臧一天,李保明,鄭煒超,盛孝維,吳紅翔,舒鄧群
?
微酸性電解水霧滴沉積量及粒徑對(duì)畜牧環(huán)境殺菌效果的影響
臧一天1,李保明2,鄭煒超2,盛孝維1,吳紅翔1,舒鄧群1※
(1. 江西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,南昌 330045;2. 中國(guó)農(nóng)業(yè)大學(xué)農(nóng)業(yè)部農(nóng)業(yè)結(jié)構(gòu)與環(huán)境工程重點(diǎn)實(shí)驗(yàn)室,北京 100083)
微酸性電解水為畜牧業(yè)初步應(yīng)用的環(huán)保消毒劑,為精確噴霧以減少殘留,先利用稱重法測(cè)量它在不同孔徑及壓力下的霧滴沉積量,研究該沉積量對(duì)殺菌效果影響,確定對(duì)衣物表面消毒最佳單位沉積量。隨后對(duì)比不同霧滴粒徑對(duì)衣物表面細(xì)菌的殺滅效果,以確定噴霧消毒方式。結(jié)果表明,不同壓強(qiáng)及噴頭下,霧滴沉積量具顯著性差異(<0.05)。且呈中間密集、兩端稀疏特征;隨壓強(qiáng)及孔徑增大,兩端呈先升后降趨勢(shì)。微酸性電解水(pH值6.15~6.35,有效氯濃度135 mg/L)對(duì)衣物表面消毒最佳沉積量為1.49×10-2g/cm2。大霧滴(80~90m)殺菌率在同時(shí)間下顯著高于小霧滴(<0.05),但其空間分布均勻性顯著(<0.05)低于小霧滴(≤30m)。霧滴粒徑及沉積量對(duì)微酸性電解水殺菌效果具顯著影響(<0.05)。
噴霧;消毒;沉積量;微酸性電解水;霧滴粒徑
微酸性電解水(slightly acidic electrolyzed water,SAEW)是一種無(wú)化學(xué)殘留,在畜牧業(yè)中初步應(yīng)用的新型環(huán)保型消毒劑[1-6],已有部分應(yīng)用于畜牧場(chǎng)噴霧消毒中[7-10];提高SAEW噴霧消毒效率并精確噴霧是降低殘留及成本,減少疫病風(fēng)險(xiǎn)的重要措施。使標(biāo)靶物質(zhì)表面的噴霧藥液沉積量達(dá)到一定數(shù)值是決定物質(zhì)表面消毒效果及消毒劑利用率的重要因素[11-12]。當(dāng)霧滴小時(shí),需增長(zhǎng)時(shí)間以達(dá)到相應(yīng)物質(zhì)表面藥液沉積量,當(dāng)霧滴大時(shí),可減少一定時(shí)間以達(dá)到物質(zhì)表面藥液沉積量。因此,選擇物質(zhì)表面合適噴霧藥液沉積量是決定消毒劑霧滴大小及其分布均勻度的先決條件,亦是提高SAEW噴霧消毒效率的重要影響因素之一。由此,測(cè)量SAEW在不同孔徑噴頭及壓力下形成霧滴在單位面積的沉積量,并衡量該沉積量對(duì)SAEW殺菌效果的影響便十分重要。
消毒劑利用率主要取決于霧滴大小,消毒劑流量及霧滴空間分布的均勻性[13-16]。在畜禽場(chǎng)實(shí)際消毒過(guò)程中,常用小霧滴噴霧,利用小霧滴(直徑<100m)較好穿透性及分布均勻性對(duì)空氣或物質(zhì)的表面進(jìn)行殺菌[17];南松劍[18]曾研究報(bào)道,霧滴大小不僅對(duì)SAEW的有效氯濃度(available chlorine concentration,ACC)有直接影響,且對(duì)空氣消毒效果有很大影響;當(dāng)霧滴越小時(shí),雖其ACC損失越大[19],但其噴霧分布均勻性會(huì)越好,且小霧滴穿透性能保證SAEW與空氣中粉塵及其上黏著的病原微生物充分發(fā)生反應(yīng)。因此,較小霧滴對(duì)空氣中病原微生物殺滅作用越強(qiáng)。在針對(duì)物質(zhì)表面消毒研究中,特別在養(yǎng)殖場(chǎng)入口處消毒通道中,經(jīng)常使用超聲波噴霧器,超聲波噴霧器可以產(chǎn)生很小霧滴(≤30m),從而實(shí)現(xiàn)高穿透性和高分布均勻度;但這種小霧滴存在對(duì)人體呼吸系統(tǒng)極易造成危害的現(xiàn)象,且因其霧滴小,需較長(zhǎng)時(shí)間噴霧才能達(dá)到一定噴霧量;Braekma等[20]研究表明太細(xì)霧滴易受風(fēng)流影響,飄移嚴(yán)重,不易沉積;特別是低于20m的霧滴,很難產(chǎn)生有效沉積。因此,研究霧滴大小對(duì)SAEW殺菌效果的影響是減少消毒時(shí)間以高效利用SAEW消毒效率的必要途徑。然而,目前雖有SAEW霧滴大小對(duì)ACC損失及對(duì)空氣消毒效果的研究[21-23],卻至今未有關(guān)于SAEW霧滴粒徑及其表面霧滴沉積量對(duì)殺菌效果影響的研究。
本文首先試驗(yàn)利用稱質(zhì)量法測(cè)量SAEW在不同孔徑噴頭及壓力下形成的霧滴沉積量,并隨后研究該沉積量對(duì)SAEW殺菌效果的影響,確定SAEW對(duì)衣物表面消毒的最佳沉積量。隨后,對(duì)比研究消毒通道內(nèi)超聲波噴霧器(≤30m)及較大霧徑噴霧器(80~90m)這2種具有不同霧滴粒徑的噴霧器對(duì)衣物表面微生物的殺滅作用,以確定霧滴粒徑對(duì)SAEW殺菌效果的影響。
1.1 材料及設(shè)備
沙門氏菌(CVCC 2184)購(gòu)于中國(guó)獸醫(yī)微生物菌種保藏管理中心,胰酪胨大豆肉湯培養(yǎng)基及硫代硫酸鈉中和劑均買自北京陸橋技術(shù)有限公司。高壓滅菌鍋(YXQ-LS-18SI)買自于上海博訊實(shí)業(yè)有限公司,電解水機(jī)由北京洲際公司生產(chǎn),pH計(jì)、ORP計(jì)型號(hào)為HM-30R,購(gòu)自日本,有效氯測(cè)定儀型號(hào)為RC-2Z,購(gòu)自日本。
霧滴沉積量模擬試驗(yàn)箱為自制(圖1),該試驗(yàn)箱為長(zhǎng)×寬×高各為1.6 m的透明玻璃房,在房頂部中央用電鉆鉆一圓形小孔,用以固定噴頭。在模擬箱的左側(cè)距底部10 cm處設(shè)置3個(gè)排風(fēng)口(試驗(yàn)中關(guān)閉),在模擬箱的正前方,設(shè)置一寬60 cm,高1.2 m的可開(kāi)關(guān)門。
1.2 試驗(yàn)地點(diǎn)選擇
超聲波自動(dòng)噴霧消毒試驗(yàn)在北京上莊試驗(yàn)站雞舍外消毒室進(jìn)行,該消毒室長(zhǎng)×寬×高為2.5 m×2.5 m×3 m,墻壁四周分布超聲波噴霧器,高度為2 m。較大霧徑自動(dòng)噴霧消毒試驗(yàn)在河北華裕公司養(yǎng)雞場(chǎng)的入口消毒通道中進(jìn)行,通道長(zhǎng)×寬×高為6.5 m×1 m×3 m,東西走向,南墻約2 m處安裝兩臺(tái)噴霧器,其距前門入口處各1.6和2.6 m,該噴霧器噴霧啟動(dòng)及時(shí)間受人員消毒控制器控制。
1.3 方法
1.3.1 霧滴沉積量測(cè)定方法
噴霧前,取一長(zhǎng)×寬為80 cm×50 cm的紅色平底托盤,在其中央一點(diǎn)標(biāo)記,并命名為A0;隨后用米尺測(cè)量其左右各距15 cm處,用碳素筆做標(biāo)記,并命名為A1及A2。取直徑為10 cm的3個(gè)平皿,清洗干凈,完全擦干后用稱量天平稱其質(zhì)量,記錄其初始質(zhì)量且編號(hào)為0、1、2。隨后將3個(gè)平皿依編號(hào)分別放置在A0、A1及A2處,放置時(shí),所做標(biāo)記點(diǎn)位于平皿底部正中央。
調(diào)節(jié)噴霧器壓力鈕至所需壓力,并更換所需孔徑噴頭,隨后將噴頭固定在玻璃模擬箱頂部中央。打開(kāi)噴霧器進(jìn)行噴霧,觀察霧徑范圍,隨后將托盤放置在玻璃模擬箱中,放置時(shí),A0平皿的中央標(biāo)記點(diǎn)與霧徑最中央處對(duì)齊,放置后立刻計(jì)時(shí),并將玻璃門關(guān)閉,待1 min后,關(guān)閉噴霧器,取出3個(gè)平皿,用干凈紙巾擦干平皿外部及底部所有水分,隨后放置在稱量天平中稱質(zhì)量并記錄,用噴霧后質(zhì)量減去噴霧前平皿質(zhì)量既為78.54 cm2的平皿在1 min中內(nèi)得到的SAEW(pH 6.15~6.35,ACC 135 mg/L)在不同壓力和孔徑下的霧滴沉積量。
1.3.2 細(xì)菌活化培養(yǎng)及污染
將冷凍干燥的沙門氏菌接種到胰酪胨大豆肉湯培養(yǎng)基,于37 ℃恒溫培養(yǎng)24 h后活化,隨后離心機(jī)在4℃、4 000 r/min,離心15 min并棄上清,將細(xì)菌沉淀用0.1%的蛋白胨水清洗2次,重新制成10 mL含菌數(shù)約為106~107CFU/mL 的菌懸液。將衣物清洗干凈,并用剪刀剪成5×5 cm2大小的方塊,隨后高壓滅菌,放于生化安全柜中自然晾干備用。移液槍移取0.1 mL菌懸液滴在5 cm×5 cm的高壓滅菌后的衣物方塊中央,隨后用涂布棒在生化安全柜內(nèi)將其均勻涂抹,涂抹后,室溫下30 min晾干備用。
1.3.3 不同霧徑消毒對(duì)比試驗(yàn)
分別采用超聲波噴霧器(≤30m)與較大霧徑(80~90m)噴霧器對(duì)污染衣物進(jìn)行不同時(shí)間及不同位置的噴霧,噴霧前,將樣本放入平皿中,置于一高約40 cm的椅子上放入消毒室或消毒通道內(nèi)(采用40 cm的高度是因?yàn)檫@個(gè)高度大致到人的膝關(guān)節(jié),而且高度略低,可能更能夠分析出因霧滴大小不同而造成的霧徑空間分布均勻性的差異),消毒室內(nèi)選取門口(距中央1 m),中央及門口對(duì)面墻壁處(距中央1 m)3處位置進(jìn)行采樣;消毒通道內(nèi)選取靠近前門方向(距中央1 m),中央及靠近后門方向(距中央1 m)3處位置進(jìn)行采樣。噴霧前,首先用滅菌中和劑(質(zhì)量分?jǐn)?shù)為0.5%的Na2S2O3)浸潤(rùn)過(guò)的滅菌棉簽在染菌后晾干的方塊衣物上采樣,每區(qū)塊橫豎往返各8次;隨后將采樣棉簽折斷,并置于裝有5 mL中和劑的離心管內(nèi),作為消毒前對(duì)照。分別在不同消毒室內(nèi)利用不同噴霧器進(jìn)行0.5、1、1.5及2 min消毒后,按上述采樣方法進(jìn)行采樣。最后,將消毒前后的樣本進(jìn)行充分震蕩洗脫,取洗脫液進(jìn)行活菌計(jì)數(shù)培養(yǎng)。消毒前后的殺滅效果以殺滅率進(jìn)行計(jì)算:
殺滅率=(消毒前菌落數(shù)-消毒后菌落數(shù))/
消毒前菌落數(shù)×100% (1)
1.3.4 霧滴沉積量消毒試驗(yàn)
霧滴沉積量模擬試驗(yàn)中,采用可調(diào)節(jié)壓力及更換噴頭的噴霧器進(jìn)行噴霧。噴霧前,對(duì)衣物按上述采樣方法進(jìn)行采樣,作為消毒前對(duì)照。
將染菌晾干的衣物放在直徑9 cm的平皿正中央,隨后將平皿放置在上述托盤上,其放置位置(A0、A1或A2)根據(jù)所需沉積量(表)對(duì)應(yīng)位置放置。后將托盤位置按照霧滴沉積量測(cè)定方法中陳述的托盤放置方法進(jìn)行放置,隨后安裝所需孔徑大小的噴頭于噴霧器上,并隨后調(diào)節(jié)所需壓力,打開(kāi)噴霧器,采用135 mg/L有效氯濃度的SAEW(pH 值6.15)按照霧滴沉積量由小到大(表2),進(jìn)行噴霧消毒處理;消毒后,按上述采樣方法進(jìn)行采樣。最后,將消毒前后的樣本進(jìn)行充分震蕩洗脫,并取洗脫液進(jìn)行活菌計(jì)數(shù)培養(yǎng)。
1.3.5 統(tǒng)計(jì)分析
試驗(yàn)中,每次試驗(yàn)數(shù)據(jù)平行測(cè)定3次,并取最后平均值,采用SPSS 17.0軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析及顯著性檢驗(yàn),采用Duncan多重比較法對(duì)沉積量進(jìn)行兩兩比較的顯著性檢驗(yàn)。
2.1 不同孔徑噴頭及壓力下SAEW的霧滴沉積量
表1表示不同孔徑及壓力下SAEW霧滴在噴霧1 min后每平方厘米的沉積質(zhì)量,其中A0為噴霧器噴霧靶區(qū)中央處沉積量,A1和A2分別為距噴霧靶區(qū)中點(diǎn)直徑15 cm左右的微酸性電解水霧滴沉積量。由表1可知,除80 MPa,0.5 mm孔徑時(shí)的3處沉積量分布相對(duì)均勻外,其他壓力和孔徑時(shí)的沉積量分布都為:A0處微酸性電解水霧滴沉積量較A1和A2高,除壓力為30 MPa,孔徑為0.5 mm組的A1和A2處沉積量有顯著性差異(<0.05),其他組無(wú)顯著性大小差異(>0.05)。隨著壓強(qiáng)及孔徑的增大,A1和A2處沉積量呈先上升后下降的變化趨勢(shì),且隨著壓強(qiáng)的增大,3個(gè)區(qū)域沉積量的方差系數(shù)呈總體變小趨勢(shì),但亦有起伏變化,隨著孔徑的變大,沉積量方差呈現(xiàn)先上升后下降的趨勢(shì)。
表1 不同孔徑及壓力下微酸性電解水霧滴沉積量
注:表中不同字母表示具有不同的顯著性差異(<0.05)。下同。A0為噴霧器噴霧靶區(qū)中央處沉積量,A1和A2分別為距噴霧靶區(qū)中點(diǎn)直徑15 cm左右的微酸性電解水霧滴沉積量。
Note: Difference between data with different letters is significant (<0.05).The same as below. A0, A1, A2were central district and another two different-distance (15 cm) points in the left and right hand of spraying target section.
2.2 霧滴沉積量對(duì)微酸性電解水滅菌效果的影響
表2為具梯度水平和顯著差異(<0.05)的霧滴沉積量及所對(duì)應(yīng)的壓強(qiáng)及孔徑。
表2 具顯著差異的霧滴沉積量及其對(duì)應(yīng)壓強(qiáng)與孔徑
由圖2可知,選取不同孔徑(0.1、0.3及0.5 mm)和不同壓力(30、50及80 MPa),使SAEW的霧滴沉積量在0.39×10-2、1.08×10-2、1.49×10-2、1.99×10-2、3.24×10-2及4.06×10-2g/cm2水平時(shí),SAEW(ACC 135 mg/L pH值 6.15)噴霧1 min后,對(duì)衣物表面沙門氏菌的殺滅菌數(shù)對(duì)數(shù)值分別為:(1.22±0.02)、(1.67±0.05)、(2.08±0.01)、(2.09±0.01)、(2.08±0.02)及(2.06±0.01)lg(CFU/mL),具顯著性差異(<0.05)。由圖2的趨勢(shì)線可以看出,微酸性電解水對(duì)衣物表面沙門氏菌的殺滅數(shù)對(duì)數(shù)隨霧滴沉積量的增加而增加,但當(dāng)霧滴沉積量達(dá)到1.49×10-2g/cm2時(shí),微酸性電解水的殺滅菌數(shù)對(duì)數(shù)值趨于穩(wěn)定。
2.3 不同霧徑消毒試驗(yàn)結(jié)果
圖3表示不同霧滴粒徑的超聲波噴霧器(≤30m)及較大霧徑(80~90m)噴霧器在噴頭中央位置時(shí),對(duì)衣物表面沙門氏菌的殺滅率,由圖3a所示,當(dāng)皆處于中央位置,殺滅率隨消毒時(shí)間增加而增高,且據(jù)圖3a中趨勢(shì)線可以看出,較大霧滴對(duì)衣物的殺滅作用趨勢(shì)大于小霧滴趨勢(shì),即隨時(shí)間的增加,較大霧滴殺滅率增長(zhǎng)速度高于小霧滴殺滅率增長(zhǎng)速度。另外,在保證霧滴能大部分滴到衣物表面時(shí),較大霧徑霧滴的殺滅率顯著高于超聲波噴霧器(<0.05)。當(dāng)位于中央位置約2 min時(shí),較大霧滴殺滅率達(dá)到86%,而小霧滴殺滅率只有37%。
圖3b表示不同霧徑的超聲波噴霧器(≤30m)在門口(消毒室)及較大霧徑(80~90m)噴霧器在前門方向處時(shí),對(duì)衣物表面沙門氏菌的殺滅率。由圖3b所示,殺滅率隨消毒時(shí)間增加而增大,且據(jù)趨勢(shì)線可知,較大霧滴殺滅率增長(zhǎng)隨時(shí)間變化較快。但較大霧徑噴霧器對(duì)衣物表面沙門氏菌的殺滅作用并不顯著高于超聲波噴霧器(>0.05)。且在消毒時(shí)間達(dá)到2 min時(shí),其對(duì)衣物表面的殺菌率僅有44%,大大低于中央處的殺菌率(86%);而超聲波噴霧器在門口及中央處的殺菌率在各時(shí)間段都無(wú)顯著性差異(>0.05)。
圖3c表示超聲波噴霧器(≤30m)在門口(消毒室)及較大霧徑(80~90m)噴霧器在后門方向(消毒通道)處時(shí),對(duì)衣物表面沙門氏菌的殺滅率;由圖3c所示,殺滅率隨消毒時(shí)間增加而增加,且依據(jù)趨勢(shì)線可知,較大霧徑霧滴殺滅率增長(zhǎng)速度隨時(shí)間變化較快。但較大霧徑噴霧器對(duì)衣物表面沙門氏菌的殺滅作用并不顯著高于超聲波噴霧器(>0.05)。且在消毒時(shí)間達(dá)到2 min時(shí),其對(duì)衣物表面殺滅率僅有50%,大大低于中央處殺滅率(86%);而超聲波噴霧器在門口及中央處的殺滅率在各時(shí)間段都無(wú)顯著性差異(>0.05)。
精確噴霧是目前國(guó)際施藥技術(shù)流行的國(guó)際趨勢(shì)[24-27],增加SAEW在噴霧區(qū)域內(nèi)的沉積量,確定SAEW在噴霧區(qū)域內(nèi)沉積量變化是提高SAEW利用率的途徑之一,另外,有助于在達(dá)到一定殺菌值的前提下減少微酸性電解水噴灑時(shí)間,特別在畜禽場(chǎng)消毒通道中,可以既避免進(jìn)入人員衣物的濕潤(rùn),又使衣物表面能達(dá)到一定SAEW霧滴沉積量,從而節(jié)約時(shí)間及藥物成本,實(shí)現(xiàn)消毒優(yōu)化。
表1可以看出,A0處微酸性電解水霧滴沉積量較A1和A2高,A1和A2處沉積量無(wú)顯著性差異(>0.05)。這表明噴霧靶區(qū)沉積量的分布呈中間密集、兩端稀疏特征,既靶區(qū)中央?yún)^(qū)域沉積量大,而距離噴頭較遠(yuǎn)處沉積量小。另外,隨著壓強(qiáng)及孔徑增大,A1和A2處沉積量呈先上升后下降變化趨勢(shì),且隨著孔徑的增大,方差系數(shù)呈先上升后下降趨勢(shì),這與袁會(huì)珠等[28]的研究結(jié)果有部分類似,其曾研究了不同噴頭對(duì)保護(hù)地黃瓜噴霧農(nóng)藥的有效沉積量測(cè)試,結(jié)果表明,噴頭孔徑大小不同,其沉積量及有效沉積率不同。董玉軒[29]研究了噴霧距離對(duì)藥液沉積量大小的影響,結(jié)果也發(fā)現(xiàn)各藥液沉積量大小隨噴霧距離增加出現(xiàn)先上升后下降的趨勢(shì),與本文研究結(jié)果相似,對(duì)于方差、標(biāo)準(zhǔn)差等隨噴霧距離增加而呈現(xiàn)波浪起伏式變化,推測(cè)原因,亦可能是霧滴直徑大小及飄移的影響,一般來(lái)說(shuō),霧滴直徑隨壓強(qiáng)增大或孔徑變小而變小,因此,壓強(qiáng)及孔徑會(huì)直接對(duì)霧滴直徑或協(xié)同對(duì)霧滴直徑起作用,造成霧滴直徑的起伏式變化,另外,在本試驗(yàn)中,當(dāng)噴頭噴出時(shí),噴頭在壓力作用下會(huì)與玻璃模擬箱發(fā)生振動(dòng)反應(yīng),這種振動(dòng)反應(yīng)會(huì)導(dǎo)致噴出霧滴產(chǎn)生微弱不定式漂流,這可能也是霧滴沉積量方差發(fā)生波動(dòng)式變化的原因之一。
從圖2中可以看出,當(dāng)霧滴沉積量達(dá)到1.49×10-2g/cm2時(shí),SAEW的殺滅菌數(shù)對(duì)數(shù)值趨于穩(wěn)定。Wirth等[30]曾研究認(rèn)為作物葉面等物質(zhì)表面會(huì)對(duì)藥液的承受能力有一個(gè)最佳飽和點(diǎn)和最大承載能力;這表明,SAEW對(duì)衣物消毒的試驗(yàn)中,1.49×10-2g/cm2為SAEW對(duì)衣物表面消毒的最佳飽和點(diǎn),超過(guò)該點(diǎn)后,SAEW對(duì)衣物表面消毒效果不會(huì)隨霧滴沉積量增加而增加。
在不同霧徑消毒試驗(yàn)自動(dòng)噴霧消毒過(guò)程中,霧滴粒徑對(duì)消毒劑的消毒效果具顯著影響。圖3a為不同霧滴粒徑的超聲波噴霧器(≤30m)及較大霧徑(80~90m)噴霧器在噴頭中央位置時(shí),對(duì)衣物表面沙門氏菌的殺滅率;在噴頭中央位置時(shí),較大霧徑(80~90m)噴霧器消毒效果顯著性高于超聲波噴霧器(霧徑≤30m)(<0.05),這可能是由于霧滴大的噴霧器在相同噴霧時(shí)間內(nèi),其噴霧量會(huì)大于霧滴小的噴霧器,霧滴大的噴霧器在衣物表面霧滴沉積量便會(huì)大于霧滴小的噴霧器;較大霧徑噴霧器在不同位置處的殺菌效果具有顯著性差異(<0.05),這表明較大霧徑(80~90m)霧滴的空間分布均勻性不高,而超聲波噴霧器在不同位置處的殺菌效果并沒(méi)有顯著性差異(>0.05),這表明超聲波噴霧器噴出小霧滴的空間分布均勻性較高,霧滴小的空間分布均勻性高于霧滴大的空間分布均勻性;然而隨時(shí)間的變化,霧滴大的噴霧器噴霧量較大,因此,其殺菌率和空間分布均勻性會(huì)逐漸提高,但其消毒劑的消耗量亦遠(yuǎn)遠(yuǎn)大于小霧滴的超聲波噴霧器。若需減少消毒時(shí)間,使消毒人員在消毒通道中停留時(shí)間不需太長(zhǎng),可嘗試采用霧滴較大的噴霧器,但需注意停留在噴霧器能噴到的中央位置處,如此,消毒效率相對(duì)較高。
在微酸性電解水(slightly acidic electrolyzed water,SAEW)的霧滴沉積量在0.39×10-2、1.08×10-2、1.49×10-2、1.99×10-2、3.24×10-2及4.06×10-2g/cm2水平時(shí),SAEW(ACC 135 mg/L pH 6.15)噴霧1 min后,對(duì)衣物表面沙門氏菌的殺滅菌數(shù)對(duì)數(shù)可分別達(dá)到(1.22±0.02)、(1.67±0.05)、(2.08±0.01)、(2.09±0.01)、(2.08±0.02)及(2.06±0.01)lg(CFU/mL),具顯著性差異(<0.05);霧滴粒徑亦對(duì)SAEW殺菌效果具有顯著影響(<0.05),當(dāng)霧滴沉積量達(dá)到1.49×10-2g/cm2時(shí),SAEW的殺滅菌數(shù)對(duì)數(shù)值趨于穩(wěn)定。因此,在未來(lái)研究中,除霧滴粒徑外,也可根據(jù)霧滴沉積量來(lái)確定衣物消毒的最佳霧徑范圍、最佳噴頭距離,從而確定消毒通道內(nèi)的最短噴霧時(shí)間,提高微酸性電解水的利用率,做到精確噴霧。
[1] Bodas R, Bartolome D J, De Paz M J T, et al. Electrolyzed water as novel technology to improve hygiene of drinking water for dairy ewes[J]. Research in Veterinary Science, 2013, 95(3): 1169-1170.
[2] Hao X, Cao W, Li B, et al. Slightly acidic electrolyzed water for reducing airborne microorganisms in a layer breeding house[J]. Journal of the Air & Waste Management Association,
2014, 64(4): 494-500.
[3] Zang Y T, Li B M, Bing S, et al. Modeling disinfection of plastic poultry transport cages inoculated with Salmonella enteritids by slightly acidic electrolyzed water using response surface methodology[J]. Poultry Science, 2015, 94(9): 2059.
[4] Chen J, Xu B, Deng S, et al. Effect of combined pretreatment with slightly acidic electrolyzed water and botanic biopreservative on quality and shelf life of bombay duck ()[J]. Journal of Food Quality, 201639 (2):116-125.
[5] Pang Y H, Hung Y C. Efficacy of slightly acidic electrolyzed water and uvozonated water combination for inactivating157:7 on romaine and iceberg lettuce during spray washing process[J]. Journal of Food Science, 2016, 81(7): M1743-M1748.
[6] Xuan X T, Ding T, Li J, et al. Estimation of growth parameters ofafter sublethal heat and slightly acidic electrolyzed water (SAEW) treatment[J]. Food Control, 2017, 71: 17-25.
[7] 臧一天,李星爍,李保明,等. 微酸性電解水對(duì)污染輪胎表面的模擬消毒優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):199-204.
Zang Yitian, Li Xingshuo, Li Baoming, et al. Simulation of disinfection optimization of vehicle tire surface using slightly acidic electrolyzed water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 199-204. (in Chinese with English abstract)
[8] Zheng W, Zhao Y, Xin H, et al. Airborne particulate matter and culturable bacteria reduction from spraying slightly acidic electrolyzed water in an experimental aviary laying-hen housing chamber[J]. Transactions of the ASABE, 2014, 57(1): 229-236.
[9] Ni L, Cao W, Zheng W, et al. Efficacy of slightly acidic electrolyzed water for reduction of foodborne pathogens and natural microflora on shell eggs[J]. Food Science and Technology Research, 2014, 20(1): 93-100.
[10] Zheng W, Li B, Cao W, et al. Application of neutral electrolyzed water spray for reducing dust levels in a layer breeding house[J]. Journal of the Air & Waste Management Association, 2012, 62(11): 1329-1334.
[11] Bergeron V, Bonn D, Martin J Y, et al. Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405(6788): 772-775.
[12] Kang S Z, Shi P, Pan Y H, et al. Soil water distribution, uniformity and water-use efficiency under alternate furrow irrigation in arid areas[J]. Irrigation Science, 2000, 19(4): 181-190.
[13] Poozesh S, Saito K, Akafuah N K, et al. Comprehensive examination of a new mechanism to produce small droplets in drop-on-demand inkjet technology[J]. Applied Physics A, 2016, 122(2): 1-12.
[14] Stout J B, Avila B W, Fetherman E R. Efficacy of Commercially Available Quaternary Ammonium Compounds for Controlling New Zealand Mudsnails Potamopyrgus antipodarum[J]. North American Journal of Fisheries Management, 2016, 36(2): 277-284.
[15] Zhang Y, Fu Y F, Xu K. Experimental evaluation of the spraying disinfection efficiency on dental models][J]. Shanghai Journal of Stomatology, 2013, 22(4): 399-401.
[16] Zang Y T, Li X S, Tan Y P. Disinfection effectiveness of slightly acidic electrolyzed water in laying house[C]// Modeling and Confutation in Engineering III-Proceedings of the 3rd International Conference on Modeling and Computation in Engineering, 2014: 159-164.
[17] Zheng W, Kang R, Wang H, et al. Airborne bacterial reduction by spraying slightly acidic electrolyzed water in a laying-hen house[J]. Journal of the Air & Waste Management Association, 2013, 63(10): 1205-1211.
[18] 南松劍. 微酸性電解水用于奶牛場(chǎng)消毒和奶牛乳房炎防控的研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2011.
Nan Songjian, Disinfection Effect of Slightly Acidic Electrolyzed Water in the Dairy Farm and Application on the Control of Dairy Mastitis[D]. Beijing: China agricultural university, 2011. (in Chinese with English abstract)
[19] Zhao Y, Xin H, Zhao D, et al. Free chlorine loss during spray of membrane-less acidic electrolyzed water (MLAEW) and its antimicrobial effect on airborne bacteria from poultry house[C]//2013 Kansas City, Missouri, 2013.
[20] Braekman, Foqud D, Messens W, et al.Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes[J]. Pest Management Science, 2010, 66(2): 203-212.
[21] Chuang C Y, Yang S, Chang M Y, et al. Inactivation efficiency toandbacterial aerosols of spraying neutral electrolyzed water[J]. Journal of the Air & Waste Management Association, 2013, 63(12): 1447-1456.
[22] Zheng W, Cao W, Li B, et al. Bactericidal activity of slightly acidic electrolyzed water produced by different methods analyzed with ultraviolet spectrophotometric[J]. Intl J Food Eng, 2012, 8(3): 41.
[23] Ni L, Zheng W, Zhang Q, et al. Application of slightly acidic electrolyzed water for decontamination of stainless steel surfaces in animal transport vehicles[J]. Preventive Veterinary Medicine, 2016, 133: 42-51.
[24] Lee D, Li M Y, Sui M, et al. Observation of shape, configuration, and density of Aunanoparticles on various GaAs surfaces via deposition amount, annealing temperature, and dwelling time[J]. Nanoscale Research Letters, 2015, 10(1): 240.
[25] Zhang H, Hewitt G F. New models of droplet deposition and entrainment for prediction of CHF in cylindrical rod bundles[J]. Nuclear Engineering and Design, 2016, 305: 73-80.
[26] Ferguson J C, Chechetto R G, O’Donnell C C, et al. Assessing a novel smartphone application-SnapCard, compared to five imaging systems to quantify droplet deposition on artificial collectors[J]. Computers and Electronics in Agriculture, 2016, 128: 193-198.
[27] Li S L, Wei Z Y, Du J, et al. Building of nested components by a double-nozzle droplet deposition process[J]. Applied Physics A, 2016, 122(7): 1-6.
[28] 袁會(huì)珠,齊淑華.植物葉片對(duì)藥液的最大承載能力初探[J].植物保護(hù)學(xué)報(bào),1998,25(1):95-96.
[29] 董玉軒. 施藥方式、霧滴密度與農(nóng)藥高效利用的相關(guān)性研究[D]. 揚(yáng)州:揚(yáng)州大學(xué),2012.
Dong Yuxuan. Correlation Study between High Efficiency Use of Pesticide and Spray Method, Droplet Density[D]. Yangzhou: Yangzhou University, 2012. (in Chinese with English abstract)
[30] Wirth W, Storp S, Jacobsen W. Mechanisms controlling leaf retention of agricultural spray solution[J]. Pest Management Science, 1991, 33(4): 411-420.
Influence of droplet size and deposition on slightly acidic electrolyzed water spraying disinfection effect on livestock environment
Zang Yitian1, Li Baoming2, Zheng Weichao2, Sheng Xiaowei1, Wu Hongxiang1, Shu Dengqun1※
(1.330045,;2.100083,)
As the increasing demand for efficient and sustainable production and the global demand for reduced antimicrobial drug consumption in livestock production, the importance of disinfection has increased significantly. However, potentially toxic, corrosive problems have arisen because of the use of chemicals as disinfecting agents. Slightly acidic electrolyzed water (SAEW) which has recently been developed in livestock production is a new environmental friendly disinfectant. In order to make the precision spraying of this disinfectant and increase the disinfectant usage efficiency for reducing residual and disease risk, in this study, the influence of droplets size and deposition on disinfection effect of slightly acidic electrolyzed water was evaluated. Deposition delivered by different atomizers on three aperture types (0.1, 0.3 and 0.5 mm) of sprayer under three levels pressure (30, 50 and 80 MPa), were first measured at 1 minute using a weighing method. The depositions were then divided into different levels with its correspondence pressure and aperture, and the trend influence of disinfection effectiveness of slightly acidic electrolyzed water (SAEW, pH value 6.15-6.35, ACC 135 mg/L), for inactivatingon the surface of clothes, was evaluated at different levels of deposition. In addition, the effect of droplet size on SAEW sprayed disinfection effect was measured with two sprayers, nebulizer (size 80-90m) and ultrasonic nebulizer (size ≤30m) at different point-central district (A0) and another two different-distance points in the left and right hand (A1, A2). The results showed that deposition constitutes a dense neighborhood at central district (A0), more segmental in another two different-distance points (A1, A2) under the different pressure and aperture types. The deposition amount at the A0was more than A1and A2. In addition, the deposition amount at A1and A2first increased and then decreased as the pressure and aperture increased. The coefficient of variation from the different points was observed at the same change trend with A1and A2. The results showed that the deposition significantly affects the log reduction (<0.05), and the logarithm of reduction ofwas rapidly increased from (1.22±0.02) to (2.09±0.01)lg(CFU/mL), and then change little with the increased deposition. The maximum logarithm of reduction ofof 2.09±0.01 was finally obtained by the clothes sprayed with SAEW at 1.49×10-2deposition, and the deposition of 1.49×10-2g/cm2may be the best point of deposition for SAEW sprayed disinfection on the surface of clothes. There was a significant difference in the size of droplet on SAEW spraying disinfection effect (<0.05). It was concluded that the bactericidal effects of the droplet from the nebulizer (size 80-90m) at the central target region, was significant higher than the ultrasonic nebulizer (Size≤30m) (<0.05), but the effects of the nebulizers was significant difference at the different locations (<0.05), and no significant difference (>0.05) in the bactericidal effects of the ultrasonic nebulizer was observed among different locations. It means the smaller droplet size (size ≤30m) had a better uniformity than the larger size droplet (size 80-90m)
spraying; disinfection; deposition; slightly acidic electrolyzed water; droplet size
10.11975/j.issn.1002-6819.2017.09.029
S831.4+5
A
1002-6819(2017)-09-0224-06
2016-09-21
2017-04-05
現(xiàn)代農(nóng)用工業(yè)技術(shù)研究專項(xiàng)基金(CARS-41);南方地區(qū)草食家畜舍飼小氣候調(diào)控技術(shù)研究(201303145);江西省教育廳科技計(jì)劃項(xiàng)目(GJJ160401)
臧一天,男(漢族),山東泰安人,博士,講師,主要從事設(shè)施養(yǎng)殖環(huán)境監(jiān)測(cè)與控制方向研究。南昌 江西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,330045。Email:zangyitian1@126.com。
舒鄧群,男(漢族)江西南昌人,博士,教授,主要從事家畜環(huán)境衛(wèi)生方向研究。南昌 江西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,330045。 Email:13607047771@163.com。
臧一天,李保明,鄭煒超,盛孝維,吳紅翔,舒鄧群. 微酸性電解水霧滴沉積量及粒徑對(duì)畜牧環(huán)境殺菌效果的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):224-229. doi:10.11975/j.issn.1002-6819.2017.09.029 http://www.tcsae.org
Zang Yitian, Li Baoming, Zheng Weichao, Sheng Xiaowei, Wu Hongxiang, Shu Dengqun. Influence of droplet size and deposition on slightly acidic electrolyzed water spraying disinfection effect on livestock environment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 224-229. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.029 http://www.tcsae.org