• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coumarin-derived Fluorescent Chemosensor for Sulfide Anion: Displacement Approach and Bioimaging Application

    2017-06-19 19:03:29CHENGXiaohongZHONGZhichengLIWangnan
    發(fā)光學報 2017年6期
    關(guān)鍵詞:生物檢測

    CHENG Xiao-hong, ZHONG Zhi-cheng, LI Wang-nan

    (HubeiKeyLaboratoryofLowDimensionalOptoelectronicMaterialsandDevices,HubeiUniversityofArtsandScience,Xiangyang441053,China)

    Coumarin-derived Fluorescent Chemosensor for Sulfide Anion: Displacement Approach and Bioimaging Application

    CHENG Xiao-hong*, ZHONG Zhi-cheng, LI Wang-nan

    (HubeiKeyLaboratoryofLowDimensionalOptoelectronicMaterialsandDevices,HubeiUniversityofArtsandScience,Xiangyang441053,China)

    We reported herein an ensemble C1-Cu2+as a new displacement-based fluorescent probe for sulfide anion detection. Upon the addition of S2-, it displayed marked fluorescence enhancement under aqueous conditions and the detection limit was determined to be as low as 90 nmol/L. In addition to its high selectivity for sulfide anion rather than other common anions, C1 was successfully applied to the detection of sulfide anion in HeLa cells with ‘Turn-On’ fluorescent methods.

    displacement approach; fluorescence enhancement; sulfide anion; good solubility; bioimaging application

    1 Introduction

    In the field of supramolecular chemistry, the progress in receptors for anions has attracted considerable attention in recent decades due to the fact that a large number of chemical, biological, and environmental processes involve molecular recognition of anionic species[1-13]. Among these anions, sulfide anion is one of the toxic anions, which could irritate mucous membranes and even cause unconsciousness and respiratory paralysis upon continuous and high concentration exposure of sulfide anion. Once being protonated, it becomes even more toxic. Actually, sulfide anion can be found not only in industrial settings where it is either used as a reactant or produced as a by-product of manufacturing or industrial processes, but also due to the microbial reduction of sulfate by anaerobic bacteria or formed from the sulfurcontaining amino acids in meat proteins, for instance, conversion into sulfur and sulfuric acid, dyes and cosmetic manufacturing, production of wood pulp,etc.[14-19]. Thus, the detection of sulfide anion is becoming very important from industrial, environmental, and biological points of view. A variety of detection techniques have been developed for the determination of sulfide anion, in which fluorimetry has received considerable attention due to its high sensitivity, specificity, simplicity of implementation, and fast response times, offering application methods not only for in vitro assays but also for in vivo imaging studies[20-31].

    Generally, in comparison with the relatively large number of cation chemosensors, the development of anion chemosensors is still a challenging area[32-35]. On the one hand, most of the organic receptors for anions have been designed based on the attachment of a dye to an anion-binding site; however, this mechanism does not always work well especially in aqueous media, owing to the strong hydration nature of anions, which weakens the interactions of the sensors with the target anions[36-41]. On the other hand, we know much about the rules of coordination chemistry between ligands and cations, but poor knowledge of the interactions between compounds and anions, leading to the comparatively scarce number of anion chemosensors as mentioned above. Recently, the development of metal-based receptors[42-46]has been the centre of interest as metal ions pre-organize the binding sites structurally for optimal anion-metal ion coordination, resulting in strong affinities over purely organic receptors and relatively easy design and convenient handling.

    Over the past few years, Lietal. developed an indirect strategy to detect cyanide utilizing the affinity of this anion towards copper[47-51]. The key point is that the stability constant of the complex Cu2+-anion is larger than that of the complex Cu2+-receptors, and then the added anions could preferentially snatch copper ions in the Cu2+-receptors coordination to form stable species ([Cu(CN)x]n-). One of the most important advantages of sensors based on this displacement approach was that they could be operable in aqueous solutions. Continuously, considering that sulfide anion opposed even stronger affinity towards copper ions than cyanide, they further developed the displacement-based sensing strategy and successfully designed a series of fluorescence and colorimetric chemosensors towards sulfide anions[52-53]based on the good Cu2+-based receptors (see supplementary data
    Fig. S1). Now, more and more excellent chemosensors for sulfide anion base on this displacement strategy were reported. However, biological studies of fluorescent imaging for sulfide anion in living cells, so far, are scarce[54-56].

    Herein, we expected to broaden the displacement-based strategy for S2-detection by utilizing excellent chemosensors of copper ions in order to realize the application in bioimaging. With this idea in mind, we focused our eyes on compound C1 as a potential new sulfide sensor after checking the literatures and thinking of some candidates carefully. Coumarin derivative C1[57]appending 2-picolylamide enabled efficient tridentate complexation for Cu2+with the binding constant of 1 with Cu2+in aqueous solution was reported to be (1.17±0.29) × 105. It displayed high selectivity towards copper in preference to a variety of other common heavy and toxic metal ions. In a sense of water solubility, membrane permeability, and nontoxic nature, C1 could be successfully applied in the detection of Cu2+in living cells. Our experimental results confirmed the quite excellent sensing behavior of compound C1 towards copper ions: the fluorescence of the solution was almost quenched in stark only in the presence of copper ions at very low concentration (5 μmol/L). Excitingly, upon the addition of trace sulfide anions, the non-emission solution went back to strong green fluorescence immediately. In this work, we would like to describe the synthesis and the spectroscopic evaluation of the new fluorescent chemosensor towards sulfide anion in detail, featuring advantages such as relative good solubility in aqueous media, easy-to-make, rapid ‘turn-on’ fluorescence response, as well as the successful application in bioimaging of living cells.

    2 Experiments

    2.1 Materials and Instrumentations

    All reagents were of analytical reagent grade and used without further purification. Doubly distilled water was used in all experiments.

    The1H and13C NMR spectra were measured on Varian Mercury300 spectrometer using tetramethylsilane (TMS,δ=0) as internal standard. The ESI mass spectra were measured on a Finnigan LCQ advantage mass spectrometer. Photoluminescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer. UV-Vis spectra were obtained using a Shimadzu UV-2550 spectrometer. The pH values were determined by using a DELTA 320 PH dollar.

    2.2 Synthesis of Compound C1

    Compound C1 was readily synthesized in three steps according to the literature[57].1H NMR (300 MHz, CDCl3)δ: 9.53 (1H, s),8.56 (1H,s),8.51 (1H,s),7.63-7.65 (1H,t,J=3.0 Hz),7.32-7.34 (1H,d,J=6.0 Hz),7.14-7.17 (1H,m),6.94 (1H,s),4.76 (2H,s),3.25-3.27 (4H,t,J=3.0 Hz),2.81-2.82 (2H,d,J=3.0 Hz),2.69-2.72 (2H,d,J=4.5 Hz),1.91 (4H,m).13C NMR (75 MHz,CDCl3)δ:163.86,163.00,157.91,152.76,149.31,148.24,148.19,136.63,127.05,122.04,121.50, 119.61,109.00,108.27,105.73,67.98,50.25,49.84,45.29,27.47,25.62,21.17,20.23, 20.12. MS (ESI),m/z[M+H]+:376.4,calcd,376.2.

    2.3 Preparation of Solutions of Anions

    1 mmol of inorganic salt (Na2SO3,NaHSO3,Na2SO4,Na2S2O3·5H2O,NaN3,NaCN,KClO3,NaF,NaCl,KBr,KI,NaIO3,Na2HPO4·12H2O,Na3PO4,NaOAc·3H2O,Na2CO3,NaHCO3,NaSCN,NaNO2or Na2S) was dissolved in distilled water (10 mL) to afford 0.1 mol/L aqueous solution. The stock solutions were diluted to desired concentrations with distilled water prior to the experiment.

    2.4 Fluorescence Titration of C1 with Cu2+Ions

    A solution of C1 (2×10-6mol/L) was prepared inV(HEPES)∶V(DMSO)=9∶1 (10 mmol/L, pH=7.4). The solution of Cu(NO3)2·3H2O (1×10-3mol/L) was prepared in distilled water. A solution of C1 was placed in a quartz cell (10.0 mm width) and the fluorescence spectrum was recorded. The Cu2+ion solution was introduced in portions and fluorescence intensity changes were recorded at room temperature each time. Excitation wavelength: 420 nm.

    2.5 Fluorescence Titration of C1-Cu2+with S2-Anions

    A solution of C1 (2×10-6mol/L) was prepared inV(HEPES)∶V(DMSO)=9∶1 (10 mmol/L, pH=7.4). The solution of Cu2+with the concentration of 5×10-6mol/L was added to the above solution. The solution of Na2S (1×10-3mol/L) was prepared in distilled water. A solution of C1-Cu2+was placed in a quartz cell (10.0 mm width) and the fluorescence spectrum was recorded. The S2-anion solution was introduced in portions to the above C1-Cu2+solution and fluorescence intensity changes were recorded at room temperature each time. Excitation wavelength: 420 nm.

    2.6 Fluorescence Titration of C1-Cu2+with Other Anions

    A solution of C1 (2×10-6mol/L) was prepared inV(HEPES)∶V(DMSO)=9∶1 (10 mmol/L, pH=7.4). The solution of Cu2+with the concentration of 5×10-6mol/L was added to the above solution. A solution of C1-Cu2+was placed in a quartz cell (10.0 mm width) and the fluorescence spectrum was recorded. The solution of anion (S2-: 7×10-6mol/L; CN-and I-:1×10-5mol/L; other anions: 5×10-5mol/L) was introduced in portions to the above C1-Cu2+solution and fluorescence intensity changes were recorded at room temperature each time. Excitation wavelength: 420 nm.

    2.7 Quantum Yield Changes of C1, C1-Cu2+and C1-Cu2++ S2-

    Quantum yield was determined according to the equation as follows:

    (1)

    ΦFwas the fluorescence quantum yield,Awas the absorbance,Fwas the area under the corrected emission curve. Here, fluorescein was used as the standard; the quantum yield of fluorescein in 0.1 mol/L NaOH was 0.90[58].

    2.8 Cell Culture

    HeLa cells were seeded to the 24-well plates, the cells with an initial density of 5 × 104cells/well in 24-well plates were routinely maintained at 37 ℃ in a humidified 5% CO2atmosphere using DMEM (Dulbecco’s modified eagle’s medium) supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin for 24 h.

    2.9 Fluorescence Imaging

    Fluorescence cell imaging was performed with an OLYMPUS IX73 scanning microscopy with a 40×objective lens. Fluorescence images of HeLa cells were monitored at 460-490 nm for green channel. The data were analyzed using software package provided by OLYMPUS instruments. Cell imaging was then carried out after washing cells with phosphate-buffered saline (PBS, 10 mmol/L, pH 7.02).

    3 Results and Discussion

    3.1 Sensing Properties Towards Cu2+Ions

    Compound C1 emitted strong green fluorescence with the maximum emission wavelength centered at about 490 nm. Then, we tried to add Cu2+ions into the diluted solution of compound C1, and investigated the sensing behavior of C1 towards copper ions carefully. As shown in
    Fig.1, excitingly, the emission spectra displayed apparent decrease with the increasing of Cu2+ions. In fact, the emission intensity at 490 nm decreased immediately to about 90% of the original one at the concentration of Cu2+ions as low as 0.3 μmol/L. With the increasing of the concentration of Cu2+ions in the test system, the emission intensity decreased correspondingly. When the concentration of Cu2+was 5 μmol/L, the emission intensity at 490 nm was completely quenched (Quantum yield: 0.12). However, further increasing the concentration of Cu2+ions to 7 μmol/L, no big difference could be observed. To see the results more visually, we summarized the emission intensities at 490 nm as a function of copper concentrations. As demonstrated in the inset of
    Fig.1, in the range of 0-5 μmol/L, there was a good linear relationship between the intensity change and the concentration of Cu2+ions. The association constant of C1 for Cu2+was calculated to be ~1.4×105mol-1·L using the equation in supplementary data Eq. S1[59]. It suggested that compound C1 could act as a ‘switching-off’ fluorescent probe for Cu2+ions.

    Fig.1 Fluorescent emission spectra of C1 (2 μmol/L, inV(HEPES)∶V(DMSO)=9∶1(10 mmol/L,pH=7.4)) in the presence of different concentrations of Cu2+. The inset plot showed the fluorescence intensities at 490 nm of compound C1 with different concentrations of Cu2+(Excitation wavelength: 420 nm).

    3.2 Sensing Propertiestowards S2-Anion

    As mentioned in the introduction section, sulfide anion could form very stable complex with copper ions with the solubility-product constant (Ksp) of CuS was as low as 6.3×10-36. Meanwhile, the previous titration experiments demonstrated that compound C1 could act as a ‘switching-off’ chemosensor towards copper ions through the formation of C1-Cu2+complex with the association constant of 1.4×105mol-1·L. With the both considerations in mind, it was reasonable that the addition of sulfide anion could preferentially snatch copper ion from the above C1-Cu2+complex to form stable CuS species (Scheme 1). As a result, the fluorescence of C1 was fully revived by the transformation from C1-Cu2+(quenched, ‘off’) to free C1 (revived, ‘on’). Then, we added the aqueous solution of sodium sulfide into the C1-Cu2+complex and investigated its indirect sensing response to S2-.

    Scheme 1 Speculated sensing process of C1 towards Cu2+and S2-

    Fortunately, the peak at 490 nm, which disappeared upon the addition of Cu2+, recovered, and its intensity increased with the concentrations of S2-becoming higher as expected (Fig.2). Encouraged by this result, the recovering fluorescence behaviour of the complex C1-Cu2+was studied in detail. It was reasonable that when more Cu2+ions were added, more S2-anions were needed to coordinate with the copper ions added in the first step to give an obvious optical signal. Therefore, we fixed the concentration of C1 at 2 μmol/L and the added Cu2+ions as 5 μmol/L considering that the addition of 5 μmol/L of Cu2+ions induced the emission intensity reaching the minimum during the fluorescent titration experiment. Under this condition, we presented the response of complex C1-Cu2+towards S2-anion to inspect the sensitivity of the mixture system. As demonstrated in
    Fig.2, the emission intensity at 490 nm increased immediately to about 6-fold of the original one at the concentration of S2-anions as low as 0.2 μmol/L. Finally, the detection limits of complex C1-Cu2+for S2-anion was found to be 90 nmol/L (when the lowest fluorescence increase equals to three fold of the instrument noise). When the added concentration of S2-was 7 μmol/L, the fluorescent intensity increased to ~125-fold of the original one (Quantum yield: 0.65), and this intensity was strong enough to be used as ‘turn-on’ sensor to probe trace S2-by the naked eye (the difference between the ‘off’ and ‘on’ state was also shown in the inset in
    Fig. 2). Thus, by applying a ‘turn-off-turn-on’ circle, compound C1 could act as a sensitive chemosensor towards S2-anions.

    Fig.2 Emission spectra of C1-Cu2+(C1: 2 μmol/L, Cu2+: 5 μmol/L, inV(HEPES)∶V(DMSO)=9∶1) in the presence of different concentrations of S2-(Excitation wavelength: 420 nm). Inset: fluorescent photograph of C1 (a), C1-Cu2+(b) and C1-Cu2++ S2-(c).

    To see the sensing process more visually, we summarized the intensity changes at 490 nm as a function of S2-anion concentrations. As shown in
    Fig.3, it was easily seen that the intensity change was almost linear with the concentrations of S2-in the concentration range of 0-6 μmol/L. Actually, this fluorescence difference for the solution of complex C1-Cu2+before and after the addition of S2-anion could be easily distinguished by the naked eyes. As displayed in the inset of
    Fig.3, under a normal UV lamp, the solution changed from non-fluorescence to strongly green fluorescence with 21.5-fold enhancement in the quantum yield (from 0.12 to 0.65). Although not so sensitive as measured by the fluorescent spectrometer, we could easily distinguish the fluorescent color change upon the addition of as little as 10 μmol/L of S2-(the inset of
    Fig.3, c). Thus, these results indicated that upon the addition of S2-, the S2--promoted displacement reaction of C1-Cu2+ensemble really occurred as expected, and the liberated C1 was formed step by step.

    Fig.3 Plot of fluorescent intensities at 490 nm of C1-Cu2+(C1: 2 μmol/L, Cu2+: 5 μmol/L, inV(HEPES)∶V(DMSO)=9∶1) in the presence of different concentrations of S2-(Excitation wavelength: 420 nm). Inset: fluorescent photograph of C1-Cu2+to various concentration of S2-, from a to e: 0, 5, 10, 20, 50 μmol/L.

    Fig.4 Emission intensities of C1-Cu2+in the presence of different anions (S2-: 7 μmol/L, CN-and I-: 10 μmol/L, the others: 50 μmol/L). Inset: fluorescent emission spectra of C1-Cu2+, C1-Cu2++ Mixture of other anions, and C1-Cu2++ mixture of other anions + S2-(C1: 2 μmol/L, Cu2+: 5 μmol/L, S2-: 7 μmol/L, other anions: 10 μmol/L).

    In addition to the different fluorescent behavior caused by theaddition of sulfide anion, the UV spectra change was another apparent property. As shown in Fig.5, with the increasing concentrations of sulfide anion, the maximum absorption wavelength gradually shifted from 465 to 450 nm with a similar molar absorption coefficient compared to the original one. The addition of 10 μmol/L of S2-produced a 15 nm blue shift of the absorption maximum, resulting in a perceived color change from dark yellow to green-yellow. Competition experiments revealed that the absorbance changes induced by sulfide anions were retained in the presence of other anions (see supplementary data
    Fig.S3).

    The application of complex C1-Cu2+to track intracellular S2-level was also investigated via a scanning microscopy. Firstly, the HeLa cells were treated with Cu2+(20 μmol/L, 20 min) followed by subsequent staining with C1 (15 μmol/L, 20 min) and then washed three times with phosphate-buffered saline (PBS, 10 mmol/L, pH 7.02). As shown in
    Fig.6, fluorescence was little observable in the cells after incubation prior to the S2-anion treatment (Fig.6, control). Afterwards, S2-level dependent increases of fluorescence intensity were observed inside the cells after the S2-anion treatment. As expected, green fluorescence recovered inside of the cells correspondingly with the increasing of S2-concentrations. Importantly, obvious fluorescence enhancement could be observed even with the concentration of S2-as low as 50 μmol/L. The bright-field images confirmed that the cells were viable throughout the imaging experiments (Fig.6, DIC pictures). The fluorescence imaging results were in consistent with the observations in titration experiments, and demonstrated that probe C1 could readily detect the presence of sulfide anions in cells with switching-on fluorescent methods and through the displacement approach.

    Fig.5 UV-Vis absorption spectra of C1-Cu2+(C1: 7 μmol/L, Cu2+: 10 μmol/L, inV(HEPES)∶V(DMSO)=9∶1) in the presence of different concentrations of S2-. Inset: photograph of C1-Cu2+(a), and C1-Cu2++ S2-(b).

    Fig.6 Scanning microscopic images of HeLa cells in the presence of C1-Cu2+. The fluorescence images were acquired after 30 min of treatment of S2-(0, 50, 100, 150 μmol/L) in HeLa cells.

    4 Conclusion

    In summary,we demonstrated that an ‘ensemble’-based chemosensor C1-Cu2+can selectively probe the sulfide anion in aqueous media with respect to a marked fluorescence enhancement over other anionic species, by utilizing the displacement method. The preliminary results demonstrated that the fluorescent and colorimetric chemosensor C1 could be used to sense sulfide anion indirectly, featuring advantages such as relative good solubility in aqueous media, easy-to-make, rapid ‘turn-on’ fluorescence response, as well as the successful application in bioimaging of living cells. It was believed that more excellent metal-based receptors could be utilized as optimal anion-recognition chemosensors by virtue of the famous displacement strategy.

    [1] BEER P D, HAYES E J. Transition metal and organometallic anion complexation agents [J].Coord.Chem.Rev., 2003, 240:167-189.

    [2] CHRISTIANSON D W, LIPSCOME W N. Carboxypeptidase A [J].Acc.Chem.Res., 1989, 22:62-69.

    [3] GALEP P D. Anion recognition and sensing: the state of the art and perspectives [J].Angew.Chem.Int.Ed.Engl., 2001, 40:486-516.

    [4] LINARES J M, POWELL D, BOWMAN-JAMES K. Ammonium based anion receptors [J].Coord.Chem.Rev., 2003, 240:57-75.

    [5] CAROLAN J V, BUTLER S J, JOLLIFFE K A. Selective anion binding in water with use of a zinc(II) dipicolylamino functionalized diketopiperazine scaffold [J].J.Org.Chem., 2009, 74:2992-2996.

    [6] KIM Y K, LEE Y H, LEE H Y,etal.. Molecular recognition of anions through hydrogen bonding stabilization of anion-ionophore adducts: a novel trifluoroacetophenone-based binding motif [J].Org.Lett., 2003, 5:4003-4006.

    [7] JIANG X, VIEWEGER M C, BOLLINGER J C,etal.. Reactivity-based fluoride detection: evolving design principles for spring-loaded turn-on fluorescent probes [J].Org.Lett., 2007, 9:3579-3582.

    [8] SUN Z, WANG H, LIU F,etal.. BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells [J].Org.Lett. 2009, 11:1887-1890.

    [9] XU Z, KIM S K, YOON J. Revisit to imidazolium receptors for the recognition of anions [J].Chem.Soc.Rev., 2010, 39: 1457-1466.

    [10] DE SILVA A P, GUNARATNE H Q N, GUNNLAUGSSON T,etal.. Signaling recognition events with fluorescent sensors and switches [J].Chem.Rev., 1997, 97:1515-1566.

    [11] THOMAS S W, JOLY G D, SWAGER T M. Chemical sensors based on amplifying fluorescent conjugated polymers [J].Chem.Rev., 2007, 107:1339-1386.

    [12] YOON J, KIM S K, SINGH N J,etal.. Imidazolium receptors for the recognition of anions [J].Chem.Soc.Rev., 2006, 35:355-360.

    [13] SCHMIDTCHEN F P, BERGER M. Artificial organic host molecules for anions [J].Chem.Rev., 1997, 97: 1609-1646.

    [14] BALASUBRAMANIAN S, PUGALENTHI V. A comparative study of the determination of sulphide in tannery waste water by ion selective electrode (ISE) and iodimetry [J].WaterRes., 2000, 34:4201-4206.

    [15] SILVA M S P, GALHARDO C X, MASINI J C. Application of sequential injection-monosegmented flow analysis (SI-MSFA) to spectrophotometric determination of sulfide in simulated waters samples [J].Talanta, 2003, 60:45-52.

    [16] SILVA M S P, DA SILVA I S, ABATE G,etal.. Spectrophotometric determination of acid volatile sulfide in river sediments by sequential injection analysis exploiting the methylene blue react [J].Talanta, 2001, 53: 843-850.

    [17] MAYA F, ESTELA J M, CERDV. Improving the chemiluminescence-based determination of sulphide in complex environmental samples by using a new, automated multi-syringe flow injection analysis system coupled to a gas diffusion unit [J].Anal.Chim.Acta. 2007, 601:87-94.

    [20] ZHANG J, ZHOU Y, YOON J,etal.. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions) [J].Chem.Soc.Rev., 2011, 40:3416-3429.

    [21] KIM J S, QUANG D T. Calixarene-derived fluorescent probes [J].Chem.Rev., 2007, 107:3780-3799.

    [22] SINKELDAM R W, GRECO N J, TOR Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications [J].Chem.Rev., 2010, 110:2579-2619.

    [23] DE SILVA A P, GUNARATNE H Q N, GUNNLAUGSSON T,etal.. Signaling recognition events with fluorescent sensors and switches [J].Chem.Rev., 1997, 97:1515-1566.

    [24] KIM H N, LEE M H, KIM H J,etal.. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions [J].Chem.Soc.Rev., 2008, 37:1465-1472.

    [25] QUANG D T, KIM J S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens [J].Chem.Rev., 2010, 110: 6280-6301.

    [26] MCDONAGH C, BURKE C S, MACCRAITH B D. Optical chemical sensors [J].Chem.Rev., 2008, 108:400-422.

    [27] KOBAYASHI H, OGAWA M, ALFORD R,etal.. New strategies for fluorescent probe design in medical diagnostic imaging [J].Chem.Rev., 2010, 110:2620-2640.

    [28] BOBACKA J, IVASKA A, LEWENSTAM A. Potentiometric ion sensors [J].Chem.Rev., 2008, 108:329-351.

    [29] KIM H N, REN W, KIM J S,etal.. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions [J].Chem.Soc.Rev., 2012, 41:3210-3244.

    [30] LV J, WANG F, QIANG J,etal.. Enhanced response speed and selectivity of fluorescein-based H2S probeviathe cleavage of nitrobenzene sulfonyl ester assisted by ortho aldehyde groups [J].Biosens.Bioelectron., 2017, 87:96-100.

    [31] ZHOU G, WANG H, MA Y,etal.. An NBD fluorophore-based colorimetric and fluorescent chemosensor for hydrogen sulfide and its application for bioimaging [J].Tetrahedron, 2013, 69:867-870.

    [33] GALE P A. Anion receptor chemistry: highlights from 2008 and 2009 [J].Chem.Soc.Rev., 2010, 39:3746-3771.

    [34] CLAUDIA R C, FRANCISCO J C. Application of flow injection analysis for determining sulphites in food and beverages: a review [J].FoodChem., 2009, 112:487-493.

    [35] ITO A, ISHIZAKA S, KITAMURA N. A ratiometric TICT-type dual fluorescent sensor for an amino acid [J].Phys.Chem.Chem.Phys., 2010, 12:6641-6649.

    [36] LODEIRO C, PINA F. Luminescent and chromogenic molecular probes based on polyamines and related compounds [J].Coord.Chem.Rev., 2009, 253:1353-1383.

    [37] WU J, ZHOU J, WANG P,etal.. New fluorescent chemosensor based on exciplex signaling mechanism [J].Org.Lett., 2005, 7: 2133-2136.

    [38] CHEN W B, ELFEKY S A, NONNE Y,etal.. A pyridinium cation-π interaction sensor for the fluorescent detection of alkyl halides [J].Chem.Commun., 2011, 47:253-255.

    [39] HUANG Y, JIANG Y, BULL S D,etal.. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker [J].Chem.Commun., 2010, 46:8180-8182.

    [40] CALLAN J F, DE SILVA A P, MAGRI D C. Luminescent sensors and switches in the early 21st century [J].Tetrahedron, 2005, 61:8551-8588.

    [42] LOU X, OU D, LI Q,etal.. An indirect approach for anion detection: the displacement strategy and its application [J].Chem.Commun., 2012, 48:8462-8477.

    [43] CHEN X, NAM S-W, KIM G-H,etal.. A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging [J].Chem.Commun., 2010, 46:8953-8955.

    [44] QIANG J, CHANG C, ZHU Z,etal.. A dinuclear-copper(Ⅱ) complex-based sensor for pyrophosphate and its applications to detecting pyrophosphatase activity and monitoring polymerase chain reaction [J].Sens.Actuat. B, 2016, 233:591-598.

    [45] WANG H, ZHOU G, CHEN X. An iminofluorescein-Cu2+ensemble probe for selective detection of thiols [J].Sens.Actuat. B, 2013, 176:698-703.

    [46] YU W, QIANG J, YIN J,etal.. Ammonium-bearing dinuclear Copper(Ⅱ) complex: a highly selective and sensitive colorimetric probe for pyrophosphate [J].Org.Lett., 2014, 16:2220-2223.

    [47] LI Z, LOU X, YU H,etal.. An imidazole-functionalized polyfluorene derivative as sensitive fluorescent probe for metal ions and cyanide [J].Macromolecules2008, 41:7433-7439.

    [48] LOU X, ZHANG L, QIN J,etal.. An alternative approach to develop a highly sensitive and selective chemosensor for the colorimetric sensing of cyanide in water [J].Chem.Commun., 2008, 44:5848-5850.

    [49] LOU X, QIANG L, QIN J,etal.. A new rhodamine-based colorimetric cyanide chemosensor: convenient detecting procedure and high sensitivity and selectivity [J].ACSAppl.Mater.Interf., 2009, 1:2529-2535.

    [50] LOU X, QIN J, LI Z. Colorimetric cyanide detection using an azobenzene acid in aqueous solutions [J].Analyst, 2009, 134:2071-2075.

    [51] ZENG Q, CAI P, LI Z,etal.. An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide [J].Chem.Commun., 2008, 44:1094-1096.

    [52] LOU X, MU H, GONG R,etal.. Displacement method to develop highly sensitive and selective dual chemosensor towards sulfide anion [J].Analyst, 2011, 136:684-687.

    [53] ZHANG L, LOU X, YU Y,etal.. A new disubstituted polyacetylene bearing pyridine moieties: convenient synthesis and sensitive chemosensor toward sulfide anion with high selectivity [J].Macromolecules, 2011, 44:5186-5193.

    [54] CHOI M G, CHA S, LEE H,etal.. Sulfide-selective chemosignaling by a Cu2+complex of dipicolylamine appended fluorescein [J].Chem.Commun., 2009, 45:7390-7392.

    [55] CAO X, LIN W, HE L. A near-infrared fluorescence turn-on sensor for sulfide anions [J].Org.Lett., 2011, 13:4716-4719.

    [56] HOU F, HUANG L, XI P,etal.. A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells [J].Inorg.Chem., 2012, 51:2454-2460.

    [57] JUNG H S, KWON P S, LEE J W,etal.. Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells [J].J.Am.Chem.Soc., 2009, 131:2008-2012.

    [58] WILLIAMS A T R, WINFIELD S A, MILLER J N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer [J].Analyst, 1983, 108:1067-1071.

    [59] LIU L, DONG X, XIAO Y,etal.. Two-photon excited fluorescent chemosensor for homogeneous determination of copper(Ⅱ) in aqueous media and complicated biological matrix [J].Analyst, 2011, 136:2139-2145.

    [60] FU Y, LI H, HU W,etal.. Fluorescence probes for thiol-containing amino acids and peptides in aqueous solution [J].Chem.Commun., 2005, 41:3189-3191.

    [61] HAO W, MCBRIDE A, MCBRIDE S,etal.. Colorimetric and near-infrared fluorescence turn-on molecular probe for direct and highly selective detection of cysteine in human plasma [J].J.Mater.Chem., 2011, 21:1040-1048.

    [62] HUO F, YANG Y, SU J,etal.. Indicator approach to develop a chemosensor for the colorimetric sensing of thiol-containing water and its application for the thiol detection in plasma [J].Analyst, 2011, 136:1892-1897.

    [63] GAO C, ZHANG L, YANG Y,etal.. Application of rhodamine salicylidene hydrazone-Cu2+complex probe to the detection of cysteine [J].Petrochem.Technol., 2016, 45:1375-1379.

    Supplementary Data

    Fig. S1 Displacement-based chemosensors for S2-anions reported by Lietal.

    Eq. S2 The equation for the calculation of association constant:

    I0is the fluorescence intensity of C1,I∞is the intensity measured with excess amount of Cu2+,Iis the intensity measured with different amount of Cu2+,Kis the association constant, and [Cu2+] is the concentration of Cu2+ion added.

    Fig.S2 Fluorescence spectra of C1-Cu2+(C1: 2 μmol/L, Cu2+: 5 μmol/L, inV(HEPES)∶V(DMSO)=9∶1) in the presence of different concentrations of Cys or Hcy.

    Fig.S3 Absorption spectra of C1-Cu2+, C1-Cu2++ mixture of other anions, and C1-Cu2++ mixture of other anions + S2-(C1: 7 !μmol/L, Cu2+: 10 μmol/L, S2-: 10 μmol/L, other anions: 20 μmol/L).

    Fig.S4 1H NMR spectra of compound C1

    Fig.S5 13C NMR spectra of compound C1

    程曉紅(1986-),女,河北邯鄲人,博士,講師,2013年于武漢大學獲得博士學位,主要從事新型化學/生物傳感器的研究。

    Email: chengxiaohong0807@126.com

    2017-01-01;

    2017-03-15

    國家自然科學基金(21502047); 湖北省光電子協(xié)同創(chuàng)新中心基金資助項目 Supported by National Natural Science Foundation of China (21502047); Partially Supported by Hubei Provincial Collaborative Innovation Center for Optoelectronics

    基于置換法的硫離子熒光傳感器的研究及其在生物細胞成像中的應(yīng)用

    程曉紅*, 鐘志成, 李望南

    (湖北文理學院 低維光電材料與器件湖北省重點實驗室, 湖北 襄陽 441053)

    報道了一種基于香豆素衍生物與銅離子的絡(luò)合物(C1-Cu),可通過間接的方法檢測硫離子。絡(luò)合物C1-Cu的溶液中加入硫離子后,表現(xiàn)出明顯的熒光增強響應(yīng),檢測靈敏度高,檢出限低達90 nmol/L;響應(yīng)速度快,可實現(xiàn)硫離子的實時檢測;熒光強度變化與硫離子濃度呈現(xiàn)良好的線性關(guān)系,能準確地定量分析硫離子濃度。上述絡(luò)合物C1-Cu對硫離子的檢測具有超高的選擇性,即使在其他陰離子存在下也能高效地識別出硫離子;得益于香豆素良好的水溶性和生物相容性,上述絡(luò)合物C1-Cu可實現(xiàn)生物細胞中硫離子的熒光成像。除熒光光譜響應(yīng)之外,該體系對硫離子亦有紫外-可見光譜響應(yīng),無需借助任何儀器便可實現(xiàn)對硫離子方便、快捷的“裸眼”檢測。

    置換法; 熒光增強; 硫離子; 水溶性; 生物成像

    1000-7032(2017)06-0768-12

    O622.4 Document code: A

    10.3788/fgxb20173806.0768

    *CorrespondingAuthor,E-mail:chengxiaohong0807@126.com

    猜你喜歡
    生物檢測
    生物多樣性
    天天愛科學(2022年9期)2022-09-15 01:12:54
    生物多樣性
    天天愛科學(2022年4期)2022-05-23 12:41:48
    上上生物
    “不等式”檢測題
    “一元一次不等式”檢測題
    “一元一次不等式組”檢測題
    發(fā)現(xiàn)不明生物
    科學大眾(2021年9期)2021-07-16 07:02:54
    “幾何圖形”檢測題
    “角”檢測題
    史上“最黑暗”的生物
    軍事文摘(2020年20期)2020-11-28 11:42:50
    女人精品久久久久毛片| 多毛熟女@视频| 91aial.com中文字幕在线观看| 国产成人午夜福利电影在线观看| 欧美成人午夜免费资源| 久久狼人影院| 欧美bdsm另类| 久久久午夜欧美精品| 国产成人freesex在线| 高清毛片免费看| 女的被弄到高潮叫床怎么办| 国产精品一区二区在线不卡| 欧美人与性动交α欧美精品济南到 | av又黄又爽大尺度在线免费看| 亚洲av欧美aⅴ国产| 亚洲av二区三区四区| 18禁动态无遮挡网站| 久久久久网色| 亚洲成人手机| 午夜久久久在线观看| 777米奇影视久久| 亚洲天堂av无毛| 免费观看在线日韩| 国产免费现黄频在线看| 成人亚洲精品一区在线观看| 精品视频人人做人人爽| 亚洲少妇的诱惑av| 免费黄色在线免费观看| 一级毛片我不卡| 国产精品女同一区二区软件| 免费观看a级毛片全部| 国产欧美另类精品又又久久亚洲欧美| 日韩中字成人| 久久久久久伊人网av| 在线观看美女被高潮喷水网站| 夜夜骑夜夜射夜夜干| 亚洲国产色片| 热re99久久精品国产66热6| 亚洲国产精品国产精品| 少妇人妻精品综合一区二区| 国产成人aa在线观看| 三上悠亚av全集在线观看| 欧美xxxx性猛交bbbb| 国产精品一区www在线观看| 少妇猛男粗大的猛烈进出视频| 免费久久久久久久精品成人欧美视频 | 热99国产精品久久久久久7| 美女xxoo啪啪120秒动态图| 国产国拍精品亚洲av在线观看| 国产一区二区在线观看日韩| 交换朋友夫妻互换小说| 伦精品一区二区三区| 日本欧美国产在线视频| √禁漫天堂资源中文www| 三级国产精品欧美在线观看| 三级国产精品欧美在线观看| 岛国毛片在线播放| 国产精品不卡视频一区二区| 在线观看免费视频网站a站| 欧美97在线视频| 欧美 日韩 精品 国产| 国产精品久久久久久久久免| 在线 av 中文字幕| 亚洲欧美中文字幕日韩二区| 一区二区三区四区激情视频| 亚洲国产精品一区三区| 观看美女的网站| 观看美女的网站| 亚洲内射少妇av| 男女边吃奶边做爰视频| 亚洲精品日韩av片在线观看| 哪个播放器可以免费观看大片| 国产女主播在线喷水免费视频网站| 高清午夜精品一区二区三区| 久久精品国产亚洲av涩爱| 免费看光身美女| 大又大粗又爽又黄少妇毛片口| 国产av一区二区精品久久| 国产av精品麻豆| 久久精品人人爽人人爽视色| 国产精品.久久久| 欧美激情 高清一区二区三区| 日韩欧美一区视频在线观看| 日本91视频免费播放| 女的被弄到高潮叫床怎么办| 如何舔出高潮| 欧美 日韩 精品 国产| 欧美日韩av久久| 99热这里只有是精品在线观看| 中文乱码字字幕精品一区二区三区| 老司机亚洲免费影院| 免费观看无遮挡的男女| 国产免费一区二区三区四区乱码| 观看美女的网站| 日韩免费高清中文字幕av| 日韩免费高清中文字幕av| 国语对白做爰xxxⅹ性视频网站| 久久青草综合色| 黄色怎么调成土黄色| 一边亲一边摸免费视频| 男女高潮啪啪啪动态图| 久久午夜综合久久蜜桃| 亚洲av电影在线观看一区二区三区| 女人精品久久久久毛片| √禁漫天堂资源中文www| 免费不卡的大黄色大毛片视频在线观看| 亚洲内射少妇av| 国产精品三级大全| 中国国产av一级| 九色成人免费人妻av| 日韩强制内射视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品久久午夜乱码| 热re99久久国产66热| 少妇猛男粗大的猛烈进出视频| videossex国产| 91精品伊人久久大香线蕉| 免费观看的影片在线观看| 精品久久久精品久久久| av电影中文网址| 久久韩国三级中文字幕| 下体分泌物呈黄色| 老熟女久久久| 青春草视频在线免费观看| 亚洲国产av影院在线观看| 男女啪啪激烈高潮av片| 看非洲黑人一级黄片| 看非洲黑人一级黄片| av福利片在线| 免费播放大片免费观看视频在线观看| 欧美日韩视频精品一区| 日本色播在线视频| 亚洲国产av影院在线观看| 国产精品秋霞免费鲁丝片| 亚洲一级一片aⅴ在线观看| 国产国语露脸激情在线看| 一级a做视频免费观看| 男女边吃奶边做爰视频| 视频中文字幕在线观看| 搡老乐熟女国产| 好男人视频免费观看在线| 亚洲欧美日韩卡通动漫| 春色校园在线视频观看| 亚洲人与动物交配视频| 99热6这里只有精品| 久久精品夜色国产| 在线观看www视频免费| 日韩一区二区三区影片| 亚洲精品乱码久久久v下载方式| 久久国产精品男人的天堂亚洲 | 国产精品99久久99久久久不卡 | 成年人午夜在线观看视频| 亚洲av免费高清在线观看| 青春草国产在线视频| 老女人水多毛片| 国产精品麻豆人妻色哟哟久久| 国产精品人妻久久久久久| 国产免费现黄频在线看| 亚洲第一区二区三区不卡| av网站免费在线观看视频| 久久99一区二区三区| 交换朋友夫妻互换小说| 汤姆久久久久久久影院中文字幕| 激情五月婷婷亚洲| 久久午夜福利片| 欧美 亚洲 国产 日韩一| 一本大道久久a久久精品| 欧美丝袜亚洲另类| 99热全是精品| 国产精品久久久久久久久免| 精品亚洲乱码少妇综合久久| 精品一品国产午夜福利视频| 另类亚洲欧美激情| 成人免费观看视频高清| 久久久久久久久久久免费av| 久久久久久久久久久久大奶| av福利片在线| 亚洲综合色惰| 中文精品一卡2卡3卡4更新| 一级二级三级毛片免费看| 人人澡人人妻人| 免费观看无遮挡的男女| 亚洲欧美日韩另类电影网站| 三级国产精品片| av黄色大香蕉| 一级爰片在线观看| 伊人久久精品亚洲午夜| 免费大片黄手机在线观看| 视频在线观看一区二区三区| 制服诱惑二区| 精品国产一区二区久久| 国产男女内射视频| 成人影院久久| 人妻少妇偷人精品九色| 欧美日韩亚洲高清精品| 精品人妻在线不人妻| 99精国产麻豆久久婷婷| 91国产中文字幕| 国产欧美另类精品又又久久亚洲欧美| 国产欧美另类精品又又久久亚洲欧美| 丰满迷人的少妇在线观看| av不卡在线播放| 97精品久久久久久久久久精品| 特大巨黑吊av在线直播| 国产日韩欧美亚洲二区| 人妻 亚洲 视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美精品自产自拍| 日韩制服骚丝袜av| 日韩三级伦理在线观看| 一区二区三区乱码不卡18| 亚洲国产毛片av蜜桃av| 国产探花极品一区二区| www.av在线官网国产| 男女边摸边吃奶| 久久免费观看电影| 精品午夜福利在线看| 免费久久久久久久精品成人欧美视频 | 超碰97精品在线观看| 黄色欧美视频在线观看| 国产又色又爽无遮挡免| 亚洲av欧美aⅴ国产| 精品久久久久久电影网| 国产精品免费大片| 国产精品久久久久久av不卡| 国产精品久久久久成人av| 麻豆精品久久久久久蜜桃| 一边摸一边做爽爽视频免费| 亚洲国产精品成人久久小说| 国产在线一区二区三区精| 亚洲三级黄色毛片| 日韩熟女老妇一区二区性免费视频| 成人亚洲欧美一区二区av| 视频在线观看一区二区三区| 3wmmmm亚洲av在线观看| 亚洲国产欧美在线一区| 国精品久久久久久国模美| 免费观看的影片在线观看| 麻豆精品久久久久久蜜桃| 亚洲精品乱码久久久v下载方式| 久久久欧美国产精品| 亚洲av二区三区四区| 久久久亚洲精品成人影院| 亚洲一级一片aⅴ在线观看| 男女高潮啪啪啪动态图| 欧美精品亚洲一区二区| 中文字幕制服av| a级片在线免费高清观看视频| 最近中文字幕2019免费版| 汤姆久久久久久久影院中文字幕| 国产亚洲欧美精品永久| 天堂8中文在线网| 女性被躁到高潮视频| 纯流量卡能插随身wifi吗| 国产精品不卡视频一区二区| 亚洲av欧美aⅴ国产| 久久影院123| 一级毛片我不卡| 丰满饥渴人妻一区二区三| 高清毛片免费看| 一级爰片在线观看| 精品亚洲成a人片在线观看| av专区在线播放| 亚洲av成人精品一区久久| 久久鲁丝午夜福利片| 在线天堂最新版资源| 精品国产一区二区久久| 中文字幕最新亚洲高清| 一级毛片我不卡| 又黄又爽又刺激的免费视频.| 高清视频免费观看一区二区| 高清黄色对白视频在线免费看| 午夜av观看不卡| 欧美少妇被猛烈插入视频| 能在线免费看毛片的网站| 日日啪夜夜爽| 亚洲成人av在线免费| 一区二区av电影网| 国产视频首页在线观看| 精品一区二区三区视频在线| 如何舔出高潮| 黄色一级大片看看| 看非洲黑人一级黄片| 一级毛片电影观看| 免费观看的影片在线观看| 久久国产精品男人的天堂亚洲 | 久久婷婷青草| 欧美日韩综合久久久久久| 亚洲伊人久久精品综合| 狂野欧美激情性xxxx在线观看| 国产黄色视频一区二区在线观看| 亚洲精品一区蜜桃| 九草在线视频观看| 亚洲精品乱码久久久久久按摩| 免费不卡的大黄色大毛片视频在线观看| 日日摸夜夜添夜夜爱| 最近2019中文字幕mv第一页| 日韩电影二区| 母亲3免费完整高清在线观看 | 成人18禁高潮啪啪吃奶动态图 | 一区二区日韩欧美中文字幕 | 久久毛片免费看一区二区三区| 欧美人与性动交α欧美精品济南到 | 制服人妻中文乱码| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av天美| 精品熟女少妇av免费看| 日本av免费视频播放| 欧美国产精品一级二级三级| 欧美丝袜亚洲另类| 两个人免费观看高清视频| 狠狠婷婷综合久久久久久88av| 亚州av有码| 国精品久久久久久国模美| 国产爽快片一区二区三区| 成人亚洲欧美一区二区av| 欧美日韩视频精品一区| 国产视频首页在线观看| 日韩一区二区三区影片| 日韩精品免费视频一区二区三区 | 久久精品国产鲁丝片午夜精品| 麻豆成人av视频| 亚洲熟女精品中文字幕| 欧美国产精品一级二级三级| 少妇熟女欧美另类| 日韩欧美一区视频在线观看| 大话2 男鬼变身卡| 狂野欧美激情性xxxx在线观看| 丝袜在线中文字幕| 尾随美女入室| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 成人二区视频| 国产成人一区二区在线| 2022亚洲国产成人精品| 国产高清videossex| 蜜桃国产av成人99| 国产欧美亚洲国产| 免费观看a级毛片全部| 国产精品 欧美亚洲| 亚洲五月色婷婷综合| 久久国产精品男人的天堂亚洲| 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 一边摸一边抽搐一进一出视频| 国产免费av片在线观看野外av| 最近最新中文字幕大全免费视频| 狂野欧美激情性xxxx| 国产精品久久久久成人av| 色在线成人网| 一级片免费观看大全| 久久影院123| 中文字幕制服av| 黄色视频不卡| 国产熟女午夜一区二区三区| 欧美精品啪啪一区二区三区| 国产在线免费精品| 亚洲天堂av无毛| 丰满少妇做爰视频| 丁香欧美五月| 狠狠婷婷综合久久久久久88av| 国产成人免费观看mmmm| 亚洲欧美一区二区三区久久| videos熟女内射| 99国产综合亚洲精品| 国产亚洲欧美精品永久| 激情在线观看视频在线高清 | 成人av一区二区三区在线看| 午夜福利在线免费观看网站| 极品人妻少妇av视频| 99国产精品99久久久久| 亚洲 国产 在线| 天天添夜夜摸| 精品久久蜜臀av无| 天堂俺去俺来也www色官网| 精品一区二区三卡| 亚洲精品自拍成人| 精品熟女少妇八av免费久了| 亚洲欧洲精品一区二区精品久久久| 大片免费播放器 马上看| 黑人巨大精品欧美一区二区mp4| 亚洲成av片中文字幕在线观看| 亚洲人成电影免费在线| 老司机福利观看| 久久久久久久大尺度免费视频| 乱人伦中国视频| 亚洲九九香蕉| 久久热在线av| 妹子高潮喷水视频| 亚洲精品久久成人aⅴ小说| 日韩人妻精品一区2区三区| 高清在线国产一区| 一级a爱视频在线免费观看| 亚洲精品一二三| 欧美精品一区二区免费开放| 午夜免费鲁丝| www.自偷自拍.com| 久久中文字幕人妻熟女| 午夜成年电影在线免费观看| 少妇粗大呻吟视频| 高清黄色对白视频在线免费看| 亚洲国产中文字幕在线视频| 成人av一区二区三区在线看| 亚洲av日韩精品久久久久久密| 操美女的视频在线观看| 激情在线观看视频在线高清 | 欧美 日韩 精品 国产| 国内毛片毛片毛片毛片毛片| 在线av久久热| 水蜜桃什么品种好| 人妻一区二区av| 99精品久久久久人妻精品| 一本综合久久免费| 亚洲精品粉嫩美女一区| 丰满迷人的少妇在线观看| 免费在线观看影片大全网站| 黄色视频不卡| 亚洲第一欧美日韩一区二区三区 | 91成人精品电影| 一级片免费观看大全| 免费在线观看日本一区| 国产精品久久久av美女十八| 母亲3免费完整高清在线观看| 美女福利国产在线| 啦啦啦免费观看视频1| 人人妻人人澡人人看| a级毛片黄视频| 亚洲精品美女久久av网站| 国产精品久久电影中文字幕 | 50天的宝宝边吃奶边哭怎么回事| 亚洲专区中文字幕在线| 欧美激情高清一区二区三区| 黄片播放在线免费| 极品少妇高潮喷水抽搐| 丝袜人妻中文字幕| 超碰成人久久| 国产91精品成人一区二区三区 | 久热爱精品视频在线9| 日本a在线网址| 国产欧美日韩综合在线一区二区| 久久国产亚洲av麻豆专区| 欧美在线黄色| 久久久国产成人免费| 成人永久免费在线观看视频 | 777米奇影视久久| 麻豆乱淫一区二区| 午夜福利乱码中文字幕| 热99re8久久精品国产| 99国产精品一区二区三区| 久久国产精品大桥未久av| 啦啦啦在线免费观看视频4| 国产一卡二卡三卡精品| 三级毛片av免费| 女警被强在线播放| 久久久久视频综合| 欧美成人午夜精品| 黄频高清免费视频| 成人18禁高潮啪啪吃奶动态图| 亚洲 国产 在线| 日本a在线网址| 我的亚洲天堂| 妹子高潮喷水视频| 国产精品 国内视频| 中文字幕av电影在线播放| 国产在线观看jvid| 久9热在线精品视频| 高清欧美精品videossex| 国产精品九九99| 午夜成年电影在线免费观看| 纯流量卡能插随身wifi吗| 亚洲av日韩在线播放| 50天的宝宝边吃奶边哭怎么回事| 亚洲第一av免费看| 久久香蕉激情| 曰老女人黄片| 久久久水蜜桃国产精品网| 色综合欧美亚洲国产小说| 自线自在国产av| 欧美乱妇无乱码| av不卡在线播放| 国产在线视频一区二区| 久久香蕉激情| 欧美精品亚洲一区二区| 男女之事视频高清在线观看| 久久人妻av系列| 国产又爽黄色视频| 国产成人免费观看mmmm| 久久久久久久大尺度免费视频| 人成视频在线观看免费观看| 免费在线观看日本一区| 国产精品久久久人人做人人爽| 操出白浆在线播放| 侵犯人妻中文字幕一二三四区| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| 波多野结衣av一区二区av| 免费在线观看黄色视频的| 一边摸一边做爽爽视频免费| 狠狠婷婷综合久久久久久88av| 黄片播放在线免费| 久久久欧美国产精品| 成人国产av品久久久| 成年动漫av网址| 人人妻人人澡人人看| 麻豆乱淫一区二区| cao死你这个sao货| 超碰成人久久| 亚洲精品粉嫩美女一区| 成人18禁在线播放| 精品一区二区三卡| 日本一区二区免费在线视频| av免费在线观看网站| 成在线人永久免费视频| 怎么达到女性高潮| 黄片小视频在线播放| 精品一区二区三区av网在线观看 | 老鸭窝网址在线观看| 大片免费播放器 马上看| av有码第一页| 黄片播放在线免费| 黄色视频不卡| 在线播放国产精品三级| 国产不卡一卡二| 日本vs欧美在线观看视频| 建设人人有责人人尽责人人享有的| 18禁美女被吸乳视频| 9191精品国产免费久久| 久久精品人人爽人人爽视色| 久久影院123| 国产精品久久久人人做人人爽| 国产精品亚洲av一区麻豆| 精品人妻1区二区| 久久久国产成人免费| 在线观看免费视频日本深夜| 满18在线观看网站| 国产成+人综合+亚洲专区| 国产三级黄色录像| 日日爽夜夜爽网站| 99精品欧美一区二区三区四区| 搡老乐熟女国产| 欧美在线黄色| 桃花免费在线播放| 久久人人97超碰香蕉20202| 中文字幕人妻熟女乱码| 丝袜在线中文字幕| 国产精品成人在线| 9热在线视频观看99| 亚洲国产精品一区二区三区在线| 中文字幕精品免费在线观看视频| 午夜福利免费观看在线| 真人做人爱边吃奶动态| 亚洲久久久国产精品| av天堂久久9| 精品人妻1区二区| 欧美日韩一级在线毛片| 国产无遮挡羞羞视频在线观看| 91国产中文字幕| 少妇 在线观看| 最新的欧美精品一区二区| 色老头精品视频在线观看| 亚洲欧美一区二区三区黑人| 国产精品熟女久久久久浪| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区av网在线观看 | 免费观看av网站的网址| 大片免费播放器 马上看| 亚洲精品粉嫩美女一区| 亚洲情色 制服丝袜| 考比视频在线观看| 欧美国产精品一级二级三级| 欧美在线黄色| √禁漫天堂资源中文www| 国产伦理片在线播放av一区| 午夜免费鲁丝| 国产精品免费一区二区三区在线 | 男女下面插进去视频免费观看| 国产成+人综合+亚洲专区| 国产亚洲精品久久久久5区| 色播在线永久视频| 成人免费观看视频高清| 丁香六月欧美| 亚洲av日韩精品久久久久久密| 国产99久久九九免费精品| 99在线人妻在线中文字幕 | 亚洲欧洲精品一区二区精品久久久| 国产精品香港三级国产av潘金莲| 日韩大片免费观看网站| 国产成人系列免费观看| 中文字幕色久视频| 久久久国产欧美日韩av| aaaaa片日本免费| 午夜福利视频在线观看免费| 成人国产av品久久久| 免费观看人在逋| 国产亚洲精品一区二区www | 国产伦人伦偷精品视频| 夜夜骑夜夜射夜夜干| 国产有黄有色有爽视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区三区视频了| 两性夫妻黄色片| 伊人久久大香线蕉亚洲五| 午夜精品久久久久久毛片777| 欧美 日韩 精品 国产| 亚洲一卡2卡3卡4卡5卡精品中文| 男人舔女人的私密视频| 亚洲人成伊人成综合网2020| 久久精品国产a三级三级三级| 日韩大片免费观看网站| 老熟妇仑乱视频hdxx| 久久精品91无色码中文字幕| 国产亚洲av高清不卡| 一区二区三区精品91| 999精品在线视频| bbb黄色大片|