黃韻姍,張靜宇,蔣明星
浙江大學(xué)昆蟲科學(xué)研究所,杭州 310058
?
昆蟲個(gè)體大小對(duì)其種群生物學(xué)的影響
黃韻姍,張靜宇,蔣明星*
浙江大學(xué)昆蟲科學(xué)研究所,杭州 310058
個(gè)體大小是昆蟲種群最直觀的表型之一。很多研究發(fā)現(xiàn),個(gè)體大小可對(duì)昆蟲的許多生物學(xué)特性產(chǎn)生影響,由此影響昆蟲種群的發(fā)展以及所在群落的結(jié)構(gòu)和功能。根據(jù)最近20多年的相關(guān)文獻(xiàn),綜述了個(gè)體大小對(duì)種群以下幾方面的影響:成蟲求偶、交配、生殖力及后代適合度,飛行及與飛行相關(guān)的其他行為如覓食、空中求偶和交配,攝食能力和食料種類,競爭和防御能力,抗逆性,以及社會(huì)性昆蟲的勞動(dòng)分工等。通常情況下,與同種內(nèi)較小個(gè)體相比,較大的昆蟲在生殖、飛行、抗逆性等方面往往具有優(yōu)勢,有助于種群適合度的提高。最后提出了幾點(diǎn)可供此領(lǐng)域研究參考的建議和應(yīng)用啟示。
體形;昆蟲;生殖;飛行;覓食;競爭;抗逆性;社會(huì)分工
個(gè)體大小是生物最基本也是最重要的表型之一,它與生物的生長、發(fā)育、生殖和存活密切相關(guān),是影響種群發(fā)展?jié)摿叭郝浣Y(jié)構(gòu)與功能的重要因子[1- 9]。昆蟲綱作為動(dòng)物界最大的一個(gè)綱,已經(jīng)歷至少4億年的演化時(shí)間(指有翅昆蟲,無翅亞綱的昆蟲可能更長),期間很多種類發(fā)生了體形上的變異。最近幾十年來,有關(guān)昆蟲個(gè)體大小變異及相關(guān)影響因子的報(bào)道屢見不鮮[10]。有關(guān)昆蟲個(gè)體大小對(duì)種群生物學(xué)影響的報(bào)道也較多,但十分零散。
鑒于此,作者根據(jù)最近20多年的相關(guān)文獻(xiàn),綜述了昆蟲個(gè)體大小對(duì)其生殖、飛行、攝食、競爭、防御、抗逆性、社會(huì)分工等方面的影響(表1),以期提高對(duì)此領(lǐng)域的認(rèn)識(shí)。同時(shí),由于有關(guān)個(gè)體大小的理論可為解釋諸多生態(tài)學(xué)現(xiàn)象提供科學(xué)依據(jù),并可用于指導(dǎo)改進(jìn)益蟲利用和害蟲防控技術(shù),故期望本文還能給予讀者實(shí)踐方面的啟示。
表1 昆蟲個(gè)體大小對(duì)其生物學(xué)特性的影響
續(xù)表生物學(xué)指標(biāo)Biologicaltraits昆蟲Insects影響或表現(xiàn)狀況Specificeffectsoroutcomes參考文獻(xiàn)References覓食能力地熊蜂B.terrestris大個(gè)體對(duì)花蜜的覓食能力較強(qiáng)[37]步長班腹刺益蝽Podisusmaculiventris(Say)大個(gè)體較遠(yuǎn)[38]傳播植物種子的能力新西蘭大沙螽DeinacridaconnectensAnder大個(gè)體較強(qiáng)[39]寄生蜂搜尋寄主的效率缺肘反顎繭蜂A.minuta;吉氏角頭小蜂DirhinusgiffardiiSilvestri大個(gè)體較強(qiáng)[16,40]寄主植物范圍:寄主特異性多種取食無花果Ficus的昆蟲;北歐105種尺蠖科昆蟲個(gè)體較小的物種其寄主植物范圍窄于個(gè)體較大者[41-42]競爭和防御能力:侵占同種個(gè)體蜂巢的能力頂切葉蜂MegachileapicalisSpinola大雌蟲較強(qiáng)[43]強(qiáng)心苷含量(一種防御物質(zhì))寬肩葉甲OreinagloriosaF.大個(gè)體雄蟲中含量較高[44]寄主被寄生所需時(shí)間科列馬·阿布拉小蜂Aphidiuscolemani(Viereck)寄主(桃蚜)越大,其被寄生所需時(shí)間越長[45]血細(xì)胞對(duì)寄生物或病原物的包囊作用強(qiáng)弱家蟋蟀Achetadomesticus(L.);毛眼林蟻FormicaexsectaNylander大個(gè)體較強(qiáng)[46-47]引起寄主產(chǎn)生防御行為的可能性豆柄瘤蚜繭蜂Lysiphlebusfabarum(Marshall)大個(gè)體蜂易引起寄主防御(蚜蟲腹管產(chǎn)生分泌物)[48]抗逆性:耐饑力繭蜂Asobaratabida(Nees);堆土細(xì)胸蟻Leptothoraxacervorum(Fabricius);大仰蝽NotonectamaculataFabricius大個(gè)體較強(qiáng)[49-51]熊蜂BombusimpatiensCresson小個(gè)體較強(qiáng)[52]耐寒力堆土細(xì)胸蟻L.a(chǎn)cervorum;黑菌蟲AlphitobiusdiaperinusPanzer,大個(gè)體較強(qiáng)[50,53]熱交換、散熱和低溫下失重的速率黑菌蟲A.diaperinus;幻紫斑蛺蝶Hy?polimnasbolina(L.)小個(gè)體較快[53-54]升溫速率,體溫調(diào)節(jié)能力毛跗黑條蜂Anthophoraplumipes(Pallas)大個(gè)體較快、較強(qiáng)[55]抗干燥能力非洲南部7種皮金龜科Trogidae甲蟲大個(gè)體較強(qiáng)[56]
①交配不應(yīng)期(Refractory Period):指前后兩次交配的間隔時(shí)間
個(gè)體大小可影響昆蟲生殖的許多方面,包括求偶、交配、生殖潛力等,而且還可對(duì)后代的發(fā)育和存活產(chǎn)生影響。
1.1 對(duì)雌蟲生殖的影響
許多研究表明,在同種昆蟲內(nèi),與個(gè)體較小的雌成蟲相比,個(gè)體較大者具有許多生殖優(yōu)勢,如生殖力較高,競爭配偶的能力較強(qiáng),被雄蟲選作配偶的概率較高,交配的持續(xù)時(shí)間較長,產(chǎn)卵頻率較高等[12,20,49,57]。在鞘翅目、雙翅目、膜翅目和直翅目的一些昆蟲中,卵巢管數(shù)目可隨個(gè)體的增大而增多[57]。鑒于與生殖的重要關(guān)系,個(gè)體大小可作為衡量雌蟲生殖能力和適合度的一個(gè)重要指標(biāo)。
在上述諸多影響中,最突出的表現(xiàn)在于個(gè)體較大的雌蟲生殖力相對(duì)較高。這已發(fā)現(xiàn)于多種昆蟲中,如地中海實(shí)蠅Ceratitiscapitata(Wiedemann)[25],甘蔗金龜AntitrogusparvulusBritton[58],白蠟窄吉丁AgrilusplanipennisFairmaire[59],豆象Statorlimbatus(Horn)[11],秋白尺蛾Epirritaautumnata(Borkhausen)[60],斑點(diǎn)木蝶Parargeaegeria(L.)[61],長索跳小蜂AnagyruskamaliMoursi[62],赤眼蜂TrichogrammaeuproctidisGirault[20],缺肘反顎繭蜂Aphaeretaminuta(Nees)[16],繭蜂Asobaratabida(Nees)[49],頂切葉蜂MegachileapicalisSpinola[43]。但同時(shí),一些研究也表明大個(gè)體雌蟲的生殖優(yōu)勢在某些情況下也可能變成劣勢。這在玉米根螢葉甲DiabroticavirgiferavirgiferaLeConte中的發(fā)現(xiàn)較為典型:大個(gè)體雌蟲雖然較易被雄蟲選為配偶,并且交配時(shí)間較長,但與小個(gè)體雌蟲相比,其與雄蟲交配時(shí)較易被其他雄蟲干擾而中止交配[12]。
個(gè)體大小還能影響雌蟲對(duì)生殖資源的配置策略。這種現(xiàn)象主要發(fā)現(xiàn)于卵育型寄生蜂中:此類寄生蜂的卵子發(fā)生指數(shù)(Ovigeny Index,為雌蟲羽化時(shí)體內(nèi)成熟卵子的數(shù)量與潛在生殖力之比值)與個(gè)體大小負(fù)相關(guān),即與個(gè)體較大的種類或者同種中個(gè)體較大者相比,個(gè)體較小的雌蟲在發(fā)育過程中較早動(dòng)用生殖資源,在羽化時(shí)卵巢內(nèi)即有較高比例的成熟卵[17]。
除了與自身的生殖相關(guān)外,雌蟲個(gè)體較大還可提高后代的適合度。在許多昆蟲中發(fā)現(xiàn),大個(gè)體雌蟲所產(chǎn)的卵粒相對(duì)較大,如豆象S.limbatus[11],赤眼蜂T.euproctidis[20],缺肘反顎繭蜂A.minuta[16],豆柄瘤蚜繭蜂Lysiphlebusfabarum(Marshall)[48],頂切葉蜂[43]。較大卵??蔀楹蟠脑缙诎l(fā)育提供充足的營養(yǎng)物質(zhì),在此有利條件下,此類卵粒通常孵化較早、孵化率較高,后代發(fā)育較快、存活率較高、體形也相對(duì)較大[43,63- 64]。但是,情況并非完全如此,例如,在豆柄瘤蚜繭蜂中,雖然個(gè)體較大的雌蜂產(chǎn)下的卵粒較大,但后代的個(gè)體未必較大,這是因?yàn)?,作為蚜蟲的一種內(nèi)寄生蜂,其后代發(fā)育除了受卵粒營養(yǎng)條件影響外,更大程度上受蚜蟲寄主的大小、質(zhì)量等因素的制約[48]。另有研究表明,卵粒大小與雌蟲個(gè)體大小的關(guān)系因種而異[65]。
1.2 對(duì)雄蟲生殖的影響
雄蟲個(gè)體大小可對(duì)其交配和生殖行為產(chǎn)生較大影響,在一些昆蟲中甚至是決定交配能否成功的關(guān)鍵因素[66- 67]。總體而言,個(gè)體較大的雄蟲往往在求偶、交配及交配后的精子競爭等方面占有優(yōu)勢,這已發(fā)現(xiàn)于多種昆蟲中,如色蟌Hetaerinaamericana(Fabricius)[68],異痣蟌Ischnuragraellsii(Rambur)[69],蟋蟀GrylluscampestrisL.[70],沫蟬Cercopissanguinolenta(Scopoli)[71],豆象S.limbatus[22],西印度甘薯象甲Euscepespostfasciatus(Fairmaire)[66],桉天牛PhoracanthasemipunctataF.[72],道氏無墊蜂AmegilladawsoniRayment[73],殺蟬泥蜂SpheciusspeciosusDrury[74]。而且,雌蟲也更傾向于選擇此類雄蟲進(jìn)行交配,以提高生殖適合度,產(chǎn)生較多或較大的后代[22,70,75]。雄蟲個(gè)體大小對(duì)生殖的具體影響主要表現(xiàn)在以下兩個(gè)方面:
(1)個(gè)體較大的雄蟲生殖力較高,產(chǎn)生的精子數(shù)量多、個(gè)體大、活力強(qiáng),具有較強(qiáng)的交配后競爭能力[20,22]。Wedell對(duì)20種螽斯的體形研究發(fā)現(xiàn),個(gè)體較大的雄蟲在交配時(shí)射精量較大,由此增強(qiáng)精子競爭力,促使對(duì)雌蟲體內(nèi)低活性精子的取代,進(jìn)而提高受精成功率[23]。Gage在蝶類中發(fā)現(xiàn),雄蟲個(gè)體大小與所產(chǎn)生精子的長度呈正相關(guān),而較長的精子鞭毛動(dòng)力較強(qiáng),游動(dòng)較快,在精子競爭中占有優(yōu)勢[21]。這些優(yōu)勢在一妻多夫制的昆蟲中十分突出:此類昆蟲的雌成蟲經(jīng)常長時(shí)間持有多頭雄蟲的精子,至產(chǎn)卵時(shí)才受精,故精子間的競爭尤為激烈,在此情況下,大個(gè)體雄蟲因能產(chǎn)生競爭力較強(qiáng)的精子而易在交配競爭中取勝[21,23]。
(2)個(gè)體較大的雄蟲營養(yǎng)狀況相對(duì)較好,在求偶或交配時(shí)能給雌蟲提供相對(duì)較多、或較大、或營養(yǎng)更豐富的彩禮(Nuptial Gift),更具有求偶和交配上的優(yōu)勢[24]。許多雄蟲在交配時(shí)通過精包將彩禮傳遞給雌蟲,精包中除精子外還含有一些雄性附腺分泌物、營養(yǎng)物質(zhì)或從環(huán)境中獲得的一些化學(xué)物質(zhì)[76- 77]。這些精包物質(zhì)中,有的能被雌蟲用于卵子發(fā)育,成為卵的一部分,由此提高雌蟲生殖力[23],有的則能抑制雌蟲短時(shí)間內(nèi)與其他雄蟲發(fā)生再次交配[24]。此外,在少數(shù)昆蟲中,有的精包物質(zhì)還具有保護(hù)功能。例如,黃瓜十一星葉甲食根亞種DiabroticaundecimpunctatahowardiBarber的雄蟲在葫蘆上獲得一種苦味的四環(huán)三萜化合物后,能通過交配將其傳遞給雌蟲,此后該物質(zhì)被結(jié)合在卵粒中,保護(hù)卵粒免受捕食[78]。又如,寬肩葉甲OreinagloriosaF.的雄蟲能生成強(qiáng)心苷,此物質(zhì)在個(gè)體較大的雄蟲中濃度相對(duì)較高,能通過交配傳遞給雌蟲,在雌蟲及后代防御捕食性天敵的過程中起重要作用[44]。
此外,個(gè)體大小還可對(duì)雄蟲的生殖產(chǎn)生其他方面的影響。例如,個(gè)體較大的雄蟲求偶信息素含量相對(duì)較高,釋放量較大,有利于搜索和發(fā)現(xiàn)配偶[26- 27];交配次數(shù)較多[28]等。
需指出的是,個(gè)體較小的雄蟲雖然在交配競爭和生殖力方面不占優(yōu)勢,但有可能通過其他途徑對(duì)此進(jìn)行彌補(bǔ),例如增強(qiáng)尋找配偶的活力[79],求偶行為更為敏捷[68,80],延長交配的持續(xù)時(shí)間[13]等。
在許多有翅昆蟲中,個(gè)體大小與翅的形狀和飛行肌發(fā)育狀況存在密切關(guān)系,因此是影響昆蟲飛行及與飛行相關(guān)的其他行為如覓食、空中求偶與交配等的一個(gè)重要因子[30-32]。
個(gè)體大小與飛行能力關(guān)系的一個(gè)典型例子發(fā)現(xiàn)于胡蜂(社會(huì)性昆蟲)中。在新熱帶區(qū),不同種類的胡蜂有著相似的捕食習(xí)性,均依賴飛行進(jìn)行遷移,且個(gè)體大小差異很大,由于具備這些特點(diǎn),此類昆蟲十分適用于個(gè)體大小與飛行能力關(guān)系的研究。García和Sarmiento分析了其中馬蜂亞科12個(gè)屬56個(gè)種526個(gè)個(gè)體的體形與翅形、胸部肌肉組織(為翅動(dòng)力產(chǎn)生的主要來源)的關(guān)系,發(fā)現(xiàn)個(gè)體較小的種翅形相對(duì)較圓,翅脈較集中在近側(cè)區(qū),氣孔較大,胸部肌肉所占比例較大;而個(gè)體較大的種則翅形較瘦長,翅脈較往遠(yuǎn)側(cè)區(qū)伸長,氣孔較小,胸部肌肉所占比例較小[30]。從空氣動(dòng)力學(xué)的角度來分析,這些結(jié)構(gòu)特征體現(xiàn)了不同個(gè)體大小的昆蟲在飛行上的適應(yīng)性。具體而言,小個(gè)體蜂的圓形翅有利于增加翅的橫切面,胸部肌肉增多有利于提高翅動(dòng)力,兩者均有助于小個(gè)體克服飛行中的強(qiáng)阻力這一核心問題;氣孔增大則有助于蟲體控制翅迎角,緩解風(fēng)力作用下出現(xiàn)翅彎曲的現(xiàn)象。而對(duì)個(gè)體較大的蜂而言,翅瘦長有利于其進(jìn)行更積極和高效的飛行,降低對(duì)飛行肌的依賴,從而有利于克服較大體重導(dǎo)致的舉升力難題;翅脈往遠(yuǎn)側(cè)區(qū)伸長有助于應(yīng)對(duì)空氣粘滯力,防止長翅在拍打過程中發(fā)生變形[30,81]。因此,不論是大個(gè)體還是小個(gè)體昆蟲,它們均已進(jìn)化形成許多有利于各自飛行的形態(tài)結(jié)構(gòu)。
除了與上述翅形、飛行肌等方面相關(guān)外,個(gè)體大小與體溫調(diào)節(jié)能力也有關(guān),進(jìn)而影響到飛行行為[55,82- 83]。例如,在膜翅目昆蟲中,個(gè)體較大者體溫上升較快,維持體溫的能力較強(qiáng),有利于其更早、更頻繁和更快地飛行[55,82]。
在個(gè)體大小對(duì)與飛行相關(guān)的其他行為的影響上,以覓食能力最為顯著。對(duì)蜂類[34- 35]、綠叢螽斯TettigoniaviridissimaL.[36]等昆蟲的研究發(fā)現(xiàn),個(gè)體大小和覓食距離之間存在一定的正相關(guān)性,個(gè)體越大,飛行距離越遠(yuǎn),覓食范圍越大,覓食效率越高。
有關(guān)個(gè)體大小通過影響昆蟲飛行能力進(jìn)而影響求偶、交配、捕食或防御能力的報(bào)道較少?,F(xiàn)有研究表明,大個(gè)體和小個(gè)體在這些方面各具優(yōu)勢。例如,Samejima和Tsubaki對(duì)棱脊綠色蟌MnaiscostalisSelys研究發(fā)現(xiàn),大個(gè)體雄蟲的飛行肌重量較大,有利于提高最大舉升力(Maximum Lifting Force,MLF,是衡量飛行能力的常用指標(biāo),在靜止空氣中,飛行動(dòng)物為了控制空中運(yùn)動(dòng)需使其舉升力超過自身體重),從而有利于交配過程中托舉雌蟲和應(yīng)對(duì)空中其他雄蟲的競爭;但另一方面,飛行肌重量與體重之比(Flight Muscle Ratio)的上升可導(dǎo)致其體形校正舉升力(Size-Corrected Lifting Force,SCLF,為MLF與身體干重之比,是一個(gè)加速度指標(biāo),可反映飛行時(shí)的空中敏捷程度)下降,使飛行的敏捷度降低。相比之下,對(duì)小個(gè)體而言,雖然因MLF較低其飛行能力受到限制,但較大的SCLF有助于提高其對(duì)飛行的控制能力和空中加速度能力,由此獲得較高的飛行敏捷度,增強(qiáng)潛行交配、空中獲取配偶、躲避天敵捕食的能力[31]。
有關(guān)昆蟲個(gè)體大小影響攝食的研究大多集中在蟻類。對(duì)弓背蟻Camponotusmus(Roger)工蟻的研究發(fā)現(xiàn),嗉囊的食物負(fù)載重量和攝食速率均與體重呈正相關(guān)[84]。攝食速率隨個(gè)體的增大而提高的可能原因是,個(gè)體增大后,頭部隨之加寬,頭部與攝食相關(guān)的一些生理結(jié)構(gòu)參數(shù)如食竇容積、食道直徑等均相應(yīng)增大,攝食時(shí)頭部相關(guān)肌肉收縮產(chǎn)生的食竇泵壓力也得以增強(qiáng)[84- 85]。與前述生殖、飛行等情況類似,小個(gè)體昆蟲也會(huì)產(chǎn)生一些與取食相關(guān)的適合度補(bǔ)償行為,如對(duì)黃糞蠅Scathophagastercoraria(L.)的研究表明,與大個(gè)體相比,雖然小個(gè)體攝食的速度較慢,但能更快達(dá)到飽腹?fàn)顟B(tài),且其保持身體活力所需要的食物量也較小,故在權(quán)衡分配用于取食、尋找配偶的時(shí)間時(shí)顯得更具優(yōu)勢(Time Budget Advantage),即小個(gè)體較傾向于減少取食時(shí)間來增加尋找配偶的時(shí)間,以此提高交配方面的適合度[86]。對(duì)大黽蝽Aquariusremigis(Say)雄蟲的研究也發(fā)現(xiàn)了同樣的情況[87]。
個(gè)體大小在一定程度上決定著昆蟲所能利用的食料種類[88]。例如,個(gè)體較大的弓背蟻適合于攝食粘度高的花蜜以及流速快的蜜腺;相比之下,小個(gè)體弓背蟻由于食道橫截面較小,難以吸取粘度高的食物,而只適合攝食粘度低且流速慢的花蜜[89]。
研究說明,大個(gè)體的昆蟲在競爭食物、侵占或保衛(wèi)領(lǐng)地、防御天敵等方面均表現(xiàn)出一定的優(yōu)勢[43,75,90]。對(duì)體內(nèi)含有化學(xué)防御物質(zhì)的昆蟲種類而言,大個(gè)體也占據(jù)競爭優(yōu)勢。如在寬肩葉甲O.gloriosa中,與其攻擊和防御能力相關(guān)的物質(zhì)強(qiáng)心苷在個(gè)體較大的雄蟲中含量較高,因此,大個(gè)體雄蟲更具競爭優(yōu)勢,而且雌蟲也傾向于選擇個(gè)體較大的雄蟲進(jìn)行交配,以提高自身及后代防御捕食性天敵的能力[44]。
然而,個(gè)體較大者由于目標(biāo)明顯,容易招致天敵攻擊,對(duì)天敵昆蟲而言則易導(dǎo)致寄主或獵物產(chǎn)生防御反應(yīng)。例如,Ameri等發(fā)現(xiàn)黑豆蚜AphisfabaeScopoli會(huì)根據(jù)其寄生蜂豆柄瘤蚜繭蜂的個(gè)體大小做出判斷,當(dāng)遇到較大的寄生蜂時(shí)其腹管會(huì)分泌較多的防御物質(zhì)[48]。
總體而言,同種昆蟲中大個(gè)體的抗逆性較強(qiáng)。例如,個(gè)體較大者體內(nèi)儲(chǔ)存的能量物質(zhì)相對(duì)較多,故耐饑能力較強(qiáng)[49- 51]。又如,大個(gè)體對(duì)不適環(huán)境溫度的耐受能力也較強(qiáng)。大個(gè)體昆蟲的相對(duì)表面積(表面積與體積之比)較小,熱慣性較大,散熱較慢,較能適應(yīng)寒冷的氣候條件,故越冬存活能力較強(qiáng)[90- 91]。例如,Baranovska和Knapp對(duì)步甲Anchomenusdorsalis(Pontoppidan)研究發(fā)現(xiàn),春季采集的冬后個(gè)體比上一年秋季采集的個(gè)體要大,其可能的原因是越冬期間大個(gè)體的存活率相對(duì)較高[8]。同理,個(gè)體較大的昆蟲對(duì)高溫的耐受力也相對(duì)較強(qiáng)[92]。
在資源數(shù)量有限或存在環(huán)境脅迫的條件下,同種內(nèi)較大個(gè)體也有可能表現(xiàn)出生存劣勢[3,10]。例如,Couvillon和Dornhaus對(duì)熊蜂BombusimpatiensCresson研究發(fā)現(xiàn),大個(gè)體工蜂的耐饑能力不如小個(gè)體工蜂,其可能的原因是大個(gè)體工蜂由于體形較大,其維持機(jī)體基本生命活動(dòng)的能量消耗相對(duì)較大[52]。Yasuda和Dixon對(duì)二星瓢蟲Adaliabipunctata(L.)研究表明,當(dāng)食物充足時(shí),不同大小的雄蟲交配能力無差異;而當(dāng)食物供給有限時(shí),大個(gè)體雄蟲由于需要更多的能量來維持機(jī)體功能,它們將較多的時(shí)間和精力投入在取食等能量積累活動(dòng)上而不是交配上,從而導(dǎo)致交配中的成功爬跨及交配次數(shù)下降[93]。除食物限制外,較大個(gè)體在高溫脅迫下也可能增加死亡率。以云杉線小卷蛾ZeirapheracanadensisMut. & Free.為例,在適宜環(huán)境溫度下,雌蛾壽命與體形大小呈正相關(guān),但當(dāng)環(huán)境溫度較高時(shí),大個(gè)體雌蛾的體溫升高幅度顯著大于小個(gè)體雌蛾,故高溫脅迫下雌蛾壽命反而與體形大小呈負(fù)相關(guān)[94]。
對(duì)社會(huì)性昆蟲而言,成蟲個(gè)體大小與勞動(dòng)分工存在密切關(guān)系。例如,在熊蜂蜂群中,工蜂間的體形差異很大,大工蜂的體重為小工蜂的10倍之多,大者主要負(fù)責(zé)外出覓食,而小者則主要在蜂巢內(nèi)負(fù)責(zé)哺育幼蟲、清潔巢室等工作[32- 33,37,52]。較大個(gè)體的工蜂之所以更擅長于在外覓食,原因有[32,37,52]:①吸吮食物的相關(guān)器官(如舌)和肌肉較發(fā)達(dá),口器較易伸至蜜腺,吸食花蜜的速度也較快,故在相同時(shí)間內(nèi)能采回較多的花蜜;②視覺系統(tǒng)較敏感,更容易探尋到花朵:與小個(gè)體相比,大個(gè)體工蜂的眼較大,小眼數(shù)量較多,眼斑直徑和面直徑較大,故對(duì)光的敏感性較強(qiáng),有利于在清晨、傍晚等弱光條件下飛行,能較早探尋到花蜜資源(且許多花在清晨會(huì)比其他時(shí)間段有更高的花蜜儲(chǔ)存量),或者在其他昆蟲不易發(fā)現(xiàn)的較暗區(qū)域探尋到花朵;③嗅覺系統(tǒng)較敏感,有利于探尋到花朵:表現(xiàn)為觸角嗅覺感受器的數(shù)量較多,密度較大,對(duì)氣味產(chǎn)生行為反應(yīng)的閾值濃度較低;④能較好地調(diào)節(jié)體溫以便在較低溫度下覓食飛行:有的熊蜂其大個(gè)體甚至在環(huán)境溫度接近冰點(diǎn)時(shí)仍能維持飛行所需的體溫;⑤不易被捕食。小個(gè)體工蜂在分工上的優(yōu)勢尚未得到證實(shí)[52]。
對(duì)蜂群而言,其生長、繁殖和存活強(qiáng)烈依賴于對(duì)花蜜和花粉的不斷攝取,上述大個(gè)體工蜂在相關(guān)生理結(jié)構(gòu)及感覺系統(tǒng)敏感性上的突出優(yōu)勢,恰能滿足要求,體現(xiàn)了此類昆蟲在種群生物學(xué)方面的強(qiáng)大適應(yīng)性。
在最近20多年中,人們對(duì)昆蟲個(gè)體大小與種群生物學(xué)的關(guān)系進(jìn)行了較多研究,明確了該性狀與生殖、飛行、攝食、競爭、防御、抗逆性、社會(huì)分工等種群行為的基本關(guān)系(表1)??傮w而言,在同種昆蟲內(nèi),體形較大的個(gè)體在許多方面占有優(yōu)勢,有助于提高種群適合度。其中最主要的發(fā)現(xiàn)是,個(gè)體較大時(shí)有助于提高雌蟲的生殖力,以及雄蟲求偶、交配及交配后精子競爭的能力。對(duì)其他方面影響的報(bào)道相對(duì)較少,具體表現(xiàn)因種而異。值得注意的是,盡管同種內(nèi)較大個(gè)體具有許多生活史優(yōu)勢,但在資源有限或存在環(huán)境脅迫的情況下,大個(gè)體也有可能處于生存劣勢。這說明在昆蟲個(gè)體大小的進(jìn)化過程中存在一定的穩(wěn)定化選擇(Stabilizing Selection)趨勢,也解釋了一些個(gè)體大小與昆蟲適合度并不相關(guān)的現(xiàn)象。
今后,此領(lǐng)域許多方面的研究有待加強(qiáng)。例如,在考察個(gè)體大小的生態(tài)學(xué)效應(yīng)時(shí),有待更多地將多個(gè)性狀進(jìn)行綜合研究。如在評(píng)價(jià)雄蟲大小與生殖的關(guān)系時(shí),需將交配次數(shù)、射精量、精子競爭力、交配持續(xù)時(shí)間、交配恢復(fù)時(shí)間等多個(gè)生殖指標(biāo)同時(shí)進(jìn)行考察。這是因?yàn)椋煌笮〉男巯x在這些方面各有千秋,個(gè)體較大者在與雌蟲的交配成功率、交配次數(shù)方面占有優(yōu)勢,而個(gè)體較小者可能在單次交配的持續(xù)時(shí)間和射精量、受精成功率等方面占有優(yōu)勢,若僅考察其中一二個(gè)指標(biāo),結(jié)果會(huì)失之偏頗[95]。
又如,除了在種群水平的影響外,還需考察個(gè)體大小在群落水平上產(chǎn)生的影響。研究表明,個(gè)體大小可通過影響昆蟲的種群動(dòng)態(tài)、遺傳結(jié)構(gòu)和生活史而影響與其他物種之間的關(guān)系,如捕食、寄生、種子擴(kuò)散和授粉等。此方面以蜂類最具代表性。作為植物最重要的傳粉動(dòng)物,蜂類的覓食距離能影響多種開花植物的兩性生殖過程,從而對(duì)植物種群的遺傳結(jié)構(gòu)產(chǎn)生較大影響,這種影響對(duì)處于生境碎片里的植物尤為明顯[34]。
近年來,出現(xiàn)了許多有關(guān)昆蟲個(gè)體大小與其他性狀進(jìn)化關(guān)系的報(bào)道,如發(fā)育期長短[96],蝶類眼點(diǎn)(眼狀斑紋,可用于阻止天敵捕食)[97],蟻巢等級(jí)制度[98]等。還有少數(shù)研究將個(gè)體大小作為考察外來入侵昆蟲適應(yīng)性和進(jìn)化程度的一個(gè)指標(biāo)[99- 100]。這些研究有助于我們從進(jìn)化角度理解個(gè)體大小形成的機(jī)制及相關(guān)生態(tài)學(xué)效應(yīng),豐富對(duì)此領(lǐng)域的認(rèn)識(shí)。
在應(yīng)用上,有關(guān)昆蟲個(gè)體大小與種群生物學(xué)關(guān)系的理論知識(shí),對(duì)益蟲利用、害蟲防治技術(shù)的研發(fā)或改進(jìn)具有重要指導(dǎo)價(jià)值。例如,在人工繁養(yǎng)昆蟲時(shí),需首先明確環(huán)境條件對(duì)其個(gè)體大小的影響狀況,以及個(gè)體大小對(duì)交配、生殖和后代適合度的影響,進(jìn)而優(yōu)化繁養(yǎng)條件,得到具最優(yōu)個(gè)體大小的昆蟲。在采用昆蟲不育技術(shù)控制害蟲時(shí)尤其需注意這一點(diǎn),這是因?yàn)?,此?xiàng)技術(shù)的要點(diǎn)是盡可能提高釋放的不育雄蟲與野外雌蟲的交配能力和授精能力,其中繁育出大小合適的雄蟲是關(guān)鍵[66]。又如,在采用庇護(hù)所策略治理靶標(biāo)昆蟲對(duì)轉(zhuǎn)基因作物的抗性時(shí),需考慮到庇護(hù)所植物和轉(zhuǎn)基因作物上靶標(biāo)害蟲的個(gè)體大小差異及其對(duì)相互間交配能力的影響;若兩類植物上害蟲個(gè)體大小差異明顯,并由此影響到交配,則庇護(hù)所不能起到稀釋抗性基因的作用[13,30,101]。在利用蜂類作為傳粉昆蟲來提高作物產(chǎn)量時(shí),則需考慮其個(gè)體大小與飛行及歸巢能力之間的關(guān)系,從而確定其最大可傳粉范圍[34- 35]。
[1] Siemann E, Tilman D, Haarstad J. Insect species diversity, abundance and body size relationships. Nature, 1996, 380(6576): 704- 706.
[2] Memmott J, Martinez N D, Cohen J E. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. Journal of Animal Ecology, 2000, 69(1): 1- 15.
[3] Blanckenhorn W U. The evolution of body size: what keeps organisms small?. The Quarterly Review of Biology, 2000, 75(4): 385- 407.
[4] Savage V M, Gillooly J F, Brown J H, West G B, Charnov E L. Effects of body size and temperature on population growth. The American Naturalist, 2004, 163(3): 429- 441.
[5] Blanckenhorn W U, Demont M. Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum//Annual Meeting of the Society-for-Integrative-and-Comparative-Biology. New Orleans, LA: Integrative & Comparative Biology, 2004, 44(6): 413- 424.
[6] Whitman D W. The significance of body size in the Orthoptera: a review. Journal of Orthoptera Research, 2008, 17(2): 117- 134.
[7] Henri D C, van Veen F J F. Body size, life history and the structure of host-parasitoid networks. Advances in Ecological Research, 2011, 45: 135- 180.
[8] Baranovská E, Knapp M. Small-scale spatiotemporal variability in body size of two common carabid beetles. Central European Journal of Biology, 2014, 9(5): 476- 494.
[9] Miura K, Ohsaki N. Mortality effects of the parasitoid flesh flyBlaesoxiphajaponensis(Diptera: Sarcophagidae) in relation to body size of the adult grasshopperParapodismatanbaensis(Orthoptera: Catantopidae). Applied Entomology and Zoology, 2014, 49(1): 171- 176.
[10] Chown S L, Gaston K J. Body size variation in insects: a macroecological perspective. Biological Reviews, 2010, 85(1): 139- 169.
[11] Fox C W, Mclennan L A, Mousseau T A. Male body size affects female lifetime reproductive success in a seed beetle. Animal Behaviour, 1995, 50(1): 281- 284.
[12] Kang J, Krupke C H. Influence of weight of male and female western corn rootworm (Coleoptera: Chrysomelidae) on mating behaviors. Annals of the Entomological Society of America, 2009, 102(2): 326- 332.
[13] French B W, Hammack L. Male reproductive competition and components of female fitness in relation to body size in northern corn rootworm (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America, 2014, 107(1): 279- 287.
[14] Bissoondath C J, Wiklund C. Effect of male body size on sperm precedence in the polyandrous butterflyPierisnapiL. (Lepidoptera: Pieridae). Behavioral Ecology, 1997, 8(5): 518- 523.
[15] Yoshimura M. Relations of intraspecific variations in fecundity, clutch size, and oviposition frequency to the body size in three species of stoneflies,Sweltsasp.,Isoperlaaizuana, andStavsolusjaponicus. Limnology, 2003, 4(2): 109- 112.
[16] Visser M E. The importance of being large: the relationship between size and fitness in females of the parasitoidAphaeretaminuta(Hymenoptera: Braconidae). Journal of Animal Ecology, 1994, 63(4): 963- 978.
[17] Jervis M A, Ferns P N, Heimpel G E. Body size and the timing of egg production in parasitoid wasps: a comparative analysis. Functional Ecology, 2003, 17(3): 375- 383.
[18] Thorne A D, Pexton J J, Dytham C, Mayhew P J. Small body size in an insect shifts development, prior to adult eclosion, towards early reproduction. Proceedings of the Royal Society B-Biological Sciences, 2006, 273(1590): 1099- 1103.
[19] Kant R, Minor M A, Trewick S A, Sandanayaka W R M. Body size and fitness relation in male and femaleDiaeretiellarapae. BioControl, 2012, 57(6): 759- 766.
[20] Durocher-Granger L, Martel V, Boivin G. Gamete number and size correlate with adult size in the egg parasitoidTrichogrammaeuproctidis. Entomologia Experimentalis et Applicata, 2011, 140(3): 262- 268.
[21] Gage M J G. Associations between body size, mating pattern, testis size and sperm lengths across butterflies. Proceedings of the Royal Society B-Biological Sciences, 1994, 258(1353): 247- 254.
[22] Savalli U M, Fox C W. Sexual selection and the fitness consequences of male body size in the seed beetleStatorlimbatus. Animal Behaviour, 1998, 55(2): 473- 483.
[23] Wedell N. Ejaculate size in bushcrickets: the importance of being large. Journal of Evolutionary Biology, 1997, 10(3): 315- 325.
[24] French B W, Hammack L. Spermatophore size in relation to body size and pairing duration in northern corn rootworm (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America, 2012, 105(3): 506- 511.
[25] Blay S, Yuval B. Oviposition and fertility in the Mediterranean fruit fly (Diptera: Tephritidae): effects of male and female body size and the availability of sperm. Annals of the Entomological Society of America, 1999, 92(2): 278- 284.
[26] Conner W E, Roach B, Benedict E, Meinwald J, Eisner T. Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth,Utetheisaornatrix. Journal of Chemical Ecology, 1990, 16(2): 543- 552.
[27] Blaul B, Ruther J. Body size influences male pheromone signals but not the outcome of mating contests inNasoniavitripennis. Animal Behaviour, 2012, 84(6): 1557- 1563.
[28] Shimamoto K, Kasuya E, Yasumoto A A. Effects of body size on mating in solitary beeColletesperforator(Hymenoptera: Colletidae). Annals of the Entomological Society of America, 2006, 99(4): 714- 717.
[29] Kosal E F, Niedzlek-Feaver M. Parental size influence on offspring phenotype inSchistocercaamericana(Orthoptera: Acrididae). Journal of Orthoptera Research, 2007, 16(1): 51- 55.
[30] García Z, Sarmiento C E. Relationship between body size and flying-related structures in Neotropical social wasps (Polistinae, Vespidae, Hymenoptera). Zoomorphology, 2012, 131(1): 25- 35.
[31] Samejima Y, Tsubaki Y. Body temperature and body size affect flight performance in a damselfly. Behavioral Ecology and Sociobiology, 2010, 64(4): 685- 692.
[32] Kapustjanskij A, Streinzer M, Paulus H F, Spaethe J. Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Functional Ecology, 2007, 21(6): 1130- 1136.
[33] Spaethe J, Brockmann A, Halbig C, Tautz J. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften, 2007, 94(9): 733- 739.
[34] Greenleaf S S, Williams N M, Winfree R, Kremen C. Bee foraging ranges and their relationship to body size. Oecologia, 2007, 153(3): 589- 596.
[35] Guédot C, Bosch J, Kemp W P. Relationship between body size and homing ability in the genusOsmia(Hymenoptera; Megachilidae). Ecological Entomology, 2009, 34(1): 158- 161.
[36] Cooper E M, Lunt P H, Ellis J S, Knight M E. Biogeographical patterns of variation in Western European populations of the great green bush-cricket (Tettigoniaviridissima; Orthoptera Tettigoniidae). Journal of Insect Conservation, 2013, 17(3): 431- 440.
[37] Spaethe J, Weidenmüller A. Size variation and foraging rate in bumblebees (Bombusterrestris). Insectes Sociaux, 2002, 49(2): 142- 146.
[38] Yang L H. Effects of body size and plant structure on the movement ability of a predaceous stinkbug,Podisusmaculiventris(Heteroptera: Pentatomidae). Oecologia, 2000, 125(1): 85- 90.
[39] Larsen H, Burns K C. Seed dispersal effectiveness increases with body size in New Zealand alpine scree weta (Deinacridaconnectens). Austral Ecology, 2012, 37(7): 800- 806.
[40] Wang X G, Messing R H. Fitness consequences of body-size-dependent host species selection in a generalist ectoparasitoid. Behavioral Ecology and Sociobiology, 2004, 56(6): 513- 522.
[41] Novotny V, Basset Y. Body size and host plant specialization: a relationship from a community of herbivorous insects onFicusfrom Papua New Guinea. Journal of Tropical Ecology, 1999, 15(3): 315- 328.
[42] Davis R B,unap E, Javoi? J, Gerhold P, Tammaru T. Degree of specialization is related to body size in herbivorous insects: a phylogenetic confirmation. Evolution, 2013, 67(2): 583- 589.
[43] Kim J Y. Female size and fitness in the leaf-cutter beeMegachileapicalis. Ecological Entomology, 1997, 22(3): 275- 282.
[44] Labeyrie E, Blanckenhorn W U, Rahier M. Mate choice and toxicity in two species of leaf beetles with different types of chemical defense. Journal of Chemical Ecology, 2003, 29(7): 1665- 1680.
[45] Wu G M, Barrette M, Boivin G, Brodeur J, Giraldeau L A, Hance T. Temperature influences the handling efficiency of an aphid parasitoid through body size-mediated effects. Environmental Entomology, 2011, 40(3): 737- 742.
[46] Ryder J J, Siva-Jothy M T. Quantitative genetics of immune function and body size in the house cricket,Achetadomesticus. Journal of Evolutionary Biology, 2001, 14(4): 646- 653.
[47] Vainio L, Hakkarainen H, Rantala M J, Sorvari J. Individual variation in immune function in the antFormicaexsecta; effects of the nest, body size and sex. Evolutionary Ecology, 2004, 18(1): 75- 84.
[48] Ameri M, Rasekh A, Michaud J P. Body size affects host defensive behavior and progeny fitness in a parasitoid wasp,Lysiphlebusfabarum. Entomologia Experimentalis et Applicata, 2014, 150(3): 259- 268.
[49] Ellers J, Van Alphen J J M, Sevenster J G. A field study of size-fitness relationships in the parasitoidAsobaratabida. Journal of Animal Ecology, 1998, 67(2): 318- 324.
[50] Heinze J, Foitzik S, Fischer B, Wanke T, Kipyatkov V E. The significance of latitudinal variation in body size in a holarctic ant,Leptothoraxacervorum. Ecography, 2003, 26(3): 349- 355.
[51] Gergs A, Jager T. Body size-mediated starvation resistance in an insect predator. Journal of Animal Ecology, 2014, 83(4): 758- 768.
[52] Couvillon M J, Dornhaus A. Small worker bumble bees (Bombusimpatiens) are hardier against starvation than their larger sisters. Insectes Sociaux, 2010, 57(2): 193- 197.
[53] Renault D, Hance T, Vannier G, Vernon P. Is body size an influential parameter in determining the duration of survival at low temperatures inAlphitobiusdiaperinusPanzer (Coleoptera: Tenebrionidae)?. Journal of Zoology, 2003, 259(4): 381- 388.
[54] Kemp D J, Krockenberger A K. Behavioural thermoregulation in butterflies: the interacting effects of body size and basking posture inHypolimnasbolina(L.) (Lepidoptera: Nymphalidae). Australian Journal of Zoology, 2004, 52(3): 229- 236.
[55] Stone G N. Endothermy in the solitary beeAnthophoraplumipes: independent measures of thermoregulatory ability, costs of warm-up and the role of body size. Journal of Experimental Biology, 1993, 174: 299- 320.
[56] Le Lagadec M D, Chown S L, Scholtz C H. Desiccation resistance and water balance in southern African keratin beetles (Coleoptera, Trogidae): the influence of body size and habitat. Journal of Comparative Physiology B-Biochemical Systemic and Environmental, 1998, 168(2): 112- 122.
[57] Honěk A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos, 1993, 66(3): 483- 492.
[58] Logan D P, Allsopp P G, Zalucki M P. Effect of body size on fecundity of childers canegrub,AntitrogusparvulusBritton (Coleoptera: Scarabaeidae). Australian Journal of Entomology, 2001, 40(4): 365- 370.
[59] Marshall J M, Miller M A, Lelito J P, Storer A J. Latitudinal variation in body size ofAgrilusplanipennisand relationship with fecundity. Agricultural and Forest Entomology, 2013, 15(3): 294- 300.
[60] Tammaru T, Kaitaniemi P, Ruohom?ki K. Realized fecundity inEpirritaautumnata(Lepidoptera: Geometridae): relation to body size and consequences to population dynamics. Oikos, 1996, 77(3): 407- 416.
[61] Berger D, Olofsson M, Friberg M, Karlsson B, Wiklund C, Gotthard K. Intraspecific variation in body size and the rate of reproduction in female insects-adaptive allometry or biophysical constraint?. Journal of Animal Ecology, 2012, 81(6): 1244- 1258.
[62] Sagarra L A, Vincent C, Stewart R K. Body size as an indicator of parasitoid quality in male and femaleAnagyruskamali(Hymenoptera: Encyrtidae). Bulletin of Entomological Research, 2001, 91(5): 363- 367.
[63] Fox C W. The influence of egg size on offspring performance in the seed beetle,Callosobruchusmaculatus. Oikos, 1994, 71(2): 321- 325.
[64] González-Teuber M, Segovia R, Gianoli E. Effects of maternal diet and host quality on oviposition patterns and offspring performance in a seed beetle (Coleoptera: Bruchidae). Naturwissenschaften, 2008, 95(7): 609- 615.
[65] Bauerfeind S S, Fischer K. Maternal body size as a morphological constraint on egg size and fecundity in butterflies. Basic and Applied Ecology, 2008, 9(4): 443- 451.
[66] Kumano N, Kuriwada T, Shiromoto K, Haraguchi D, Kohama T. Effect of body size and sex ratio on male alternative mating tactics of the West Indian sweetpotato weevil,Euscepespostfasciatus. Entomologia Experimentalis et Applicata, 2010, 135(2): 154- 161.
[67] Saleh N W, Larson E L, Harrison R G. Reproductive success and body size in the cricketGryllusfirmus. Journal of Insect Behavior, 2014, 27(3): 346- 356.
[68] Serrano-Meneses M A, Córdoba-Aguilar A, Méndez V, Layen S J, Székely T. Sexual size dimorphism in the American rubyspot: male body size predicts male competition and mating success. Animal Behaviour, 2007, 73(6): 987- 997.
[69] Rivera A C, Pérez F J E, Andrés J A. The effect of handling damage, mobility, body size, and fluctuating asymmetry on lifetime mating success ofIschnuragraellsii(Rambur) (Zygoptera: Coenagrionidae). Odonatologica, 2002, 31(2): 117- 128.
[70] Ritz M S, K?hler G. Natural and sexual selection on male behaviour and morphology, and female choice in a wild field cricket population: spatial, temporal and analytical components. Evolutionary Ecology, 2010, 24(5): 985- 1001.
[71] Biedermann R. Mating success in the spittlebugCercopissanguinolenta(Scopoli, 1763) (Homoptera, Cercopidae): the role of body size and mobility. Journal of Ethology, 2002, 20(1): 13- 18.
[72] Hanks L M, Millar J G, Paine T D. Body size influences mating success of the eucalyptus longhorned borer (Coleoptera: Cerambycidae). Journal of Insect Behavior, 1996, 9(3): 369- 382.
[73] Alcock J. The relation between male body size, fighting, and mating success in Dawson′s burrowing bee,Amegilladawsoni(Apidae, Apinae, Anthophorini). Journal of Zoology, 1996, 239(4): 663- 674.
[74] Coelho J R, Holliday C W. Effects of size and flight performance on intermale mate competition in the cicada killer,SpheciusspeciosusDrury (Hymenoptera: Sphecidae). Journal of Insect Behavior, 2001, 14(3): 345- 351.
[75] Alcock J, Kemp D J. The behavioral significance of male body size in the tarantula hawk waspHemipepsisustulata(Hymenoptera: Pompilidae). Ethology, 2006, 112(7): 691- 698.
[76] Gillott C. Male accessory gland secretions: modulators of female reproductive physiology and behavior. Annual Review of Entomology, 2003, 48: 163- 184.
[77] Gwynne D T. Sexual conflict over nuptial gifts in insects. Annual Review of Entomology, 2008, 53: 83- 101.
[78] Tallamy D W, Gorski P M, Burzon J K. Fate of male-derived cucurbitacins in spotted cucumber beetle females. Journal of Chemical Ecology, 2000, 26(2): 413- 427.
[79] Andersson M. Sexual Selection. New Jersey: Princeton University Press, 1994.
[80] Steele R H, Partridge L. A courtship advantage for small males inDrosophilasubobscura. Animal Behaviour, 1988, 36(4): 1190- 1197.
[81] Johansson F, S?derquist M, Bokma F. Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society, 2009, 97(2): 362- 372.
[82] Bishop J A, Armbruster W S. Thermoregulatory abilities of Alaskan bees: effects of size, phylogeny and ecology. Functional Ecology, 1999, 13(5): 711- 724.
[83] Verdú J R, Arellano L, Numa C. Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. Journal of Insect Physiology, 2006, 52(8): 854- 860.
[84] Josens R B. Nectar feeding and body size in the antCamponotusmus. Insectes Sociaux, 2002, 49(4): 326- 330.
[85] Paul J, Roces F. Fluid intake rates in ants correlate with their feeding habits. Journal of Insect Physiology, 2003, 49(4): 347- 357.
[86] Blanckenhorn W U, Viele S N T. Foraging in yellow dung flies: testing for a small-male time budget advantage. Ecological Entomology, 1999, 24(1): 1- 6.
[87] Blanckenhorn W U, Preziosi R F, Fairbairn D J. Time and energy constraints and the evolution of sexual size dimorphism-to eat or to mate?. Evolutionary Ecology, 1995, 9(4): 369- 381.
[88] Kubota U, Loyola R D, Almeida A M, Carvalho D A, Lewinsohn T M. Body size and host range co-determine the altitudinal distribution of Neotropical tephritid flies. Global Ecology and Biogeography, 2007, 16(5): 632- 639.
[89] Medan V, Josens R B. Nectar foraging behaviour is affected by ant body size inCamponotusmus. Journal of Insect Physiology, 2005, 51(8): 853- 860.
[90] Smith R J, Hines A, Richmond S, Merrick M, Drew A, Fargo R. Altitudinal variation in body size and population density ofNicrophorusinvestigator(Coleoptera: Silphidae). Environmental Entomology, 2000, 29(2): 290- 298.
[91] Merrick M J, Smith R J. Temperature regulation in burying beetles (Nicrophorusspp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature. Journal of Experimental Biology, 2004, 207(5): 723- 733.
[92] Gianoli E, Suárez L H, Gonzáles W L, González-Teuber M, Acua-Rodríguez I S. Host-associated variation in sexual size dimorphism and fitness effects of adult feeding in a bruchid beetle. Entomologia Experimentalis et Applicata, 2007, 122(3): 233- 237.
[93] Yasuda H, Dixon A F G. Sexual size dimorphism in the two spot ladybird beetleAdaliabipunctata: developmental mechanism and its consequences for mating. Ecological Entomology, 2002, 27(4): 493- 498.
[94] Carroll A L, Quiring D T. Interactions between size and temperature influence fecundity and longevity of a Tortricid moth,Zeirapheracanadensis. Oecologia, 1993, 93(2): 233- 241.
[95] Arnqvist G, Danielsson I. Postmating sexual selection: the effects of male body size and recovery period on paternity and egg production rate in a water strider. Behavioral Ecology, 1999, 10(4): 358- 365.
[96] Nijhout H F, Roff D A, Davidowitz G. Conflicting processes in the evolution of body size and development time. Philosophical Transactions of the Royal Society B-Biological Sciences, 2010, 365(1540): 567- 575.
[97] Hossie T J, Skelhorn J, Breinholt J W, Kawahara A Y, Sherratt T N. Body size affects the evolution of eyespots in caterpillars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(21): 6664- 6669.
[98] McGlynn T P, Diamond S E, Dunn R R. Tradeoffs in the evolution of caste and body size in the hyperdiverse ant genusPheidole. PLoS One, 2012, 7(10): e48202.
[99] Seiter S, Ohsaki N, Kingsolver J. Parallel invasions produce heterogenous patterns of life history adaptation: rapid divergence in an invasive insect. Journal of Evolutionary Biology, 2013, 26(12): 2721- 2728.
[100] Stotz G C, Suárez L H, Gonzáles W L, Gianoli E. Local host adaptation and use of a novel host in the seed beetleMegaceruseulophus. PLoS One, 2013, 8(1): e53892.
[101] French B W, Hammack L. Reproductive traits of northern corn rootworm (Coleoptera: Chrysomelidae) in relation to female and male body size. Annals of the Entomological Society of America, 2010, 103(4): 688- 694.
Effects of body size on the population biology of insects
HUANG Yunshan,ZHANG Jingyu,JIANG Mingxing*
InstituteofInsectSciences,ZhejiangUniversity,Hangzhou310058,China
Body size is one of the most important life-history traits of insects. As demonstrated in numerous studies, insect body size can have substantial effects on a number of biological characters, which in turn may influence population development as well as community structure and functions. In this paper, based on the studies published in the past two decades, we reviewed the major findings in this field, and focused on the effects of body size on following traits: 1) courtship, mating, fecundity of females and males, and fitness of their offspring; 2) flight performance, and the relevant behaviors such as foraging, aerial courting and mating; 3) food-uptake capacity and the type of preferred diets; 4) competition and defense capacity; 5) resistance to environment stress; and 6) labor division in social insects. In most cases, larger individuals are superior to small ones in certain aspects, reproduction, flight and adaptation to adverse environments in particular, which subsequently favors the increase of population fitness. We presented some viewpoints as to future studies, such as taking more biological traits into consideration when evaluating associations between body size and insect reproduction, and paying more attention on the ecological results of body size variance at the community level. From the practical perspective, it is suggested to take body size into account when developing insect-pest control or beneficial-insect utilization strategies.
body size; insects; reproduction; flight; foraging; competition; stress resistance; social division
10.5846/stxb201511172325
國家自然科學(xué)基金項(xiàng)目(31372001);國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973)項(xiàng)目(2009CB119200)
2015- 11- 17; 網(wǎng)絡(luò)出版日期:2016- 08- 30
黃韻姍,張靜宇,蔣明星.昆蟲個(gè)體大小對(duì)其種群生物學(xué)的影響.生態(tài)學(xué)報(bào),2017,37(7):2158- 2168.
Huang Y S,Zhang J Y,Jiang M X.Effects of body size on the population biology of insects.Acta Ecologica Sinica,2017,37(7):2158- 2168.
*通訊作者Corresponding author.E-mail: mxjiang@zju.edu.cn