• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel lossless image compression scheme based on binary neural networks with sparse coding

    2017-06-19 18:46:12WANGZuocheng,YANGJuan,XUELixia
    關(guān)鍵詞:漢明字典合肥

    A novel lossless image compression scheme based on binary neural networks with sparse coding

    1 Introduction

    Image compression is designed to reduce the size of the data so that it requires less disk space for storage and less bandwidth to be transmitted on a data communication channel. Image compression techniques are often classified into two categories: lossless and lossy schemes[1]. Distinction between lossless and lossy methods is important because lossy techniques have higher compression than lossless methods. Lossless compression techniques can usually achieve a 2∶1 to 8∶1 compression ratio. Lossy compression can provide compression ratio of 100∶1 to 200∶1, depending on the type of information being compressed. In addition, higher compression ratio can be achieved if more errors are allowed to be introduced into the original data[2].

    The compression algorithms recommended here are JPEG, JPEG2000 and JPEG-LS. In JPEG, both lossy and lossless modes are outlined by the notable difference between them, which is the application of discrete cosine transform(DCT) together with the corresponding quantization matrix. Both lossy and lossless forms are supported by JPEG2000 depending on the type of DWT and multi-component transforms being used. However, the computing method of JPEG2000 coding is more complex, and the computing cost is higher.In particular, for lossless image compression, the advantage of JPEG2000 is not prominent[3].

    Lossless compression of images is required in many practical applications, where no information loss is allowed during compression, such as compression of satellite images[4], spectral images[5]and diagnostic images form medical sector[6-7]etc. So lossless compression of image attracts researchers’ attention[8].

    The most popular methods of lossless compression are the dictionary-based schemes[9]. Dictionary compressors encode a string of data by partitioning the sting into many sub-strings and then replace each sub-string by a codeword. Communication between the compressor and decompressor is done by using messages. Each message consists of a codeword and possibly other information. The dictionary in these schemes is the set of every possible codeword.

    In this paper, we propose a novel lossless image compression algorithm. The compression ratio depends on the number of the neurons and the codeword of each linearly separable structure.

    2 Redundant dictionary based on linearly separable structures

    For every binary neuron is equivalent to a linearly separable function and some linearly separable functions have similar logical structure and knowledge content, linearly separable structures are composed of these linearly separable functions[10]. In this section, we will establish the redundant dictionary, which is inspired by the recent progress of coding with dictionary learning[11], based on linearly separable structures. So firstly, let us introduce the known linearly separable structures in binary neural networks.

    Definition 1 In binary neural networks, letwibe the weight value ofxi, denote

    Definition 2[12]In the Bn2space,F(xiàn)( X) = x*s1∧ x*s2∧…∧x*sm,and m≤n,then we call spatial structure composed of F-1( 1) as norm hypercube structure, the whole norm hypercube structures as norm hypercube structure system.

    Definition 3[12]In the Bn2space,F(xiàn)( X) = x*s1∧ x*s2∧…∧x*s1∧( x*t1∨*t2∨…∨*th) ,l + h≤n,and h≠0,then we call spatial structure composed of F-1( 1) as concave hypercube structure,the whole concave hypercube structures as concave hypercube structure system.

    Definition 4[12]In the Bn2space,F(xiàn)( X) = x*s1∨*s2∨…∨x*s1∨( x*t1∧x*t2∧…∧x*th) ,l + h≤n,and h≠0,then we call spatial structure composed of F-1( 1) as convex hypercube structure,the whole convex hypercube structures as convex hypercube structure system.

    Definition 5[13]In the Bn2space,for a sample Xc= ( xc1,xc2,…,xcn) ,if there is a set which is U( d) = { X = ( x1,x2,…,xn) ∈F-1( 1) | dH ( Xc,X) ≤d} , subject to U( d) = F-1( 1) ,U( d) = F-1( 0) ,where ·372· 重慶郵電大學(xué)學(xué)報(bào)( 自然科學(xué)版) 第29 卷 d is the integer located in an interval [0,n],and dH( Xc,X) is the Hamming distance between Xcand X,then we call U( d) as Hamming Sphere with the center of Xc and the radius of d.

    Definition 6[14]In the Bn2space,for a sample Xc = ( xc1,xc2,…,xcn) ,if there is two sets which are U( d) = { X = ( x1,x2,…,xn ) ∈F-1( 1) | dH ( Xc,X) ≤d} and K( d + 1) = { X = ( x1,x2,…,xn) ∈F-1( 1) | dH( Xc,X) = d + 1} ,which are subject to U( d) ∪K( d + 1) = F-1( 1) ,U( d) ∪K( d + 1) = F-1( 0) ,where d is the integer located in an interval [0,n],and card( K( d + 1) ) = m,where card ( K ( d + 1 ) ) = m means that the set K ( d + 1) is composed of m elements, then we call M( d,k) = U( d) ∪K( d + 1) as Hamming Sphere Dimple with the center of Xcand the radius of d,and call K( d + 1) as dimple set.

    Definition 7 For a Boolean functionF(x1,x2,…,xn), ifF(x1,x2,…,xn) can be expressed aswhere operatorOis logic operation “AND” or logic operation “OR”, then we call the Boolean functionF(x1,x2,…,xn) as SP function.

    There are the necessary and sufficient conditions for the equivalence between these six linearly separable structures and the binary neurons. However, unfortunately, the known linearly separable structures cannot cover the whole binary neuron, that is to say we need to define other linearly separable structure in order to cover the whole binary neuron.

    Alln-bit Boolean functions can be classified into two classes: linearly separable Boolean functions(LSBF) and non-linearly separable Boolean functions(non-LSBF). The non-LSBF can be decomposed into several LSBFs with logic operators as Theorem 1.

    Theorem 1[15]Anyn-bit non-LSBFφcan be expressed as logic Θ(k)operations of a sequence of LSBF:φ=φ1Θ(1)φ2Θ(2)…Θ(m-1)φm, whereφi(i=1,2,…,m) are LSBF, Θ(k)(k=1,2,…,m-1) are 2-input and 1-ouput logic operations such as “AND”, “OR”, “NOT”, andmis the minimal number of LSBF required.

    Although the known linearly separable structures cannot cover the whole binary neuron, we can decompose the whole Boolean function into several concave hypercube structures and convex hypercube structures with logic operators as Theorem 2.

    Theorem 2 Anyn-bit non-LSBFφcan be expressed as logic Θ(k)operations of a sequence of LSBF:φ=φ1Θ(1)φ2Θ(2)…Θ(m-1)φm, whereφi(i=1,2,…,m) are concave hypercube structure or convex hypercube structure, Θ(k)(k=1,2,…,m-1) are 2-input and 1-ouput logic operations such as “AND”, “OR”, “NOT”, andmis the minimal number of hypercube structure required.

    wheret1,t2,…,tpi,tpi+1,…,tnis arrangement of 1,2,…,n.

    F(x1,x2,…,xn)=φ1∨φ2∨…∨φs,

    Intheabovesituationweonlyimplyeverytruesampleasahypercubestructure,sotheminimalnumberofLSBFrequiredisequaltothenumberoftruesamples,andthedecompositionefficiencyisratherlow.However,ifthehypercubestructurewhichweimplycanexpressatleasttwotruesamples,theminimalnumberofLSBFrequiredissmallerthanthenumberoftruesamples.Thatistosay,indecompositionprocess,wetryourbesttoimplythehypercubestructureexpressesatmosttruesamples,sotheminimalnumberofLSBFrequiredissmall.

    AccordingtotheTheorem2,weonlyimplythehypercubestructurecanexpressarbitraryBooleanfunction.Soifweimplymorekindsoflinearlyseparablestructure,thedecompositionefficiencycanbeimproved.Inthefollowing,weimplythewholeknownlinearlyseparablestructuretoestablisharedundantdictionaryasFig.1.

    Werankthewholeknownlinearlyseparablestructuresusingthelexicographicorder.

    Fig.1 Redundant dictionary based on the known linearly separable structure

    3 Lossless compression algorithm based on the learning algorithm of binary neural networks

    Foreachimagestoredinthecomputerwithonlycode“0”and“1”,wecantreatthestorageformatasaBooleanfunctionwhichcanbetrainedintoabinaryneuralnetworks.Forann-bit Boolean function, the number of the whole function value is 2n. So firstly we need to divide the storage format of a given image into several Boolean functions. For every gray image, the each pixel occupies 8-bit binary code, so we choose 8-bit Boolean function as the smallest unit of the decomposed for the sake of simplicity. In this case, we can deal with 32 pixels by use of only an 8-bit Boolean function. If we choose the higher dimension Boolean function, we can deal with more pixels by use of only a Boolean function.

    Secondly, we need to train the 8-bit Boolean function into a binary neural network with the least hidden neurons. In this step, we employ the geometry learning method based on heuristic algorithm. After obtaining the structure of the binary neural network, we match each hidden neuron to the specific linearly separable structure. At last, we establish the coding rule according to the redundant dictionary based on the known linearly separable structure, which is the compression scheme of a given image.

    We describe the steps of the whole compression process as follows:

    Step 0 We need to establish the redundant dictionary based on the known linearly separable structure, and obtain index coding scheme. We need to perform this initial step only once.

    Step 1 For the given image, we divide the storage format of the image into several 8-bit Boolean functions, such aslBoolean functions.

    Step 2 For thelBoolean functions, we train every Boolean function into the binary neural networks by using the algorithm proposed in literature [16].

    Step 3 For the getting binary neural networks, we match the hidden neuron to the linearly separable structure with the aid of pattern matching method proposed in literature [17].

    Step 4 According to the hidden neurons matching the linearly separable structure to the wholelbinary neural networks, we obtain the compression coding by the Step 0.

    4 Experiments and results

    To test the efficiency of the proposed algorithm for lossless image compression in this paper, we apply the compression ratio as evaluation criterion. The images being tested are 6 images from classic test images shown in Fig.2. Each image(8 bit/pixel, dimensions 256×256 pixels) is stored in the jpg format.

    Fig.2 Test images

    In Tab.1, we obtain the comparison of experimental results.

    Tab.1 Comparison of experimental results(bpp)

    5 Conclusions and future works

    In this paper, a novel lossless image compression method is proposed. By using our redundant dictionary based on linearly separable structure and learning algorithm of binary neural networks, the compression ratio can be effectively increased, at the same time the size of the additional indexing data keeps small. It has demonstrated that our method outperforms traditional compression tools.

    In this work, we focus on developing a method for lossless image compression. As to the characteristics of the gray image, every pixel occupies 8 bit, we employ 8-dimension binary neural networks and their linearly separable structures to establish redundant dictionary and learning algorithm for lossless compression. However, if we deal with lossless data compression, which is used in compressing text files, executable codes, word processing files, database files, tabulation files, and whenever the original and the decompressed files must be identical, we can employ arbitrary dimension binary neural networks and corresponding linearly separable structures to obtain better compression ratio. As for the higher dimension of binary neural networks, the higher computing cost, the higher dimension of binary neural networks and the higher compression ratio, we should balance the computing cost and the compression ratio. As a future work, we would like to explore lossless data compression.

    [1] SEPEHRBAND F, MORTAZAVI M, GHORSHI S, et al. Simple lossless and near-lossless medical image compression based on enhanced DPCM transformation[C]//2011 IEEE Pacific Rim Conference on Communication Computers and Signal Processing. New York: IEEE,2011: 66-72.

    [2] CHENG Kaijen, DILL Jeffery. Lossless to lossy dual-tree BEZW compression for hyper spectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5765-5770.

    [3] JI Xiaoyong, BAI Sen, GUO Yu. A new security solution to JPEG using hyper-chaotic system and modified zigzag scan coding[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(5): 1-3.

    [4] WU Jiaji, LIANG Chong, HAN Jianxiang, et al. A two-stage lossless compression algorithm for aurora image using weighted motion compensation and context-based model[J].Optics Communications,2013,290(1):19-27.

    [5] WEN Jia, MA Caiwen, SHUI Penglang. An adaptive VQ method used on interferential multi-spectral image lossless compression[J]. Optics Communications, 2011, 284(1): 64-73.

    [6] KARIMI N, SAMAVI S, SHIRANI S, et al. Real-time lossless compression of microarray image by separate compaction of foreground and background[J]. Computer Standards and Interfaces, 2015, 39(3): 34-43.

    [7] STARONOLSKI R. Simple fast and adaptive lossless image compression algorithm[J]. Software Practice and Experience, 2007, 37(1) :65-91.

    [8] ROMAN S. New simple and efficient color space transformations for lossless image compression[J]. Journal of Visual Communication and Image Representation, 2014, 25(5): 1056-1063.

    [9] HUSSEIN A B. A novel lossless data compression scheme based on the error correcting Hamming codes[J]. Computers and Mathematics with Applications, 2008(56): 143-150.

    [10] LU Yang, YANG Juan, WANG Qiang, et al. The upper bound of the minimal number of hidden neurons for the parity problem in binary neural networks[J]. Science China Information Sciences, 2012, 55(7): 1-9.

    [11] SONG Xiangfa, JIAO L C, YANG Shuyuan, et al. Sparse coding and classifier ensemble based multi-instance learning for image categorization[J]. Signal Processing, 2013, 93(1): 1-11.

    [12] 陸陽,韓江洪,張維勇.二進(jìn)神經(jīng)網(wǎng)絡(luò)邏輯關(guān)系判據(jù)及等價(jià)性規(guī)則提取[J].模式識(shí)別與人工智能,2001, 14(2): 171-176. LU Yang, HAN Jianghong, ZHANG Weiyong. Logical relation determination criteria and equivalence rule extraction on Binary Neural Networks[J]. Patten Recognition and Artificial Intelligence, 2001, 14(2): 171-176.

    [13] 陸陽,魏臻,高雋,等.二進(jìn)神經(jīng)網(wǎng)絡(luò)中漢明球的邏輯意義及一般判別方法[J].計(jì)算機(jī)研究與發(fā)展, 2002, 39(1): 79-86. LU Yang, WEI Zhen, GAO Jun, et al. Logical meaning of Hamming Sphere and its general judgement method in Binary Neural Networks[J]. Journal of Computer Research and Development, 2002, 39(1): 79-86.

    [14] 楊娟,陸陽,黃振謹(jǐn),等.二進(jìn)神經(jīng)網(wǎng)絡(luò)中的漢明球突及其線性可分性[J].自動(dòng)化學(xué)報(bào),2011,37(6):737-745. YANG Juan, LU Yang, HUANG Zhenjin, et al. Hamming Sphere Dimple in Binary Neural Networks and its linear separability[J]. Acta Automatica Sinica, 2011, 37(6): 737-745.

    [15] CHEN Fangyue, CHEN Guanrong, HE Qinbing, et al. Universal perceptron and DNA-Like learning algorithm for binary neural networks: LSBF and PBF implementations[J]. IEEE Transactions on Neural Networks, 2009, 20(8) :1293-1301.

    [16] 楊娟,陸陽,方歡,等.基于蟻群算法的二進(jìn)神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法[J].電路與系統(tǒng)學(xué)報(bào), 17(6): 49-55. YANG Juan, LU Yang, FANG Huan, et al. An ant colony-based learning algorithm for binary neural networks[J]. Journal of Circuits and Systems, 17(6): 49-55.

    [17] 陸陽,魏臻,韓江洪,等.二進(jìn)神經(jīng)網(wǎng)絡(luò)的模式匹配學(xué)習(xí).電子與信息學(xué)報(bào), 2003, 25(1): 74-79. LU Yang, WEI Zhen, HAN Jianghong, et al. The pattern match learning of binary neural networks[J]. Journal of electronics and information technology, 2003, 25(1): 74-79.

    Biographies:

    WANG Zuocheng(1973-),male, Sichuan Bazhong, Doctor, Senior engineer, His research interests include smart city and digital image processing and pattern recognition. E-mail: cswangzc@163.com.

    YANG Juan(1983-),female, Liaoning, Shenyang, Postdoctor. His research interests include image processing and intelligent visual surveillance.

    XUE Lixia(1976-),female,Sichuan Xichang, Doctor, Associate professor. Her research interests include digital image processing and pattern recognition.

    (編輯:魏琴芳)

    王佐成1,2,楊 娟3,薛麗霞3

    (1.中國電子科技集團(tuán)公司 第三十八研究所,合肥 230088;2.安徽四創(chuàng)電子股份有限公司,合肥 230088;3.合肥工業(yè)大學(xué) 計(jì)算機(jī)與信息學(xué)院,合肥 230009)

    視頻圖像的高效無損壓縮在海量的航空和遙感圖像傳輸、珍貴的文物信息的保存等方面具有重要的應(yīng)用價(jià)值,而目前的研究熱點(diǎn)主要針對(duì)有損壓縮,為此通過對(duì)現(xiàn)有的無損壓縮方法的分析和研究,提出一種在稀疏編碼與二進(jìn)神經(jīng)網(wǎng)絡(luò)相結(jié)合的框架下建立新的圖像無損壓縮方法。首先借助二進(jìn)神經(jīng)網(wǎng)絡(luò)中的線性可分結(jié)構(gòu)系建立冗余字典,獲得有效的稀疏分解基;再借助二進(jìn)神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法將圖像映射為以線性可分結(jié)構(gòu)系為神經(jīng)元的二進(jìn)制神經(jīng)網(wǎng)絡(luò),在此基礎(chǔ)上建立相應(yīng)的模式匹配算法將每個(gè)神經(jīng)元與冗余字典簡歷映射關(guān)系,通過稀疏系數(shù)建立原始圖像的編碼形式,進(jìn)而實(shí)現(xiàn)了圖像的無損壓縮,并從理論上分析了該方法可以有效地提高壓縮比,最后通過實(shí)驗(yàn)驗(yàn)證了該算法的有效性和通用性。

    無損壓縮; 二進(jìn)神經(jīng)網(wǎng)絡(luò); 線性可分結(jié)構(gòu)系; 冗余字典; 壓縮比

    2017-04-31 通訊作者:王佐成 cswangzc@163.com

    The Fundamental Research Funds for the Central Universities of China(JZ2014HGBZ0059)

    date:2017-04-30

    猜你喜歡
    漢明字典合肥
    開心字典
    家教世界(2023年28期)2023-11-14 10:13:50
    開心字典
    家教世界(2023年25期)2023-10-09 02:11:56
    合肥的春節(jié)
    合肥的春節(jié)
    我是小字典
    合肥:打造『中國IC之都』
    正版字典
    讀者(2016年14期)2016-06-29 17:25:50
    媳婦管錢
    中年研究
    漢明距離矩陣的研究
    亚洲七黄色美女视频| 国产免费福利视频在线观看| 免费高清在线观看视频在线观看| 国产成人免费观看mmmm| 免费一级毛片在线播放高清视频 | 熟女少妇亚洲综合色aaa.| 男男h啪啪无遮挡| 亚洲精品在线美女| 中文字幕人妻丝袜一区二区| 69精品国产乱码久久久| 日日爽夜夜爽网站| 丝袜在线中文字幕| 国产三级黄色录像| 国产成人av教育| 免费在线观看日本一区| 午夜视频精品福利| 亚洲av日韩精品久久久久久密 | 欧美日韩国产mv在线观看视频| 久久久久国产精品人妻一区二区| 国产精品国产三级国产专区5o| 青春草亚洲视频在线观看| 大香蕉久久成人网| av又黄又爽大尺度在线免费看| 久久人人爽av亚洲精品天堂| 国产精品熟女久久久久浪| 一级毛片我不卡| 黄色视频在线播放观看不卡| 国产精品熟女久久久久浪| 久久人人爽人人片av| 天天躁夜夜躁狠狠躁躁| 国产精品香港三级国产av潘金莲 | 在线av久久热| 丰满人妻熟妇乱又伦精品不卡| 脱女人内裤的视频| 欧美精品啪啪一区二区三区 | 99久久99久久久精品蜜桃| 亚洲精品av麻豆狂野| 亚洲国产欧美网| 欧美日韩av久久| 黄色 视频免费看| 老司机在亚洲福利影院| 国产黄色视频一区二区在线观看| 飞空精品影院首页| 真人做人爱边吃奶动态| 国产一区二区激情短视频 | 日韩视频在线欧美| 成年人免费黄色播放视频| 99国产精品一区二区三区| 久久精品国产综合久久久| 亚洲精品日本国产第一区| 亚洲成人免费电影在线观看 | 午夜av观看不卡| 女人精品久久久久毛片| 国精品久久久久久国模美| 国产成人欧美| 日韩,欧美,国产一区二区三区| 欧美日韩视频精品一区| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| 久久久欧美国产精品| 90打野战视频偷拍视频| 深夜精品福利| 国产精品香港三级国产av潘金莲| 久久精品夜夜夜夜夜久久蜜豆 | 久久草成人影院| 久久伊人香网站| 很黄的视频免费| 午夜福利高清视频| 亚洲精品一区av在线观看| 日本 av在线| 国产真人三级小视频在线观看| av在线播放免费不卡| 国产精品久久久久久亚洲av鲁大| 日本熟妇午夜| 精品日产1卡2卡| 美女 人体艺术 gogo| 精品免费久久久久久久清纯| 精品午夜福利视频在线观看一区| 色婷婷久久久亚洲欧美| 90打野战视频偷拍视频| 观看免费一级毛片| 欧美乱码精品一区二区三区| 一本一本综合久久| 白带黄色成豆腐渣| 嫁个100分男人电影在线观看| 女同久久另类99精品国产91| 91国产中文字幕| 欧美一区二区精品小视频在线| 亚洲欧美日韩高清在线视频| 亚洲中文av在线| 久久香蕉精品热| 19禁男女啪啪无遮挡网站| 中文字幕av电影在线播放| 婷婷精品国产亚洲av在线| 后天国语完整版免费观看| 婷婷亚洲欧美| 久久九九热精品免费| 18禁观看日本| 精品久久蜜臀av无| 18禁观看日本| 精品久久久久久久毛片微露脸| 人人妻人人看人人澡| av在线天堂中文字幕| 一边摸一边做爽爽视频免费| 91麻豆av在线| 制服丝袜大香蕉在线| 国产一级毛片七仙女欲春2 | 日本一本二区三区精品| 欧美激情高清一区二区三区| 男人舔奶头视频| 久久青草综合色| 这个男人来自地球电影免费观看| 人人妻人人澡欧美一区二区| 我的亚洲天堂| 久久天躁狠狠躁夜夜2o2o| 久久精品人妻少妇| 一本精品99久久精品77| 露出奶头的视频| 黄网站色视频无遮挡免费观看| 国产激情久久老熟女| 久久精品国产亚洲av高清一级| 久久久久久免费高清国产稀缺| www.精华液| 色精品久久人妻99蜜桃| 欧美午夜高清在线| 亚洲 欧美 日韩 在线 免费| 夜夜躁狠狠躁天天躁| 18禁裸乳无遮挡免费网站照片 | 久久99热这里只有精品18| 老熟妇乱子伦视频在线观看| 精品久久久久久成人av| 狠狠狠狠99中文字幕| 波多野结衣av一区二区av| 中文字幕av电影在线播放| 午夜免费激情av| 国产真人三级小视频在线观看| 天天一区二区日本电影三级| 精品午夜福利视频在线观看一区| 国产精品精品国产色婷婷| 午夜福利18| 国语自产精品视频在线第100页| 正在播放国产对白刺激| 热99re8久久精品国产| 国产亚洲欧美在线一区二区| 亚洲电影在线观看av| 精品国内亚洲2022精品成人| 99久久国产精品久久久| 黑丝袜美女国产一区| 最好的美女福利视频网| 久久久久国产精品人妻aⅴ院| 高清在线国产一区| 中文字幕人妻熟女乱码| 少妇裸体淫交视频免费看高清 | 亚洲五月婷婷丁香| 国产av不卡久久| 日本五十路高清| 国产亚洲精品久久久久久毛片| 91大片在线观看| 亚洲成人久久爱视频| 亚洲人成77777在线视频| 无遮挡黄片免费观看| 日本熟妇午夜| 级片在线观看| 国产欧美日韩一区二区精品| 国产精品爽爽va在线观看网站 | 在线观看日韩欧美| 91大片在线观看| 亚洲一区二区三区不卡视频| 久久香蕉精品热| 欧美av亚洲av综合av国产av| 在线天堂中文资源库| 亚洲五月天丁香| 很黄的视频免费| 欧美三级亚洲精品| 免费在线观看影片大全网站| 亚洲成人精品中文字幕电影| 亚洲精品美女久久久久99蜜臀| 国产伦人伦偷精品视频| 久久香蕉激情| 亚洲第一电影网av| 波多野结衣巨乳人妻| 国产精品98久久久久久宅男小说| 欧美日本亚洲视频在线播放| АⅤ资源中文在线天堂| 一二三四社区在线视频社区8| 欧美精品亚洲一区二区| 国产真人三级小视频在线观看| 黄片小视频在线播放| 视频区欧美日本亚洲| 香蕉丝袜av| 亚洲av五月六月丁香网| 国产精品免费视频内射| 欧美日本亚洲视频在线播放| 男女床上黄色一级片免费看| 成在线人永久免费视频| 1024手机看黄色片| 成熟少妇高潮喷水视频| 人人妻人人看人人澡| 国产成人欧美| 亚洲片人在线观看| av在线天堂中文字幕| 亚洲色图 男人天堂 中文字幕| 少妇的丰满在线观看| 中文字幕av电影在线播放| 妹子高潮喷水视频| 欧美黑人精品巨大| 免费女性裸体啪啪无遮挡网站| 黄色片一级片一级黄色片| 精品国产乱子伦一区二区三区| 白带黄色成豆腐渣| 日韩成人在线观看一区二区三区| 久久精品国产清高在天天线| 狠狠狠狠99中文字幕| 国产成人av教育| 午夜免费鲁丝| 曰老女人黄片| 国产又爽黄色视频| 香蕉丝袜av| 国产区一区二久久| 亚洲欧美日韩高清在线视频| 少妇 在线观看| 亚洲真实伦在线观看| 黄色视频不卡| 两个人视频免费观看高清| 美女扒开内裤让男人捅视频| 在线av久久热| 一级毛片女人18水好多| 欧美精品啪啪一区二区三区| 午夜影院日韩av| 亚洲熟妇熟女久久| 一边摸一边抽搐一进一小说| 免费看日本二区| 精品久久久久久久人妻蜜臀av| 老司机在亚洲福利影院| 欧美av亚洲av综合av国产av| 久久人妻福利社区极品人妻图片| 日本撒尿小便嘘嘘汇集6| 久久国产亚洲av麻豆专区| 午夜两性在线视频| 国产男靠女视频免费网站| 长腿黑丝高跟| 一区二区三区精品91| 精品久久久久久久久久久久久 | 久热爱精品视频在线9| 亚洲最大成人中文| 日韩中文字幕欧美一区二区| 18禁黄网站禁片免费观看直播| 成人免费观看视频高清| 欧美色视频一区免费| 国产人伦9x9x在线观看| 欧美乱色亚洲激情| 村上凉子中文字幕在线| 亚洲精品色激情综合| 日韩av在线大香蕉| e午夜精品久久久久久久| 国产激情偷乱视频一区二区| 女同久久另类99精品国产91| 日韩精品免费视频一区二区三区| 亚洲无线在线观看| 成年人黄色毛片网站| 久久午夜综合久久蜜桃| 国产精品99久久99久久久不卡| www.自偷自拍.com| 精品乱码久久久久久99久播| 中文字幕另类日韩欧美亚洲嫩草| 日本一区二区免费在线视频| 欧美国产日韩亚洲一区| 天堂影院成人在线观看| 国产伦在线观看视频一区| 自线自在国产av| 亚洲精品久久成人aⅴ小说| 草草在线视频免费看| 99热只有精品国产| 国产私拍福利视频在线观看| 亚洲av熟女| 久久草成人影院| 久久精品国产综合久久久| 精品人妻1区二区| 成人亚洲精品一区在线观看| 日本一区二区免费在线视频| 精品久久久久久久久久免费视频| 亚洲中文字幕日韩| 男人舔奶头视频| 听说在线观看完整版免费高清| 一进一出抽搐动态| 在线观看舔阴道视频| 国产精品久久久久久亚洲av鲁大| 国产一区二区三区在线臀色熟女| 日本一区二区免费在线视频| 免费一级毛片在线播放高清视频| 亚洲一区二区三区色噜噜| 国产成年人精品一区二区| 精品欧美国产一区二区三| 亚洲欧美日韩高清在线视频| 亚洲成人久久性| 久久久久久国产a免费观看| 欧美日韩一级在线毛片| 亚洲 欧美一区二区三区| 色哟哟哟哟哟哟| 免费高清视频大片| 1024手机看黄色片| 免费一级毛片在线播放高清视频| 大型黄色视频在线免费观看| 黄色视频不卡| 亚洲成人久久爱视频| 色播在线永久视频| 亚洲精品一区av在线观看| 这个男人来自地球电影免费观看| 亚洲中文字幕日韩| 免费av毛片视频| 桃红色精品国产亚洲av| 中文字幕久久专区| 午夜福利高清视频| 国产一区二区三区在线臀色熟女| 一进一出抽搐动态| 好看av亚洲va欧美ⅴa在| 97人妻精品一区二区三区麻豆 | bbb黄色大片| 91九色精品人成在线观看| 亚洲精品一区av在线观看| 久久中文字幕一级| 午夜久久久在线观看| 国产精品免费视频内射| 天堂动漫精品| 国产成人av教育| 欧美乱色亚洲激情| 男女做爰动态图高潮gif福利片| 色精品久久人妻99蜜桃| 99精品在免费线老司机午夜| 成人av一区二区三区在线看| videosex国产| 99久久综合精品五月天人人| 欧美乱码精品一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲国产精品成人综合色| 国产熟女午夜一区二区三区| 欧美久久黑人一区二区| 欧美三级亚洲精品| 亚洲av电影在线进入| 欧美中文综合在线视频| 黄色 视频免费看| 精品国产美女av久久久久小说| 三级毛片av免费| 欧美日韩精品网址| 一区福利在线观看| 一个人观看的视频www高清免费观看 | 男女午夜视频在线观看| 久久精品91无色码中文字幕| 日日爽夜夜爽网站| 18禁黄网站禁片免费观看直播| 最近最新免费中文字幕在线| 最近最新中文字幕大全电影3 | 午夜福利一区二区在线看| 国产成人精品无人区| 中文字幕最新亚洲高清| 91字幕亚洲| 久久精品国产亚洲av高清一级| 成人18禁在线播放| 成人特级黄色片久久久久久久| 久久中文看片网| 丝袜人妻中文字幕| 亚洲中文日韩欧美视频| 亚洲国产精品sss在线观看| 一级片免费观看大全| 91老司机精品| 天天躁夜夜躁狠狠躁躁| 满18在线观看网站| 黄片播放在线免费| 99久久久亚洲精品蜜臀av| 一夜夜www| √禁漫天堂资源中文www| 免费在线观看影片大全网站| 免费高清在线观看日韩| 亚洲免费av在线视频| 婷婷亚洲欧美| 亚洲精品美女久久av网站| 中文字幕精品亚洲无线码一区 | 在线视频色国产色| 免费看十八禁软件| 免费一级毛片在线播放高清视频| 亚洲自拍偷在线| 啪啪无遮挡十八禁网站| 日日夜夜操网爽| 美女免费视频网站| 午夜福利视频1000在线观看| 日日爽夜夜爽网站| 午夜福利18| 在线观看午夜福利视频| 99国产精品99久久久久| 99re在线观看精品视频| 制服诱惑二区| 中文字幕精品免费在线观看视频| 国产精品免费一区二区三区在线| 桃色一区二区三区在线观看| 精品福利观看| 色综合站精品国产| 亚洲国产精品久久男人天堂| 波多野结衣高清无吗| 日韩高清综合在线| 国产亚洲精品综合一区在线观看 | 日韩欧美三级三区| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| 久久中文字幕一级| 黑人欧美特级aaaaaa片| 91成人精品电影| 亚洲色图 男人天堂 中文字幕| 国产精品乱码一区二三区的特点| 欧美在线黄色| 99在线视频只有这里精品首页| 亚洲一区中文字幕在线| 亚洲久久久国产精品| 熟女少妇亚洲综合色aaa.| 亚洲国产高清在线一区二区三 | 后天国语完整版免费观看| 中文字幕av电影在线播放| 午夜福利一区二区在线看| 精品一区二区三区四区五区乱码| 亚洲一区中文字幕在线| 视频区欧美日本亚洲| 色尼玛亚洲综合影院| 亚洲全国av大片| 99riav亚洲国产免费| 国产精品乱码一区二三区的特点| 岛国视频午夜一区免费看| 久久久久国产一级毛片高清牌| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av高清一级| 成人欧美大片| 男女下面进入的视频免费午夜 | 免费一级毛片在线播放高清视频| 亚洲精品久久成人aⅴ小说| 精品一区二区三区四区五区乱码| 一边摸一边做爽爽视频免费| 久久久久久大精品| www.熟女人妻精品国产| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久人妻精品电影| 午夜久久久久精精品| 婷婷精品国产亚洲av在线| 亚洲成av人片免费观看| 女性被躁到高潮视频| 亚洲熟妇熟女久久| 日本在线视频免费播放| 日韩精品青青久久久久久| 亚洲国产欧美一区二区综合| 在线国产一区二区在线| 精品乱码久久久久久99久播| 久久久久久亚洲精品国产蜜桃av| 亚洲一区二区三区色噜噜| 亚洲国产欧美一区二区综合| 久久国产亚洲av麻豆专区| 国产精品亚洲一级av第二区| 免费看a级黄色片| 亚洲色图 男人天堂 中文字幕| 日韩精品中文字幕看吧| 长腿黑丝高跟| 久久伊人香网站| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 精品福利观看| 91av网站免费观看| 午夜免费鲁丝| 日韩欧美一区二区三区在线观看| 成人国语在线视频| 一进一出抽搐gif免费好疼| 一个人观看的视频www高清免费观看 | 日本一本二区三区精品| 欧美又色又爽又黄视频| 给我免费播放毛片高清在线观看| 色婷婷久久久亚洲欧美| 天天添夜夜摸| 日日摸夜夜添夜夜添小说| 亚洲激情在线av| 狂野欧美激情性xxxx| 韩国精品一区二区三区| 男女视频在线观看网站免费 | 欧美最黄视频在线播放免费| 国产蜜桃级精品一区二区三区| 中文字幕精品亚洲无线码一区 | 亚洲国产欧洲综合997久久, | 国产一区在线观看成人免费| 国产国语露脸激情在线看| 亚洲欧美精品综合一区二区三区| 狠狠狠狠99中文字幕| 国产激情偷乱视频一区二区| 国产91精品成人一区二区三区| 人妻久久中文字幕网| 色在线成人网| 亚洲成人久久爱视频| 国产亚洲精品久久久久久毛片| 啪啪无遮挡十八禁网站| 一本综合久久免费| 亚洲av电影在线进入| 窝窝影院91人妻| 日本 av在线| 精品午夜福利视频在线观看一区| 国产爱豆传媒在线观看 | 久久久久九九精品影院| 欧美不卡视频在线免费观看 | 欧美日韩亚洲综合一区二区三区_| 欧美日本视频| 女性生殖器流出的白浆| 国内精品久久久久精免费| 国产精品,欧美在线| 国产v大片淫在线免费观看| 亚洲自拍偷在线| 夜夜夜夜夜久久久久| 午夜福利在线在线| 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| 亚洲五月天丁香| 国产乱人伦免费视频| 欧美激情高清一区二区三区| 热re99久久国产66热| 国产精品二区激情视频| 黑人欧美特级aaaaaa片| 香蕉av资源在线| svipshipincom国产片| 亚洲第一av免费看| 国产成人欧美在线观看| 2021天堂中文幕一二区在线观 | 变态另类成人亚洲欧美熟女| а√天堂www在线а√下载| 中文字幕高清在线视频| 久久久久久国产a免费观看| 成人欧美大片| www.999成人在线观看| 欧美最黄视频在线播放免费| 免费高清视频大片| 精品国产乱子伦一区二区三区| 天堂√8在线中文| 国产高清videossex| 国产一区在线观看成人免费| 国内精品久久久久久久电影| 亚洲国产欧美日韩在线播放| 99在线视频只有这里精品首页| 欧美亚洲日本最大视频资源| 男人操女人黄网站| 丝袜在线中文字幕| 欧美日韩一级在线毛片| 日本免费一区二区三区高清不卡| 久久久国产成人免费| 身体一侧抽搐| 在线观看日韩欧美| 日韩欧美 国产精品| 一级作爱视频免费观看| 日本免费一区二区三区高清不卡| 国产精品99久久99久久久不卡| 黄色视频不卡| 色综合婷婷激情| 一夜夜www| 国产精品一区二区精品视频观看| 久久精品成人免费网站| 日本黄色视频三级网站网址| 欧美成人一区二区免费高清观看 | 亚洲国产欧美一区二区综合| 亚洲五月色婷婷综合| 午夜免费激情av| 亚洲电影在线观看av| 18美女黄网站色大片免费观看| 又紧又爽又黄一区二区| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| 18禁美女被吸乳视频| 搞女人的毛片| 亚洲av熟女| 午夜激情av网站| 视频在线观看一区二区三区| 国产精品亚洲一级av第二区| 久久精品91无色码中文字幕| 777久久人妻少妇嫩草av网站| 亚洲黑人精品在线| 麻豆成人av在线观看| 18禁裸乳无遮挡免费网站照片 | 午夜a级毛片| 国产精品永久免费网站| 男女床上黄色一级片免费看| 久久 成人 亚洲| 黑丝袜美女国产一区| 欧美精品啪啪一区二区三区| cao死你这个sao货| 国产精品98久久久久久宅男小说| 满18在线观看网站| 少妇 在线观看| 在线观看免费日韩欧美大片| 老司机靠b影院| 三级毛片av免费| 国产真人三级小视频在线观看| 亚洲国产精品久久男人天堂| 国产精品免费一区二区三区在线| 99精品在免费线老司机午夜| 成人亚洲精品一区在线观看| 欧美性长视频在线观看| 免费看十八禁软件| 黄色 视频免费看| 午夜老司机福利片| 97人妻精品一区二区三区麻豆 | 成人国产综合亚洲| 一区二区三区精品91| 97碰自拍视频| 老司机福利观看| 在线免费观看的www视频| 一级毛片女人18水好多| 亚洲人成77777在线视频| 又黄又粗又硬又大视频| 最近最新免费中文字幕在线| 妹子高潮喷水视频| 午夜激情福利司机影院| 无遮挡黄片免费观看| www.熟女人妻精品国产| 亚洲男人天堂网一区| 人人妻人人看人人澡| 免费女性裸体啪啪无遮挡网站| 国产精品免费视频内射|