歐曉彬,陳培磊,燕曉娟
(1.隴東學(xué)院生命科學(xué)與技學(xué)院,甘肅慶陽745000;2.浙江大學(xué)生命科學(xué)學(xué)院,浙江杭州310058;3.隴東學(xué)院圖書館,甘肅慶陽745000)
β-氨基丁酸在高等植物抗逆反應(yīng)中的作用
歐曉彬1,陳培磊2,燕曉娟3
(1.隴東學(xué)院生命科學(xué)與技學(xué)院,甘肅慶陽745000;2.浙江大學(xué)生命科學(xué)學(xué)院,浙江杭州310058;3.隴東學(xué)院圖書館,甘肅慶陽745000)
簡(jiǎn)述了β-氨基丁酸(BABA)在植物體內(nèi)運(yùn)輸、代謝及其在植物應(yīng)答生物和非生物逆境脅迫中作用的研究進(jìn)展,指出BABA是否作為信號(hào)分子在植物體內(nèi)起作用及其是否屬于植物內(nèi)源活性物質(zhì),這是當(dāng)前迫切需要解決的重要問題。
β-氨基丁酸;高等植物;生物脅迫;非生物脅迫
β-氨基丁酸(BABA)又名DL-3-氨基丁酸,是一種非蛋白氨基酸,由四個(gè)碳原子和兩個(gè)官能團(tuán)(氨基和羧基)構(gòu)成(圖1A)。通過改變氨基的位置,BABA可衍生出兩種同分異構(gòu)體:α-氨基丁酸(α-aminobutyric acid,以下簡(jiǎn)稱AABA)和γ-氨基丁酸(γ-aminobutyric acid,以下簡(jiǎn)稱GABA)(圖1B)。此外,BABA具有旋光性,包含有R-和S-兩種對(duì)映異構(gòu)體(圖1C)[1]。
自上世紀(jì)60年代,BABA即已被證明具有誘導(dǎo)植物增強(qiáng)抗病性的能力[2-3]。但因BABA在植物體內(nèi)含量低,直到1992年Gamliel等[4]才在番茄根部的浸出液中檢測(cè)到其存在,隨后也在王桉(Eucalyptusregnans)、銀荊(Acaciadealbata)和黑木相思(Acaciamelanoxylon)等喬木的韌皮部及木質(zhì)部的汁液中被檢出[5]。近年來,Jakab[6]和Zimmerli等[7]先后發(fā)現(xiàn)BABA可以增強(qiáng)植物抗旱、耐熱等抗非生物脅迫的能力。與之相比,AABA和GABA對(duì)植物的誘抗的作用卻并不明顯[8-12]。作為一種非常有應(yīng)用前景的植物誘抗劑,BABA在植物抗逆中的作用已引起人們廣泛的關(guān)注。
圖1 β-氨基丁酸及其同分異構(gòu)體的化學(xué)結(jié)構(gòu)(參考Justyna and Ewa [1],略有改動(dòng))
植物的不同部位對(duì)BABA的吸收能力存在差異。根對(duì)BABA有部分透過性,吸收過程可能依賴于特定的轉(zhuǎn)運(yùn)子[13-14]。Cohen和Gisi[15]利用14C-BABA研究番茄對(duì)BABA的吸收,發(fā)現(xiàn)番茄根在2天內(nèi)只能吸收施用總量的36%,而被密封于培養(yǎng)皿中的葉片以及被切斷了的葉柄對(duì)BABA的吸收率在24h和72h后分別達(dá)到了73%和99%。此外,植物葉片對(duì)BABA的吸收能力與葉齡相關(guān)。葡萄的下、中、上三種不同部位的葉片對(duì)BABA的吸收率分別是5.02%、3.49%和29.9%,這表明新生葉片對(duì)BABA可能具有更強(qiáng)的吸收能力[12]。
BABA在整株植物的轉(zhuǎn)運(yùn)主要是通過木質(zhì)部的運(yùn)輸作用來實(shí)現(xiàn)的[15]。BABA被葉片吸收后,既可向上運(yùn)輸,也可向下運(yùn)輸。葡萄葉片在吸收了14C-BABA之后,較遠(yuǎn)處的幼嫩葉片及根部均可檢測(cè)到14C-BABA[12]。番茄葉片在被14C-BABA處理后,可以在新芽和根中檢測(cè)到[15]。當(dāng)BABA由根吸收后,主要集中在植物的幼嫩組織中[13,15],被注射到煙草莖部的14C-BABA最終也主要集中于新生葉中[13]。
在植物體中,BABA是一個(gè)很難被代謝的物質(zhì)[1,13-14]。在煙草[14]和番茄[15]中,大部分外源施用的BABA可通過氨基酸提取法回收,僅有一小部分的BABA留存于細(xì)胞壁中。
大量研究表明,作為一種廣譜型植物免疫誘抗劑,BABA在多種寄主-病原互作系統(tǒng)能起到增強(qiáng)植物免疫力的效用[13-14]。寄主植物包括多種單子葉和雙子葉植物[14];病原體包括:細(xì)菌、真菌、卵菌、病毒、線蟲[14,16]和昆蟲等[17-18]。此外,BABA的誘抗效用也較為持久。研究表明辣椒(Capsicumannuum)在噴施了BABA后的第15天,其對(duì)炭疽病的抗性作用仍舊十分明顯[19],BABA對(duì)萵苣的誘抗作用能持續(xù)27天之久[20]。
有關(guān)BABA免疫誘抗作用機(jī)理已有大量研究,Estrella等[21-22]發(fā)現(xiàn)IBI1(Impaired in BABA-induced Immunity 1)基因所編碼的蛋白,可能是植物感受BABA的受體,是本領(lǐng)域近年來最大的突破之一。目前,一般認(rèn)為BABA免疫誘抗作用主要包括以下幾個(gè)方面:(1)引植物發(fā)超敏反應(yīng)(Hypersensitive Response,HR),葉面施用BABA的煙草[11]、番茄[23]、擬南芥[8]以及花椰菜[24]等,感染致病菌后均會(huì)引發(fā)局部細(xì)胞程序性死亡;(2)誘導(dǎo)細(xì)胞產(chǎn)生“氧爆”,Siegrist等[11]研究發(fā)現(xiàn)BABA能誘導(dǎo)煙草ROS的產(chǎn)生;(3)誘導(dǎo)植物抗病相關(guān)PR蛋白在植物體中表達(dá)[1];(4)促進(jìn)植物抗毒素的合成[1];(5)促進(jìn)胼胝質(zhì)和木質(zhì)素在細(xì)胞內(nèi)累積,從而更為有效地抑制病原菌在植物體內(nèi)的生長(zhǎng)和繁殖[14]。(6)增強(qiáng)植物氣孔免疫能力,抑制病原菌入侵[25]。
BABA不僅可以增強(qiáng)植物的抗病性,還可以提高植物抗非生物脅迫的能力。BABA提高植物的抗旱性現(xiàn)已在擬南芥[6]、海棠[26]、春小麥[27]、煙草[28]和馬鈴薯[29]等五種植物中獲得證實(shí):被BABA處理過的擬南芥在受到干旱脅迫時(shí)水分喪失僅約為對(duì)照植株的1/7;被誘導(dǎo)過的海棠累積了ABA信號(hào)通路相關(guān)的蛋白;處理組的春小麥也有ABA的累積。而在高鹽脅迫中,誘導(dǎo)過的擬南芥萎蔫株數(shù)約為對(duì)照組的1/2[6];BABA對(duì)提高水稻的耐鹽性也有作用,經(jīng)過BABA處理的水稻萎蔫株數(shù)、脯氨酸含量與對(duì)照組相比較少,這些說明BABA處理后水稻受到高鹽脅迫的傷害減少[30]。K+是植物所必需的三大營養(yǎng)元素之一,同時(shí)也是植物細(xì)胞的主要滲透調(diào)節(jié)物,在滲透調(diào)節(jié)方面發(fā)揮著重要的作用[31],缺鉀會(huì)影響植物根系的生長(zhǎng)以及葉綠素的含量[32]。研究發(fā)現(xiàn)BABA可以保護(hù)擬南芥和煙草免受低鉀脅迫的傷害[32-33]。
盡管BABA在植物抗非生物脅中的作用已被證實(shí),但是其作用機(jī)理現(xiàn)在仍不十分清楚,有待進(jìn)一步研究。目前,已有的研究表明,植物激素ABA可能在這一過程中起作用。在擬南芥中,無論是干旱、高溫還是高鹽脅迫,BABA都是通過ABA信號(hào)通路提高植物的抗性[6-7]。春小麥根部澆灌BABA后,植株個(gè)體中ABA的含量明顯升高,氣孔導(dǎo)度降低,從而有效地提升了干旱脅迫下小麥的水分利用效率(WUE)[27]。然而,對(duì)蘋果的蛋白表達(dá)分析顯示:BABA處理過的植株仍會(huì)表達(dá)一些ABA不能誘導(dǎo)的蛋白,這說明BABA誘導(dǎo)植物對(duì)滲透脅迫的抗性并不完全依賴于ABA信號(hào)通路[26]。
圖2 β-氨基丁酸在高等植物抗生物和非生物脅迫中的作用機(jī)理
在過去的十年里,與BABA相關(guān)的研究在植物學(xué)領(lǐng)域已取得了許多重大進(jìn)展(圖2),尤其是已獲得在植物中存在BABA受體類似物的分子及生理證據(jù)[21-22]。結(jié)合BABA在植物抗逆反應(yīng)中的作用,使人們對(duì)植物體中BABA的作用產(chǎn)生了更濃厚的興趣,但BABA在植物體中是否作為一種信號(hào)分子存在,仍有待進(jìn)一步研究。此外,雖然在番茄等植物體中檢測(cè)出BABA的存在,但截至目前,尚無證據(jù)表明這一非蛋白氨基酸是否屬于植物內(nèi)源活性物質(zhì)。其原因可能是:(1)因?yàn)锽ABA在植株中含量低,難以檢出;(2)BABA屬于植物外源活性物質(zhì),由微生物產(chǎn)生。這一問題的解決可能將顛覆我們對(duì)植物響應(yīng)環(huán)境脅迫范式的認(rèn)知。
[1]Justyna PG and Ewa K. Induction of resistance against pathogens by β-aminobutyric acid[J].Acta Physiologiae Plantarum,2013,35(6):1735-1748.
[2]Papavizas FG. Survival of single-basidiospore isolates of rhizoctonia praticola rhizoctonia solani[J].Canadian Journal of Microbiolgy,1964,10(5):739.
[3]Oort AJ and Van AO. Aspects of chemotherapy[J]. Mededelingen van de Landbouwhogeschool te Gent,1960,25:991-992.
[4]Gamliel A and Katan J. Influence of seed and root exudates on fluorescent pseudomonads and fungi in solarized soil[J].Phytopathology,1992,82(3):320-327.
[5]Sahebani N and Hadavi N. Induction of H2O2and related enzymes in tomato roots infected with root knot nematode (M.javanica) by several chemical and microbial elicitors[J].Biocontrol Science and Technology,2009,19(3):301-313.
[6]Jakab G,Ton J,Flors V,et al. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses[J].Plant Physiology,2005,139(1):267-274.
[7]Zimmerli L,Hou BH,Tsai CH,et al. The xenobiotic β-aminobutyric acid enhancesArabidopsisthermotolerance[J].The Plant Journal,2008,53(1):144-156.
[8]Zimmerli L,Jakab G,Metraux J P,et al. Protection of pathogen-specific defense mechanisms inArabidopsis by β-aminobutyric acid[J].Proceedings of the National Academy of Sciences,2000,97(23):12920-12925.
[9]Cohen Y. The BABA story of induced resistance[J].Phytoparasitica,2001,29(5):375-378.
[11]Siegrist J,Orober M,and Buchenauer H. β-aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid [J].Physiological and Molecular Plant Pathology,2000,56(3):95-106.
[12]Cohen Y,Reuveni M and Baider A. Local and systemic activity of BABA (DL-3-aminobutyric Acid) againstPlasmoparaviticolainGrapevines[J].European Journal of Plant Pathology,1999,105:351-361.
[13]Gabor Jakab,Valérie Cottier,Valérie Toquin,et al. β-aminobutyric acid-induced resistance in plants[J].European Journal of Plant Pathology,2001,107:29-37.
[14]Cohen Y. β-aminobutyric acid-induced resistance against plant pathogens [J].Plant Disease,2002,86(5):448-457.
[15]Cohen Y and Gisi U. Systemic translocation of14C-DL-3-aminobutyric acid in tomato plants in relation to induced resistance againstPhytophthorainfestans[J].Physiological and Molecular Plant Pathology,1994,45:441-456.
[16]Yuji Oka,Cohen Yigal,and Spiegel Y. Local and systemic induced resistance to the root-knot nematode in tomato by DL-β-aminobutyric acid[J].Phytopathology,1999,89(12):1138-1143.
[17]Hodge S,Thompson GA and Powell G. Application of DL-β-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphidAcyrthosiphonpisum(Hemiptera: Aphididae)[J].Bulletin of Entomological Research,2005,95(5):449-455.
[18]Wang XW,Cao HH,Zhang M,et al. Deciphering the mechanism of β-aminobutyric acid-induced resistance in wheat to the grain aphid,Sitobionavenae[J].PLoS ONE,2014,9(3):e91768.
[19]Hong JK,Hwang BK,and Kim CH. Induction of local and systemic resistance tocolletotrichumcoccodesin pepper plants by DL-β-aminobutyric acid[J].Journal of Phytopathology,1999,147:193-198.
[20]Cohen Y,Rubin AE and G Kilfin. Mechanisms of induced resistance in lettuce againstBremialactucaeby DL-β-aminobutyric acid (BABA)[J].European Journal of Plant Pathology,2009,126(4):553-573.
[21]Estrella L,Hulten M,Zhang Y,et al. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase[J].Nature Chemical Biology,2014,10:450-459.
[22]Schwarzenbacher RE,Luna E and Ton J. The discovery of the BABA receptor: scientific implications and application potential[J].Frontiers in Plant Science,2014,5:1-3.
[23]Cohen Y. Local and systemic control ofphytophthorainfestansin tomato plants by DL-3 -aminobutyric acids[J].Phytopathology,1993,84:55-59.
[24]Silué D,Pajot E,and Cohen Y. Induction of resistance to downy mildew (Peronosporaparasitica) in cauliflower by DL-β-aminobutyric acid (BABA)[J].Plant pathology,2002,51:97-102.
[25]Tsai CH,Singh P,Chen CW,et al. Priming for enhanced defence responses by specific inhibition of theArabidopsisresponse to coronatine[J].The Plant Journal,2011,65(3):469-479.
[26]Macarisin D,Wisniewski M E,Bassett C,et al. Proteomic analysis of β-aminobutyric acid priming and abscisic acid - induction of drought resistance in crabapple (Maluspumila): effect on general metabolism,the phenylpropanoid pathway and cell wall enzymes[J].Plant Cell & Environment,2009,32(11):1612-1631.
[27]Du YL,Wang ZY,Fan JW,et al. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying[J].Journal of Experimental Botany,2012,63(13):4849-4860.
[28]劉松.BABA誘導(dǎo)煙草幼苗抵御干旱脅迫和鎘脅迫的初步研究[D].安徽合肥:中國科技大學(xué),2016:31-45.
[29]Sós-Hegedus A,Juhász Z,Poór P,Kondrák M,et al. Soil drench treatment with β-anminobutyric acid increases drought tolerance of potato [J].PLoS ONE,2014,9(12):e114297.
[30]He Y,Xie J and Li Chunxiao. Preliminary study on the enhancement of salt tolerance of rice seedlings by β-aminobutyric acid[J].Journal of Anhui Agricultural Sciences,2010,38(2):641-642.
[31]Maathuis,FJM and Sanders D. Mechanisms of potassium absorption by higher plant roots[J].Physiologia Plantarum,1996,96(1):158-168.
[32]Jiang,L,Yang RZ,Lu YF,et al. β-aminobutyric acid-mediated tobacco tolerance to potassium deficiency[J].Russian Journal of Plant Physiology,2012,59(6):781-787.
[33]Cao S,Jiang L,Yuan H,et al. β-aminobutyric acid protectsArabidopsisagainst low potassium stress[J].Acta Physiologiae Plantarum,2007,30(3):309-314.
【責(zé)任編輯 趙建萍】
Functions of β-aminobutyric Acid in the Adverse Reaction of Higher Plants
OU Xiao-bin1,CHEN Pei-lei2,YAN Xiao-juan3
(1.CollegeofLifeScienceandTechnology,LongdongUniversity,Qingyang745000,Gansu; 2.CollegeofLifeScience,ZhejiangUniversity,Hangzhou310058,Zhejiang; 3.LongdongUniversityLibrary,LongdongUniversity,Qingyang745000,Gansu)
The research progress in transportation and metabolism of β-aminobutyric acid (BABA) in plants and their roles in plant responses to both biotic and abiotic stresses were briefly reviewed here. It has been pointed out that whether BABA acts as a signal molecule in plants or it is a natural endogenous constituent of plant are two urgent problems to be solved.
β-aminobutyric acid;higher plant;biotic stress;abiotic stress
1674-1730(2017)03-0056-04
2017-01-06
國家自然基金《β-氨基丁酸誘導(dǎo)氣孔關(guān)閉機(jī)制及其節(jié)水效應(yīng)研究》(31560125)
歐曉彬(1982—),男,江蘇宿遷人,副教授,博士,主要從事植物分子生物學(xué)研究。
Q945.78
A