• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Identities for Weak KAM Theory?

    2017-07-02 07:16:52LawrenceCraigEVANS

    Lawrence Craig EVANS

    (For Haim Brezis,in continuing admiration)

    1 Introduction

    1.1 Weak KAM for a model Hamiltonian

    Thisisa follow-up to two of my earlier papers[2–3]that proposea PDE/variational approach to weak KAM theory,originating with Mather and Fathi(see[5–6,10–11],etc.).In this paper,we specialize to the classical Hamiltonian

    where the potential W is smooth and Tn-periodic,where Tn=[0,1]ndenotes the unit cube with opposite faces identified.Given a vector P=(P1,···,Pn) ∈ Rn,the corresponding cell PDE reads

    whereis the effective Hamiltonian corresponding to H,as introduced in the important,but unpublished,paper of Lions-Papanicolaou-Varadhan[9].Here v=v(P,x)denotes a Tn-periodic viscosity solution.As shown for instance in[2],there exists also a Radon probability measureσon Tnsolving the transport PDE

    in an appropriate weak sense.

    A central goal of weak KAM theory is developing a nonperturbative methods to identify“integrable structures” within the otherwise possibly chaotic dynamics generated by a given Hamiltonian H=H(p,x),and in particular to understand if and how the effective Hamiltonianencodes such information.The PDE approach to weak KAM aims at extracting such information from the two coupled PDE(1.2)–(1.3).

    This paper extends previous work by discovering for the particular case of the Hamiltonian(1.1)several new integral identities,especially for the variational approximations introduced below.We also record how some previously derived general formulas simplify in this case,and provide in Section 4 some applications.

    1.2 Variational approximation

    We consider for fixedε>0 the problem of minimizing the functional

    Standard regularity theory shows that vεis a smooth function of x and also of the parameters ε and P=(P1,···,Pn).

    It is convenient to change notation,writing

    Theorem 1.1(i)We haveσε≥0,

    and

    (ii)Furthermore,

    for eachε>0,and

    As above,D=Dxmeans the first derivatives in x,andthe second derivatives in x.Likewise,?=?xmeans the Laplacian in the x-variables.

    ProofThe termis introduced to achieve the normalization(1.6).The PDEs(1.7)and(1.8)are the Euler-Lagrange equation(1.4)rewritten in respective divergence and nondivergence forms respectively.

    The assertion(1.9)follows upon our using a solution of(1.2)in the variational principle,and the limit(1.10)is demonstrated in[2].

    Remark 1.1As shown in[2],we have the uniform estimates

    for a constant C independent ofε.Hence we can extract a subsequence,such that

    A main assertion of[2]is that v,σsolve the transport equation(1.3)and the cell PDE(1.2)on the support ofσ.In particular,Dv makes senseσ-almost everywhere,even ifσ has a singular part with respect to Lebesgue measure.

    See also Bernardi-Cardin-Guzzo[1],Gomes-Sanchez Morgado[8],Gomes-Iturriaga-Sanchez Morgado-Yu[7],etc.for more on this variational method.

    2 Identities and Estimates

    The ideas are to extract useful information from the two forms(1.7)–(1.8)of the Euler-Lagrange PDE.This section records various relevant integral identities,mostly derived by differentiating with respect to different variables.Some of the resulting formulas are special cases of those in[2–3]and some are new.

    2.1 Differentiations in x

    We start by differentiating with respect to xkfor k=1,···,n.

    Theorem 2.1We have the identities

    and

    ProofIn view of(1.1)and(1.5),we have

    Differentiating in xkonce,and then twice,we learn that

    and

    Multiply(2.4)by σε,integrate by parts and recall(1.7)to derive the first identity in(2.1).The second follows upon our multiplying(1.8)byσεand integrating.To get(2.2),multiply(2.5)byσεand integrate.

    Remark 2.1Aswe obtain from(2.2)the estimate

    for a constant C independent ofε.Recall that we write DHε=DxHε.

    We next generalize Theorem 2.1.

    Theorem 2.2For each smooth function?:R→R,we have the identity∫

    Proof(1)We multiply the Euler-Lagrange equation(1.7)byand integrate by parts over Tnas follows:

    Now,according to(1.7),and furthermore.We can therefore simplify,obtaining the identity

    Sinceit follows that

    2.2 Differentiations in P

    We next differentiate with respect to the parameters Pk,for k=1,···,n.In the following expressions,we write

    Hereafter DPmeans the gradient in P,andmeans the mixed second derivatives in x and P.To minimize notational clutter,we can safely writeandsincedoes not depend upon x.

    Theorem 2.3These following further identities hold:

    Remark 2.2Formula(2.10)means that for k,l=1,···,n,

    Therefore,for allξ=(ξ1,···,ξn),and hence

    Proof(1)Differentiating(2.3)in Pk,and then in Pl,we find

    We now multiply(2.12)by σεand integrate,using(1.6)–(1.7)and(2.14)to derive(2.9).

    In addition,(2.14)implies

    So the identity(2.10)follows,if we multiply(2.13)byσεand integrate.

    Remark 2.3It follows from(2.10)that

    where “tr” means trace.

    2.3 Differentiations inε

    In the following,subscriptsεdenote derivatives with respect toε.

    Theorem 2.4We have

    and so

    In addition,

    Remark 2.4The identity(2.18)implies that

    Differentiating in x and then in P,we can likewise show that

    Proof(1)We differentiate(2.3)twice inε,to learn that

    and then

    Multiply(2.21)byσεand recall(1.7),to derive(2.16).

    (2)Next multiply(2.22)by σε.We observe that

    and thus

    This gives the first equality in(2.18),and the second follows when we explicitly calculate

    2.4 Estimates for D uε?D u

    A key question is how well vεandσεapproximate asε→ 0 particular solutions v,σ of the weak KAM PDE(1.2)–(1.3).

    Now let v be a viscosity solution of(1.2)andσa corresponding weak solution of(1.3).To allow for changes in P we also assume,for this subsection only,that vεsolves the variational problem for the vector Pε.Consequently,we have

    Theorem 2.5These following identities hold:

    and

    Observe that right-hand sides involve Taylor expansions ofandThus ifapproximatessufficiently well for small ε and if Pεis close to P,thenis small on the support ofσε.

    Proof(1)We have

    and so

    Since|a|2?|b|2=?|a?b|2+2a·(a?b),we calculate that

    the second equality resulting from(1.7).Consequently,(2.25)implies

    (2)To prove(2.24),we next integrate(2.25)with respect to the measureσ(recall(1.3)),

    Hence,(2.25)gives

    3 Linearizations and Adjoints

    3.1 Linearizing the PDE

    The linearization about vεof the Euler-Lagrange equation(1.8)is the operator

    defined for smooth,periodic functions w:Tn→R.

    Lemma 3.1We have the alternative formulas

    and

    Proof(1)Formula(3.2)follows immediately from(3.1).

    (2)Recall from(1.7)that div((P+Dvε)σε)=0.Consequently,the expression on the right-hand side of(3.3)equals

    The linearization Lεis useful,as it appears when we differentiate the nonlinear PDE(1.8).

    Theorem 3.1These following identities hold:

    Proof(1)According to(3.1)and(1.8),

    This is(3.4).

    (2)We obtain(3.5)upon differentiating(1.8)with respect to xk:The left-hand side appears when the differentiation falls upon vεand the right-hand side appears when the differentiation falls upon the term involving the potential W.

    Similarly,(3.6)results from our differentiating(1.8)with respect to Pk,and(3.8)from our differentiating inε.We directly compute from the definition(3.1)that(3.9)is also valid.

    Remark 3.1We observe from(3.6)–(3.7)that

    But note also that x+DPvεis not Tn-periodic.We will return to this point in Subsection 4.2.

    3.2 The ad joint op erator

    We introducenext the adjointof Lεwith respect to the standard inner product in L2(Tn),so that

    for all smooth,Tn-periodic functions f and g.

    Theorem 3.2(i)We have

    (ii)Therefore

    and

    ProofThe identity(3.12)follows from(3.3)and an integration by parts.

    Remark 3.2It follows from(3.13)(or(3.3))that the operator Lε,acting on smooth functions,is symmetric with respect to the L2inner product weighted by σε:

    for smooth,Tn-periodic functions f,g.Perhaps the spectrum of Lεcontains useful dynamical information in the limit

    3.3 M ore id entities

    We can employ the foregoing formulas to rewrite some of the expressions from Section 2.

    Theorem 3.3We have the identity

    and consequently the estimate

    Proof(1)Owing to(3.6),we have

    We multiply by σεand integrate,recalling from(3.14)that

    The last equality follows from(1.7).

    (2)In view of(2.15),

    We use(3.18)to see that the second term equals

    Therefore

    The formula(3.16)follows,as does the inequality(3.17),since

    Theorem 3.4We have

    and therefore

    Proof(1)According to(3.8),we have

    We multiply byσεand integrate as follows:

    The formula(2.18)implies

    Recalling yet again(1.7),we observe that the second integral term equals

    the last equality following from(1.8).We substitute(3.21)and rewrite,obtaining(3.19).

    4 Some Applications

    We collect in the concluding section some applications of the foregoing formulas,of which those in Subsection 4.2 concerning nonresonance are the most interesting.

    4.1

    An overall goal is understanding howand its approximationsfor smallε>0 provide analytic control of vε,σε,and thus in the limit of v,σ.

    As an illustration,we show next that ifis nice enough as a function ofεnear zero,then we can construct a limit measureσthat is absolutely continuous with respect to Lebesgue measure.

    Theorem 4.1If

    then

    andσ∈L1(Tn)solves(1.3).

    ProofIf 0< ε1< ε2,we have

    according to(2.18).Consequently,(4.1)implies that{σε}ε>0is a Cauchy sequence in L1(Tn)asε→0.

    4.2 Nonresonance phenomena

    We assume hereafter that we can select Pεso that

    doesnot depend upon ε.Write V=(V1,···,Vn).We suppose also the nonresonance condition that for some constant c>0,

    Next,take g:Tn→R to be smooth and have zero mean

    Then using a standard Fourier series representation and the nonresonance condition(4.4),we have the following lemma.

    Lemma 4.1There exists a smooth Tn-periodic solution f=f(X)of the linear elliptic PDE

    Furthermore,we have for each s≥0 the estimate

    for a constant Cs.

    Theorem 4.2Assume that

    Then for each smooth function g:,we have

    Remark 4.1This is a variant of a theorem in[2].The formal interpretation is that under the symplectic change of variable

    defined implicitly by the formulas p=P+Dxv,X=x+DPv the dynamics become linear:X(t)=X0+tV for t≥ 0.Since V ·k0 for all k ∈ Zn?{0},the flow is therefore asymptotically equidistributed with respect to Lebesgue measure.The rigorous assertion(4.8)is consistent with this picture.

    Proof(1)Subtracting a constant if necessary,we may assume that the average of g is zero.Now let f solve the linear PDE(4.5),and define

    The functionis Tn-periodic,although x+DPvεis not.

    Recalling from(3.10)that,we compute

    Here and afterwards f is evaluated at x+DPvε.It follows that

    for

    (2)Selecting s large enough,we deduce from(4.6)thatis bounded.Consequently,(2.15)implies the estimate

    Likewise,

    (3)It follows now from(4.9)and(3.14)that

    asε→0.

    AcknowledgementThe author would like to thank the referees for very careful reading.

    [1]Bernardi,O.,Cardin,F.and Guzzo,M.,New estimates for Evans’variational approach to weak KAM theory,Comm.in Contemporary Math.,15,2013,1250055.

    [2]Evans,L.C.,Some new PDE methods for weak KAM theory,Calculus of Variations and Partial Differential Equations,17,2003,159–177.

    [3]Evans,L.C.,Further PDE methods for weak KAM theory,Calculus of Variations and Partial Differential Equations,35,2009,435–462.

    [4]Evans,L.C.and Gomes,D.,Eff ective Hamiltonians and averaging for Hamiltonian dynamics I,Archive Rational Mech.and Analysis,157,2001,1–33.

    [5]Fathi,A.,Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens,C.R.Acad.Sci.Paris Sr.I Math.,324,1997,1043–1046.

    [6]Fathi,A.,Weak KAM theorem in Lagrangian dynamics,Cambridge Studies in Advanced Mathematics,to be published.

    [7]Gomes,D.,Iturriaga,R.,Sanchez-Morgado,H.and Yu,Y.,Mather measures selected by an approximation scheme,Proc.Amer.Math.Soc.,138,2010,3591–3601.

    [8]Gomes,D.and Sanchez-Morgado,H.,A stochastic Evans-Aronsson problem,Trans.Amer.Math.Soc.,366,2014,903–929.

    [9]Lions,P.-L.,Papanicolaou,G.and Varadhan,S.R.S.,Homogenization of Hamilton–Jacobi equation,Comm.Pure Appl.Math.,56,1987,1501–1524.

    [10]Mather,J.,Minimal measures,Comment.Math.Helvetici,64,1989,375–394.

    [11]Mather,J.,Action minimizing invariant measures for positive definite Lagrangian systems,Math.Zeitschrift,207,1991,169–207.

    [12]Yu,Y.,L∞variational problems and weak KAM theory,Comm.Pure Appl.Math.,60,2007,1111–1147.

    亚洲精品在线美女| 国产深夜福利视频在线观看| 免费看a级黄色片| 精品乱码久久久久久99久播| 中亚洲国语对白在线视频| tocl精华| 最新美女视频免费是黄的| 亚洲国产欧美网| 一边摸一边做爽爽视频免费| 午夜福利,免费看| 免费搜索国产男女视频| 国产精品亚洲av一区麻豆| 在线国产一区二区在线| 乱人伦中国视频| 一a级毛片在线观看| 嫩草影院精品99| 丝袜美腿诱惑在线| 国产黄色免费在线视频| 99久久国产精品久久久| 欧美另类亚洲清纯唯美| 久久香蕉激情| 后天国语完整版免费观看| 日本一区二区免费在线视频| 欧美色视频一区免费| 青草久久国产| 成年人黄色毛片网站| 男人操女人黄网站| 99久久国产精品久久久| 99久久精品国产亚洲精品| 国产99久久九九免费精品| 欧美丝袜亚洲另类 | 91字幕亚洲| 日韩精品青青久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产91精品成人一区二区三区| 国产成人系列免费观看| 国产主播在线观看一区二区| 中文字幕人妻丝袜一区二区| 亚洲国产精品一区二区三区在线| 老司机午夜福利在线观看视频| 欧美乱码精品一区二区三区| 巨乳人妻的诱惑在线观看| 中文字幕人妻丝袜制服| av网站在线播放免费| 国产精品久久久久成人av| 亚洲成人免费av在线播放| 精品久久久久久久毛片微露脸| 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| 好男人电影高清在线观看| 在线天堂中文资源库| 亚洲色图 男人天堂 中文字幕| 丰满迷人的少妇在线观看| 又紧又爽又黄一区二区| 88av欧美| 桃红色精品国产亚洲av| 日韩一卡2卡3卡4卡2021年| 18美女黄网站色大片免费观看| 国产午夜精品久久久久久| 亚洲熟妇熟女久久| videosex国产| 国产伦人伦偷精品视频| 午夜福利在线观看吧| 久久性视频一级片| 极品人妻少妇av视频| 精品久久久久久成人av| 亚洲欧洲精品一区二区精品久久久| 成人18禁高潮啪啪吃奶动态图| 看片在线看免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成77777在线视频| 精品国产一区二区久久| 91九色精品人成在线观看| av天堂在线播放| 丝袜美腿诱惑在线| 丰满人妻熟妇乱又伦精品不卡| av免费在线观看网站| 午夜a级毛片| 久久久久久久精品吃奶| 精品第一国产精品| 99久久久亚洲精品蜜臀av| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人精品无人区| 欧美一级毛片孕妇| 午夜两性在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 99riav亚洲国产免费| 最新美女视频免费是黄的| 精品少妇一区二区三区视频日本电影| 十八禁网站免费在线| 亚洲色图 男人天堂 中文字幕| 欧美久久黑人一区二区| 超碰97精品在线观看| 免费高清视频大片| 在线av久久热| 久热爱精品视频在线9| 免费av毛片视频| 91国产中文字幕| 久久久久久久久免费视频了| 最好的美女福利视频网| 国产精品久久久久久人妻精品电影| 久久久国产一区二区| 欧美日韩精品网址| 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕| 国产1区2区3区精品| 黑人巨大精品欧美一区二区蜜桃| 在线看a的网站| 亚洲男人的天堂狠狠| 欧美 亚洲 国产 日韩一| 久久人人精品亚洲av| 男女下面插进去视频免费观看| www.精华液| 一二三四在线观看免费中文在| 91麻豆精品激情在线观看国产 | 麻豆久久精品国产亚洲av | 欧美精品亚洲一区二区| 欧美日本中文国产一区发布| 久久久国产成人精品二区 | 久久久国产成人免费| 成人精品一区二区免费| 一a级毛片在线观看| 麻豆av在线久日| 91字幕亚洲| 久久久久久久午夜电影 | 精品一品国产午夜福利视频| 一区在线观看完整版| 国产亚洲精品综合一区在线观看 | 国产高清videossex| 久久精品91蜜桃| 五月开心婷婷网| 亚洲免费av在线视频| 亚洲一区中文字幕在线| 亚洲av成人av| 老司机福利观看| 欧美成人午夜精品| 99国产综合亚洲精品| 人妻久久中文字幕网| 一二三四在线观看免费中文在| av片东京热男人的天堂| 黑人操中国人逼视频| 国产又色又爽无遮挡免费看| 中文字幕人妻熟女乱码| 亚洲va日本ⅴa欧美va伊人久久| 天天影视国产精品| 91精品三级在线观看| 99在线视频只有这里精品首页| 美女扒开内裤让男人捅视频| 97人妻天天添夜夜摸| 99精品欧美一区二区三区四区| 99热国产这里只有精品6| 亚洲专区字幕在线| 免费在线观看完整版高清| 日本一区二区免费在线视频| 国产精品久久久久成人av| 免费av毛片视频| 99热国产这里只有精品6| 欧美人与性动交α欧美软件| 日本精品一区二区三区蜜桃| 亚洲第一欧美日韩一区二区三区| 精品国产亚洲在线| 高清黄色对白视频在线免费看| 91大片在线观看| www.自偷自拍.com| 免费一级毛片在线播放高清视频 | 亚洲成av片中文字幕在线观看| 真人一进一出gif抽搐免费| 热re99久久国产66热| 国产真人三级小视频在线观看| 最近最新免费中文字幕在线| 黄色怎么调成土黄色| av中文乱码字幕在线| 午夜亚洲福利在线播放| 精品久久久久久电影网| 欧美大码av| 看黄色毛片网站| 欧美日韩黄片免| 亚洲av成人不卡在线观看播放网| 日韩欧美一区二区三区在线观看| 亚洲av日韩精品久久久久久密| 高清黄色对白视频在线免费看| 后天国语完整版免费观看| 多毛熟女@视频| 日本黄色视频三级网站网址| 日韩免费av在线播放| 1024香蕉在线观看| 亚洲精品中文字幕一二三四区| 日本wwww免费看| 一级毛片高清免费大全| 另类亚洲欧美激情| 国产单亲对白刺激| 欧美一区二区精品小视频在线| 亚洲欧美一区二区三区黑人| 黄色a级毛片大全视频| 亚洲精品一区av在线观看| 一个人观看的视频www高清免费观看 | 欧洲精品卡2卡3卡4卡5卡区| 欧美+亚洲+日韩+国产| 性插视频无遮挡在线免费观看| 国产精品电影一区二区三区| 最新中文字幕久久久久| xxxwww97欧美| 久久久久国产精品人妻aⅴ院| 亚州av有码| 色视频www国产| 女同久久另类99精品国产91| 欧美性感艳星| 中文字幕久久专区| avwww免费| 1024手机看黄色片| 国产精品98久久久久久宅男小说| 女生性感内裤真人,穿戴方法视频| 亚洲av电影不卡..在线观看| 亚洲精品在线观看二区| 亚洲av免费高清在线观看| netflix在线观看网站| 91久久精品国产一区二区成人| 高潮久久久久久久久久久不卡| 国产真实伦视频高清在线观看 | 久久久久久久亚洲中文字幕 | 最近最新中文字幕大全电影3| 精品人妻1区二区| 97热精品久久久久久| 在线国产一区二区在线| 99热只有精品国产| 校园春色视频在线观看| 精品国产亚洲在线| 99久久无色码亚洲精品果冻| 欧美乱色亚洲激情| 亚洲av日韩精品久久久久久密| 久久伊人香网站| 日韩人妻高清精品专区| 高清毛片免费观看视频网站| 黄色配什么色好看| 国产一区二区三区在线臀色熟女| 乱码一卡2卡4卡精品| 国产真实伦视频高清在线观看 | 免费在线观看日本一区| 一进一出好大好爽视频| 国产精品久久久久久久久免 | 乱人视频在线观看| 亚洲欧美日韩高清在线视频| 久久久久久久久大av| 欧美丝袜亚洲另类 | 亚洲av.av天堂| 热99re8久久精品国产| av天堂中文字幕网| 丝袜美腿在线中文| 99国产精品一区二区三区| 免费高清视频大片| 男女那种视频在线观看| 久久精品国产亚洲av香蕉五月| 热99re8久久精品国产| 中文亚洲av片在线观看爽| 俄罗斯特黄特色一大片| 99久久精品一区二区三区| 国产高清激情床上av| x7x7x7水蜜桃| 国产高清视频在线播放一区| 久久九九热精品免费| 国产精品国产高清国产av| 国产三级黄色录像| 看免费av毛片| 97超视频在线观看视频| 99久久成人亚洲精品观看| 欧美日本亚洲视频在线播放| 国产美女午夜福利| 国产高清视频在线播放一区| 亚洲av免费高清在线观看| 成年版毛片免费区| 免费大片18禁| 中文资源天堂在线| 久久精品综合一区二区三区| 精品一区二区三区av网在线观看| 国产av在哪里看| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 深爱激情五月婷婷| 欧美高清成人免费视频www| 他把我摸到了高潮在线观看| 校园春色视频在线观看| 精品久久久久久久久亚洲 | 9191精品国产免费久久| 深夜精品福利| 国产在视频线在精品| 精品久久久久久久久亚洲 | 99久久成人亚洲精品观看| av在线蜜桃| 久久久久久久精品吃奶| 午夜久久久久精精品| 午夜福利高清视频| 麻豆成人午夜福利视频| 欧美日韩黄片免| 精品久久久久久久末码| 国产黄片美女视频| 在线观看美女被高潮喷水网站 | 亚洲av.av天堂| 亚洲av电影不卡..在线观看| 日韩中字成人| 中文字幕精品亚洲无线码一区| 亚洲国产高清在线一区二区三| 亚洲黑人精品在线| 天天一区二区日本电影三级| 一夜夜www| 小蜜桃在线观看免费完整版高清| 日韩欧美三级三区| 又黄又爽又刺激的免费视频.| 一区福利在线观看| 欧美高清性xxxxhd video| 精品人妻1区二区| 久99久视频精品免费| 国产精品久久久久久久电影| 国产精品久久久久久人妻精品电影| 亚洲,欧美,日韩| a级毛片a级免费在线| 脱女人内裤的视频| 一二三四社区在线视频社区8| 亚洲第一电影网av| 免费av毛片视频| 内地一区二区视频在线| 国产精品久久久久久亚洲av鲁大| 99热6这里只有精品| 女同久久另类99精品国产91| 哪里可以看免费的av片| 日本一二三区视频观看| 亚洲av成人精品一区久久| 亚洲中文字幕日韩| 国产精品乱码一区二三区的特点| 免费看日本二区| 一级黄色大片毛片| 日韩中字成人| 亚洲aⅴ乱码一区二区在线播放| 国内久久婷婷六月综合欲色啪| 999久久久精品免费观看国产| 午夜福利免费观看在线| 色综合欧美亚洲国产小说| 小说图片视频综合网站| a级毛片免费高清观看在线播放| 特大巨黑吊av在线直播| 亚洲av五月六月丁香网| 哪里可以看免费的av片| 欧美丝袜亚洲另类 | 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产清高在天天线| 亚洲欧美日韩高清专用| a级一级毛片免费在线观看| 3wmmmm亚洲av在线观看| 麻豆国产av国片精品| 国产伦一二天堂av在线观看| 免费大片18禁| 亚洲欧美日韩东京热| 免费观看人在逋| 在线播放无遮挡| 欧美日韩乱码在线| 成人美女网站在线观看视频| 一二三四社区在线视频社区8| 亚洲人成网站高清观看| 波多野结衣高清作品| 天堂网av新在线| 美女黄网站色视频| 国产色婷婷99| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成av人片在线播放无| 久久久久久久午夜电影| 国产亚洲精品av在线| 最近视频中文字幕2019在线8| 国产在线男女| 欧美性感艳星| 少妇熟女aⅴ在线视频| 欧美成人性av电影在线观看| 亚洲av五月六月丁香网| 最后的刺客免费高清国语| 又紧又爽又黄一区二区| 毛片女人毛片| 日韩免费av在线播放| 国产成人aa在线观看| 午夜福利高清视频| 国内精品久久久久久久电影| 精品人妻视频免费看| 中出人妻视频一区二区| 18禁黄网站禁片免费观看直播| 欧美丝袜亚洲另类 | 一个人免费在线观看电影| 国产成+人综合+亚洲专区| 男女之事视频高清在线观看| 精品福利观看| 午夜免费激情av| 国产午夜福利久久久久久| 精品欧美国产一区二区三| 两个人的视频大全免费| 午夜激情福利司机影院| 深夜a级毛片| 色综合欧美亚洲国产小说| 男女下面进入的视频免费午夜| 亚洲不卡免费看| 久久久久久久久大av| 真实男女啪啪啪动态图| 国产一区二区在线av高清观看| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲| 一个人看视频在线观看www免费| 两个人视频免费观看高清| 白带黄色成豆腐渣| 日韩高清综合在线| 麻豆久久精品国产亚洲av| 国产美女午夜福利| 日本与韩国留学比较| 成年女人毛片免费观看观看9| 欧美在线黄色| 尤物成人国产欧美一区二区三区| 免费高清视频大片| 亚洲成av人片在线播放无| 亚洲av一区综合| 国内精品一区二区在线观看| 久久亚洲真实| 国产一区二区三区视频了| 一本一本综合久久| 波多野结衣高清无吗| aaaaa片日本免费| 久久国产乱子免费精品| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线| 又黄又爽又刺激的免费视频.| 国产国拍精品亚洲av在线观看| 真人做人爱边吃奶动态| 国产伦人伦偷精品视频| 一级黄色大片毛片| 简卡轻食公司| 日韩欧美精品v在线| 精品久久久久久成人av| 日韩欧美三级三区| 亚洲中文日韩欧美视频| 51午夜福利影视在线观看| 又黄又爽又免费观看的视频| 男插女下体视频免费在线播放| 每晚都被弄得嗷嗷叫到高潮| aaaaa片日本免费| 精华霜和精华液先用哪个| 一级av片app| 国内揄拍国产精品人妻在线| 99热这里只有是精品50| 欧美精品国产亚洲| 好看av亚洲va欧美ⅴa在| 亚洲国产精品成人综合色| 国产黄片美女视频| 国产一区二区在线观看日韩| 俺也久久电影网| 一区二区三区高清视频在线| 一级黄片播放器| 精品久久久久久,| 国产久久久一区二区三区| 国产私拍福利视频在线观看| 午夜视频国产福利| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线播放欧美日韩| 国产美女午夜福利| 日韩中字成人| 亚洲在线观看片| 噜噜噜噜噜久久久久久91| 欧美精品啪啪一区二区三区| 国产亚洲精品久久久com| 欧美一区二区精品小视频在线| 色视频www国产| 国产主播在线观看一区二区| 怎么达到女性高潮| 免费观看人在逋| 麻豆成人av在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲乱码一区二区免费版| 午夜福利成人在线免费观看| 黄片小视频在线播放| 成人欧美大片| 性色av乱码一区二区三区2| 麻豆成人av在线观看| 国产人妻一区二区三区在| av中文乱码字幕在线| 蜜桃久久精品国产亚洲av| 久久中文看片网| 看黄色毛片网站| 亚洲aⅴ乱码一区二区在线播放| 精品国产亚洲在线| 夜夜夜夜夜久久久久| 久久99热这里只有精品18| 国产精品一区二区免费欧美| 黄色视频,在线免费观看| 国语自产精品视频在线第100页| 久久性视频一级片| 午夜影院日韩av| 99久久成人亚洲精品观看| 国产三级黄色录像| 欧美激情久久久久久爽电影| 禁无遮挡网站| 午夜福利18| 国产在视频线在精品| 欧美一区二区国产精品久久精品| 亚洲欧美日韩东京热| 毛片女人毛片| 亚洲成人精品中文字幕电影| av黄色大香蕉| 亚洲激情在线av| 中文字幕人妻熟人妻熟丝袜美| 他把我摸到了高潮在线观看| 黄色丝袜av网址大全| 精品一区二区三区人妻视频| 色综合亚洲欧美另类图片| 婷婷丁香在线五月| 国产真实伦视频高清在线观看 | 啦啦啦韩国在线观看视频| 黄色女人牲交| 色综合欧美亚洲国产小说| 中文字幕人成人乱码亚洲影| 免费看日本二区| 精品久久久久久久久亚洲 | 日韩欧美国产在线观看| 亚洲av.av天堂| 久久国产精品人妻蜜桃| 欧美黑人欧美精品刺激| 久久久精品大字幕| АⅤ资源中文在线天堂| 99久久精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 天堂av国产一区二区熟女人妻| 九九热线精品视视频播放| 国产亚洲精品av在线| 我要搜黄色片| 亚洲欧美日韩东京热| 91久久精品国产一区二区成人| 一个人看的www免费观看视频| 精品久久久久久久末码| 久久香蕉精品热| 久久久色成人| 在线观看av片永久免费下载| 在线看三级毛片| 少妇人妻一区二区三区视频| 成人美女网站在线观看视频| 91在线精品国自产拍蜜月| 色哟哟哟哟哟哟| 精品午夜福利视频在线观看一区| 亚洲熟妇中文字幕五十中出| 欧美日韩瑟瑟在线播放| 国产人妻一区二区三区在| 国内揄拍国产精品人妻在线| 麻豆一二三区av精品| 欧美在线一区亚洲| 久久精品人妻少妇| 99久久成人亚洲精品观看| 我要看日韩黄色一级片| 一区二区三区激情视频| 久久久久性生活片| 99热只有精品国产| 亚洲va日本ⅴa欧美va伊人久久| 日韩亚洲欧美综合| 久久精品国产自在天天线| 国产精品野战在线观看| 一区二区三区免费毛片| 2021天堂中文幕一二区在线观| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 高清在线国产一区| 噜噜噜噜噜久久久久久91| 中文亚洲av片在线观看爽| 性欧美人与动物交配| 亚洲av成人av| 黄色配什么色好看| 热99re8久久精品国产| 国产精品一及| 亚洲一区二区三区不卡视频| 亚洲最大成人手机在线| 色噜噜av男人的天堂激情| 精品久久久久久久人妻蜜臀av| 亚洲黑人精品在线| 婷婷精品国产亚洲av在线| 老女人水多毛片| 最近中文字幕高清免费大全6 | 婷婷色综合大香蕉| 日日夜夜操网爽| 久久天躁狠狠躁夜夜2o2o| 国内少妇人妻偷人精品xxx网站| 色尼玛亚洲综合影院| 国产亚洲欧美在线一区二区| av福利片在线观看| 成人鲁丝片一二三区免费| 欧美黑人欧美精品刺激| 伦理电影大哥的女人| 亚洲欧美激情综合另类| 男女床上黄色一级片免费看| 老熟妇乱子伦视频在线观看| 一进一出抽搐动态| 黄片小视频在线播放| 黄色配什么色好看| 很黄的视频免费| 五月玫瑰六月丁香| 成人国产综合亚洲| 18禁黄网站禁片午夜丰满| 国产免费av片在线观看野外av| 亚洲一区二区三区不卡视频| 午夜精品久久久久久毛片777| 国产免费av片在线观看野外av| 国产伦在线观看视频一区| 国产真实乱freesex| 久久久久久久久大av| 免费看光身美女| 欧美日韩福利视频一区二区| 色噜噜av男人的天堂激情| 91在线观看av| 精品欧美国产一区二区三| 婷婷六月久久综合丁香| 特级一级黄色大片| 国产人妻一区二区三区在| 我的女老师完整版在线观看| 黄色配什么色好看| 日本撒尿小便嘘嘘汇集6| 国产av不卡久久| 国产视频一区二区在线看| 亚洲欧美精品综合久久99| 亚洲av电影在线进入|