又爽又粗少妇毛片| 婷婷色综合大香蕉| 蜜桃亚洲精品一区二区三区| 免费高清在线观看视频在线观看| 国产 精品1| 久久热精品热| 乱系列少妇在线播放| 纵有疾风起免费观看全集完整版| 婷婷色综合www| 插逼视频在线观看| 国模一区二区三区四区视频| 成人亚洲精品一区在线观看 | 亚洲人成网站在线播| 欧美日韩精品成人综合77777| 欧美成人精品欧美一级黄| 亚洲熟女精品中文字幕| 国产精品久久久久久精品古装| av播播在线观看一区| 国产精品久久久久久精品古装| 插逼视频在线观看| 亚洲欧美清纯卡通| 免费观看在线日韩| 高清欧美精品videossex| 精品熟女少妇av免费看| 毛片女人毛片| 亚洲av日韩在线播放| av女优亚洲男人天堂| 亚洲电影在线观看av| 成人无遮挡网站| 美女脱内裤让男人舔精品视频| 成人无遮挡网站| 精品国产露脸久久av麻豆| 成人无遮挡网站| av.在线天堂| 热99国产精品久久久久久7| 永久网站在线| 99久久精品国产国产毛片| 欧美日韩一区二区视频在线观看视频在线| 成人无遮挡网站| 色网站视频免费| 国语对白做爰xxxⅹ性视频网站| 最近中文字幕2019免费版| 亚洲va在线va天堂va国产| 免费观看在线日韩| 下体分泌物呈黄色| 日日啪夜夜撸| 美女高潮的动态| 亚洲熟女精品中文字幕| 午夜精品国产一区二区电影| 国产伦精品一区二区三区视频9| 又爽又黄a免费视频| 丰满人妻一区二区三区视频av| 亚洲人成网站高清观看| 大片电影免费在线观看免费| 男女无遮挡免费网站观看| 国产男女内射视频| 蜜桃在线观看..| 欧美日韩视频高清一区二区三区二| 欧美+日韩+精品| 久久6这里有精品| 岛国毛片在线播放| 午夜福利视频精品| 欧美日韩综合久久久久久| 热99国产精品久久久久久7| 久久热精品热| 建设人人有责人人尽责人人享有的 | 亚洲色图av天堂| 18禁裸乳无遮挡免费网站照片| 男女免费视频国产| 51国产日韩欧美| 国产极品天堂在线| 久热久热在线精品观看| 成人国产麻豆网| 乱码一卡2卡4卡精品| 久久人人爽人人爽人人片va| 国产av一区二区精品久久 | 天堂俺去俺来也www色官网| 一区在线观看完整版| 亚洲精品乱码久久久v下载方式| 99久久中文字幕三级久久日本| 国产免费又黄又爽又色| 丰满乱子伦码专区| 午夜免费男女啪啪视频观看| 美女xxoo啪啪120秒动态图| 人妻制服诱惑在线中文字幕| 嫩草影院入口| 你懂的网址亚洲精品在线观看|