胡素明王好肖香姣陳寶新張永賓
1.中國石油塔里木油田分公司天然氣事業(yè)部;2.中國石油塔里木油田分公司勘探開發(fā)研究院
迪那2氣田測射聯(lián)作完井工藝評價(jià)與優(yōu)化
胡素明1王好2肖香姣2陳寶新2張永賓2
1.中國石油塔里木油田分公司天然氣事業(yè)部;2.中國石油塔里木油田分公司勘探開發(fā)研究院
測射聯(lián)作工藝具有減少起下管柱作業(yè)、降低儲(chǔ)層污染、提高油氣井完井效率等優(yōu)點(diǎn),因此在迪那2氣田產(chǎn)能建設(shè)早期,普遍采用測射聯(lián)作并且不丟槍的完井工藝,但投產(chǎn)后逐漸暴露出井筒堵塞、井下動(dòng)態(tài)監(jiān)測受限等問題,因此有必要對該工藝進(jìn)行評價(jià)及優(yōu)化。調(diào)研統(tǒng)計(jì),產(chǎn)建早期測射聯(lián)作完井的生產(chǎn)井75%出現(xiàn)油壓急劇波動(dòng)下降的異?,F(xiàn)象;結(jié)合氣藏工程理論及修井實(shí)踐分析,油壓異常的根本原因在于,堵漏劑返排、地層出砂等堵塞了測射聯(lián)作管柱末端的生產(chǎn)篩管(即打孔油管)孔眼。對此,產(chǎn)能建設(shè)中后期采用射孔、測試分步實(shí)施的完井工藝,顯著減少了井筒堵塞的現(xiàn)象,并為生產(chǎn)動(dòng)態(tài)監(jiān)測的開展創(chuàng)造了有利條件。迪那2氣田的完井工藝實(shí)踐對于類似氣田具有較好的借鑒意義,在選用測射聯(lián)作完井工藝之前,應(yīng)進(jìn)行充分的適用性評價(jià)或針對性的改造優(yōu)化。
射孔;試油;完井;一體化管柱;井筒堵塞
測射聯(lián)作技術(shù)是目前應(yīng)用非常普遍的一種油氣井完井工藝技術(shù)[1-6],一次下入管柱即可完成射孔、求產(chǎn)、改造、完井多個(gè)作業(yè)工序,具有減少起下管柱作業(yè)、降低儲(chǔ)層污染、提高油氣井完井效率和經(jīng)濟(jì)效益等諸多優(yōu)點(diǎn)[7-17],甚至還能避免大量的砂子進(jìn)入管柱,減少油管沖蝕等問題[13]。此外,針對稠油井[4]、多層合采井[5,14]、泵抽井[2-3,10]等,前人對測射聯(lián)作管柱進(jìn)行了針對性的優(yōu)化改造,也取得了較好的應(yīng)用效果。然而,關(guān)于測射聯(lián)作完井工藝的弊端鮮見文獻(xiàn)報(bào)道。
測射聯(lián)作完井工藝在迪那2氣田產(chǎn)能建設(shè)的早期也被普遍采用,并且采取的是不丟射孔槍的測射一體化工藝,主要原因在于:氣井高溫高壓,井控風(fēng)險(xiǎn)大;天然裂縫較發(fā)育,易漏失污染;儲(chǔ)層厚度大,射孔槍長,不宜丟槍(射孔槍組長約320 m,若丟槍則必須比目地層多鉆320多米的井眼口袋);西氣東輸供氣需求大,迪那2氣田亟需快速上產(chǎn)。
測射聯(lián)作工藝的應(yīng)用為迪那2氣田產(chǎn)建早期快速、安全、高效地上產(chǎn)提供了強(qiáng)有力的保障[1],然而隨著氣田投產(chǎn)時(shí)間延長,氣井逐漸出現(xiàn)了井筒堵塞、井下動(dòng)態(tài)監(jiān)測受限等問題。問題出現(xiàn)之后,在氣田產(chǎn)建的中后期階段,對完井工藝及管柱進(jìn)行了優(yōu)化,取得了良好的應(yīng)用效果。
Well completion technologies in the early stage
在迪那2氣田產(chǎn)能建設(shè)的早期,所采用的測射一體化管柱由下至上依次為:槍尾、下延時(shí)起爆器、射孔槍、安全槍、上延時(shí)引爆器、減震器、變扣接頭、生產(chǎn)篩管(也即打孔油管,一般采用2根,單根長度9.67 m)、堵塞器接頭、油管、下提升短節(jié)、永久式封隔器、上提升短節(jié)、油管、下提升短節(jié)、下流動(dòng)短節(jié)、井下安全閥、上流動(dòng)短節(jié)、上提升短節(jié)、油管串、短油管、油管掛。
該完井工藝的簡要施工步驟為:下入測射聯(lián)作管柱到位→封隔器座封、驗(yàn)封(迪那氣井基本上為先投球到球座,然后打壓坐封永久式封隔器)→射孔(基本采用油管加壓起爆的方式,射孔之后不丟槍)→放噴求產(chǎn)→關(guān)井→酸化或酸壓改造(基本均進(jìn)行了改造增產(chǎn))→再求產(chǎn)→關(guān)井并轉(zhuǎn)交生產(chǎn)。
之所以采用這種測射聯(lián)作且射后不丟槍的完井工藝,是由于迪那氣田儲(chǔ)層巨厚,射孔跨度大,多數(shù)井射孔槍組長達(dá)320 m以上,如果采取丟槍工藝,那么就必須在鉆至目的層底以后仍繼續(xù)鉆320 m以上作為丟槍的口袋,如此一來,隨著鉆井深度加大,將導(dǎo)致鉆井費(fèi)用及高壓井控風(fēng)險(xiǎn)的增加,而且完鉆越深,井漏越嚴(yán)重(因?yàn)樘烊涣芽p比較發(fā)育),堵漏材料用量也就越大,投產(chǎn)后堵漏材料返排造成井筒堵塞的風(fēng)險(xiǎn)也相應(yīng)增大。
由于射孔槍組的存在,因此在試油或生產(chǎn)階段,地層流體必須流經(jīng)完井管柱下端的生產(chǎn)篩管孔眼進(jìn)入油管柱內(nèi)部,而氣田產(chǎn)建早期采用的生產(chǎn)篩管孔眼直徑一般僅有3~5 mm,這為投產(chǎn)后井筒逐漸堵塞埋下了隱患。
Evaluation on Application results
在迪那2氣田產(chǎn)能建設(shè)早期,采用測射聯(lián)作不丟槍的完井工藝顯著提高了完井效率,使新井產(chǎn)建完成率、到位率及貢獻(xiàn)率等要求順利達(dá)標(biāo),極大地促進(jìn)了迪那2氣田快速上產(chǎn),保障了“西氣東輸”平穩(wěn)供氣。然而,生產(chǎn)實(shí)踐逐漸表明,該測射聯(lián)作完井工藝也具有一定的弊端。
2.1 增大井筒堵塞的風(fēng)險(xiǎn)
Increase of wellbore plugging risk
氣田投產(chǎn)初期,氣井生產(chǎn)均基本正常平穩(wěn),但是很多井在半年或一年以后,開始出現(xiàn)油壓異常波動(dòng)的現(xiàn)象,經(jīng)統(tǒng)計(jì),采用這種完井工藝和管柱的生產(chǎn)井共計(jì)20口,出現(xiàn)異?,F(xiàn)象的井高達(dá)15口,異常井占比高達(dá)75%。
以DN2-22井為例,該井2009年9月投產(chǎn),平穩(wěn)生產(chǎn)約一年后,油壓開始異常波動(dòng),在油嘴開度不變的情況下,油壓異常波動(dòng)幅度大約達(dá)到6 MPa,此后波動(dòng)現(xiàn)象越來越頻繁、劇烈,經(jīng)多方面排查分析為井筒堵塞造成;2015年4月,該井發(fā)生油套連通,套壓急劇上升至60 MPa以上(見圖1),超過安全極限,為避免安全事故而停產(chǎn)修井。
圖1 DN2-22井生產(chǎn)壓力曲線Fig.1 Production curve of Well DN2-22
DN2-22井起油管柱時(shí),發(fā)現(xiàn)管柱底部的生產(chǎn)篩管、射孔槍串被井筒堵塞物卡住,無法正常拔出。隨后采取打撈工藝,才逐根卸扣、起出生產(chǎn)篩管和射孔槍串,其中生產(chǎn)篩管如圖2所示,篩管內(nèi)部已經(jīng)完全被堵塞,堵塞物經(jīng)分析化驗(yàn)為地層砂、鉆井堵漏物碎片等。
圖2 DN2-22井起出的生產(chǎn)篩管Fig.2 Produced screen of Well DN2-22
從DN2-22井鉆完井歷程來看,鉆井過程中目的層累計(jì)漏失了592 m3鉆井液,累計(jì)使用核桃殼、蛭石、鋸末等堵漏材料大約46 t,其中核桃殼、蛭石粒徑在3~10 mm,甚至大于篩管孔徑。其它異常井堵漏材料用量同樣較大。在氣井投產(chǎn)之后,堵漏材料或多或少存在一定程度的返排,易被生產(chǎn)篩孔隔離在封隔器以下的油套環(huán)空中,與此同時(shí),篩孔孔眼也逐漸被堵塞,并且容易出現(xiàn)時(shí)而堵塞、時(shí)而疏通的現(xiàn)象,導(dǎo)致井口油壓劇烈波動(dòng)。油壓長期、頻繁、劇烈的波動(dòng),進(jìn)一步對近井地帶造成了壓力激動(dòng),加快巖石的剪切和張性破壞直至出砂[1-4](需要補(bǔ)充的是,壓力激動(dòng)只是造成出砂的一方面因素,出砂機(jī)理較為復(fù)雜,與本文主題無關(guān)故不作贅述)。
在堵漏材料返排、近井地層輕微出砂、膠質(zhì)瀝青質(zhì)的附著、結(jié)鹽結(jié)垢等因素綜合作用下,井下堵塞日益惡化,直至篩管外部封隔器以下的油套環(huán)空及口袋空間(估算僅有3 m3左右)、甚至篩管內(nèi)腔均被堵塞,導(dǎo)致氣井產(chǎn)能無法充分發(fā)揮。
2.2 制約井下動(dòng)態(tài)監(jiān)測的開展
Restriction on downhole performance monitoring一體化完井管柱尾部的射孔槍串(從上起爆器到槍尾)沒有內(nèi)腔空間,井下溫壓、產(chǎn)氣剖面和氣水界面等測試工具無法伸入射孔槍內(nèi)部,因而無法監(jiān)測射孔層段的產(chǎn)氣剖面或飽和度等,嚴(yán)重制約氣藏動(dòng)態(tài)認(rèn)識(shí)。
以DN2-26井為例,該井投產(chǎn)已長達(dá)5年,氯離子濃度長期在15 000~30 000 mg/L之間波動(dòng)(圖3),既遠(yuǎn)遠(yuǎn)高于其他井(以DN2-21為例,200~500 mg/L),又遠(yuǎn)低于地層水氯離子濃度(109 000 mg/L),也不像其他氣田的氣井見水后氯離子濃度急劇上升至地層水的氯離子濃度,并且該井水樣的相對密度也長期處于1.01左右而未見明顯上升。
圖3 疑似見水井DN2-26與未見水井DN2-21氯根對比Fig.3 Chloride comparison between Well DN2-26 (a suspected water breakthrough well) and Well
鑒于水樣氯離子濃度特征,疑似產(chǎn)水以凝析水為主,伴微量邊底水或原生孔隙的可動(dòng)水。為進(jìn)一步落實(shí)是否見水或水侵的途徑(若已見水),原本設(shè)計(jì)對該井進(jìn)行井筒流壓梯度、飽和度、產(chǎn)氣剖面測試,但由于管柱底部射孔槍串的存在,飽和度及產(chǎn)氣剖面測試工具無法下至射孔層段,而流壓梯度測試的壓力計(jì)也僅能下至生產(chǎn)篩管以上,流壓梯度測試結(jié)果見圖4,流壓梯度為0.004 5 MPa/m,比其它未見水井流壓梯度偏高(多口未見水井流壓梯度大約為0.003 7~0.003 9 MPa/m)。由于無法開展飽和度及產(chǎn)氣剖面測試,是否見水不明確,該井目前只能采取保守對策,嚴(yán)格控壓控產(chǎn),以防水侵形勢惡化。
圖4 DN2-26與DN2-21井實(shí)測流壓梯度對比Fig.4 Comparison of measured flow gradient between Well DN2-26 and Well DN2-21
Well completion technology optimization
隨著早期氣井堵塞問題的暴露,在產(chǎn)建中后期,新井均進(jìn)行了完井工藝優(yōu)化,不再采用以往的“射孔-求產(chǎn)-改造-完井”一體化工藝,而分2趟工序,第1趟工序?yàn)橄氯肷淇坠苤?,射孔之后起出該管柱;?趟工序?yàn)橄氯搿扒螽a(chǎn)-改造-完井”一體化管柱。
射孔管柱由下至上為槍尾、生產(chǎn)篩管、下延時(shí)起爆器、射孔槍組、上延時(shí)起爆器、生產(chǎn)篩管、油管串、校深短節(jié)、油管串、鉆桿串,而“求產(chǎn)-改造-完井”管柱結(jié)構(gòu)由下至上為球座、短油管、投撈式堵塞器、油管串、永久封隔器、油管串、下提升短節(jié)、下流動(dòng)短節(jié)、井下安全閥、上流動(dòng)短節(jié)、上提升短節(jié)、變扣、油管掛、油補(bǔ)距(圖5)。
圖5 優(yōu)化后的改造-求產(chǎn)-完井管柱Fig.5 Optimized modification-production-completion string
與早期的完井工藝相比,增加了一趟起下管柱的過程,但完井管柱中不需再采用生產(chǎn)篩管,而采用了全通徑的油管。在這種管柱條件下,地層流體可經(jīng)過球座,流入油管柱內(nèi)部進(jìn)而產(chǎn)出地面,即使部分堵漏材料返排、近井地帶輕微出砂,高產(chǎn)氣流也可將這些物質(zhì)攜帶出來而不再堵塞井底。經(jīng)統(tǒng)計(jì),產(chǎn)建早期采用測射一體化工藝的生產(chǎn)井,75%出現(xiàn)油壓急劇波動(dòng)下降的異常現(xiàn)象,而中后期采用了優(yōu)化完井工藝的生產(chǎn)井,油壓異常的比例顯著降低為11%。
另一方面,隨著邊底水侵入氣藏,也可在這些新完井工藝的生產(chǎn)井中,下入壓力計(jì)及生產(chǎn)測井工具,監(jiān)測產(chǎn)氣剖面及飽和度的變化,為防水穩(wěn)產(chǎn)研究提供關(guān)鍵資料。
Conclusionsand suggestions
(1)迪那2氣田產(chǎn)建早期,因氣田地質(zhì)特征及快速上產(chǎn)的需求,未對測射聯(lián)作完井工藝進(jìn)行充分的試驗(yàn)、改良而規(guī)?;瘧?yīng)用;氣井投產(chǎn)后,堵漏材料返排及地層出砂等逐漸堵塞生產(chǎn)篩管,降低了氣井產(chǎn)能且制約井下動(dòng)態(tài)監(jiān)測。
(2)迪那2氣田產(chǎn)建中后期采取射孔測試分步實(shí)施的完井工藝,顯著降低了井筒堵塞的概率,且為井下動(dòng)態(tài)監(jiān)測創(chuàng)造了有利條件。
(3)測射聯(lián)作工藝具有諸多優(yōu)點(diǎn),但用于特定的油氣田時(shí)應(yīng)充分論證其適用性,建議類似迪那氣田的氣井,采用射孔、求產(chǎn)分步實(shí)施的工藝,或者進(jìn)行“射孔-求產(chǎn)-改造-沖砂-完井”一體化工藝攻關(guān)。
References:
[1]朱進(jìn)府,季曉紅,彭建新.高壓油氣井試油工藝探討[J].油氣井測試,2003,12(5):38-40,76.ZHU Jinfu,JI Xiaohong,PENG Jianxin.Discussion of testing technologies of high pressure oil &gas wells[J].Well Testing,2013,12(5): 38-40,76.
[2]崔彥立,李軍,許云春,李雷壽,房偉,萬豪杰,張堅(jiān)平.不壓井補(bǔ)層與轉(zhuǎn)抽一體化管柱技術(shù)實(shí)踐與應(yīng)用[J].鉆采工藝,2007,30(6):77-79,7.CUI Yanli,LI Jun,XU Yunchun,LI Leishou,FANG Wei,WAN Haojie,ZHANG Jianping.Development and application of integrated string re-perforating and rod pump running technique[J].Drilling &Production Technology,2007,30(6): 77-79,7.
[3]姜濤,李軍,鞏小雄.補(bǔ)層-轉(zhuǎn)抽不壓井一體化管柱技術(shù)[J].斷塊油氣田,2008,15(3):105-107.JIANG Tao,LI Jun,GONG Xiaoxiong.Integrated string technique of re-perforating and rod pump running with non-well killing operation[J].Fault- Block Oil &Gas Field,2008,15(3): 105-107.
[4]楊春華,侯朝暉,趙安軍,武宗剛,韓艷肖,李偉,薛曉梅.稠油井水循環(huán)加熱螺桿泵+STV測射聯(lián)作試油工藝應(yīng)用淺析[J].油氣井測試,2014,23(1):67-69,78.YANG Chunhua,HOU Chaohui,ZHAO Anjun,WU Zonggang,HAN Yanxiao,LI Wei,XUE Xiaomei.A brief analysis for water circulating heated screw in heavy oil well and combined oil test tech of STV test with perforation[J].Well Testing,2014,23(1): 67-69,78.
[5]王宏萬,李永康,馬艷潔,王寧,張衛(wèi)衛(wèi).分層酸化、注水一體化管柱的研制及應(yīng)用[J].石油機(jī)械,2015,43(7):108-110.WANG Hongwan,LI Yongkang,MA Yanjie,Wang Ning,ZHANG Weiwei.Development and application of integrated separate layer acidification and water injection string[J].China Petroleum Machinery,2015,43(7): 108-110.
[6]張雷,任厚毅,鄭金中,李德忠,趙剛,趙金玲,謝立春.機(jī)械防砂與分層采油一體化管柱研究與應(yīng)用[J].石油機(jī)械,2006,34(5):51-53.ZHANG Lei,REN Houyi,ZHENG Jinzhong,LI Dezhong,ZHAO Gang,ZHAO Jinling,XIE Lichun.Research and application of an integrated casing string for mechanical sand control and zonal oil production[J].China Petroleum Machinery,2006,34(5): 51-53.
[7]車海燕.高效防氣防砂一體化管柱的研制與應(yīng)用[J].內(nèi)蒙古石油化工,2007,5:225-226.CHE Haiyan.Defend efficiently the Oil spirit and the sand at grain structure operating principle choose the well term application[J].Inner Mongolia Petroleum Chemical Engineering,2007,5: 225-226.
[8]孫海林,王青川,鄭植隆,倪晶波.卡層、試壓、抽汲、壓井一體化管柱設(shè)計(jì)[J].油氣井測試,2007,16(5):50-51,77.SUN Hailin,WANG Qingchuan,ZHENG Zhilong,NI Jingbo.Unitization string design of stuck layer,pressure test,swab,well killing[J].Well Testing,2007,16(5) : 50-51,77.
[9]孫新,鄭海燕.射孔、壓裂、不壓井轉(zhuǎn)抽一體化管柱工藝加快油田評價(jià)開發(fā)速度[J].新疆石油科技,2011,21(1):22.SUN Xin,ZHENG Haiyan.Integrated string technique of perforation,fracturing and rod pump running without well killing operation speeds up oilfield appraisal and development[J].Xinjiang Petroleum Technology,2011,21(1): 22.
[10]曾玉祥,吳振華,呂芬敏.射孔下泵不壓井作業(yè)一體化管柱[J].石油機(jī)械,2007,35(5):38-40.ZENG Yuxiang,WU Zhenhua,LYU Fenmin.Integrated string technique of perforating,running pump and nonwell killing operation[J].China Petroleum Machinery,2007,35(5): 38-40.
[11]李新強(qiáng),張輝,潘蕓,張瑞瑞,楊宇堯.射壓轉(zhuǎn)一體化管柱技術(shù)在烏爾禾叢式平臺(tái)井中的應(yīng)用[J].新疆石油天然氣,2010,6(1):70-73.LI Xinqiang,ZHANG Hui,PAN Yun,ZHANG Ruirui,YANG Yuyao.Application of the integrative technology of perforating and fracturing and pumping in cluster wells of the Urhe Oilfield[J].Xinjiang Oil &Gas,2010,6(1): 70-73.
[12]高成武,孫杰文,張強(qiáng),王彥武,張劍峰.阿姆河復(fù)雜氣藏射孔、酸化、測試聯(lián)作技術(shù)[J].石油鉆采工藝,2014,36(2):126-128.GAO Chengwu,SUN Jiewen,ZHANG Qiang,WANG Yanwu,ZHANG Jianfeng.Application of testing technology in complex gas reservoirs of Amu Darya[J].Oil Drilling &Production Technology,2014,36(2): 126-128.
[13]田格衛(wèi),冀承智,肖兵,唐艷玲,龐清鵬,謝兵.塔木察格探區(qū)跨隔測試射孔聯(lián)作技術(shù)研究及應(yīng)用[J].石油化工應(yīng)用,2012,31(8):50-52.TIAN Gewei,JI Chengzhi,XIAO Bing,TAO Yanling,PANG Qingpeng,XIE Bing.Research and application of the straddle test and perforation technology in Tamtsag exploratory area[J].Petrochemical Industry Application,2012,31(8): 50-52.
[14]許亞東,陳海波,方勇,李江,孫雪梅.新型測試射孔聯(lián)作技術(shù)及應(yīng)用[J].油氣井測試,2010,19(3):41-43.XU Yadong,CHEN Haibo,FANG Yong,LI Jiang,SUN Xuemei.New testing and perforation technology and its application[J].Well Testing,2010,19(3): 41- 43
[15]季曉紅.新型試油工藝在烏參1 井的成功應(yīng)用[J].油氣井測試,2004,13(5):80-81.JI Xiaohong.Successful application of a new production testing technique in Well Wushen 1[J].Well Testing,2004,13(5): 80-81.
[16]曹言光,張慶生,陳傳東,張文昌,李猛,張慢來.普光水平井投產(chǎn)一體化管柱及參數(shù)優(yōu)化[J].石油鉆采工藝,2016,38(5):667-672.CAO Yanguang,ZHANG Qingsheng,CHEN Chuandong,ZHANG Wenchang,LI Meng ,ZHANG Manlai .TDevelop?ment of integral pipe string and optimization of parameters for production of horizontal wells in Puguang Gasfield[J].Oil Drilling &Production Technology,2016,38(5): 667-672.
[17]王擴(kuò)軍,龔德銀,陳蘭明,王永康,伏健.壓裂-沖砂-完井一體化管柱技術(shù)研究與應(yīng)用[J].中國石油和化工標(biāo)準(zhǔn)與質(zhì)量,2013,33(15):161.WANG Kuojun,GONG Deyin,CHEN Lanming,WANG Yongkang,FU Jian.Research and application of an integrated string technique of fracturing,sand washing and completion[J].China Petroleum and chemical industry standards and quality,2013,33(15): 161.
(修改稿收到日期 2017-01-20)
〔編輯 薛改珍〕
Evaluation and optimization on the well completion technology of combined testing and perforating in Dina 2 Gasfield
HU Suming1,WANG Hao2,XIAO Xiangjiao2,CHEN Baoxin2,ZHANG Yongbin2
1.Natural Gas Business Dividion,PetroChina Tarim Oilfield Company,Korla841000,Xinjiang,China;
2.Exploration and Development Research Institute,PetroChina Tarim Oilfield Company,Korla841000,Xinjiang,China
Combined testing and perforating technology is advantageous for it can diminish tripping operation,reduce reservoir damage and improve oil and gas well construction efficiency.The well completion technology of combined logging and perforating without releasing the gun was commonly used in the early stage of productivity construction in Dina 2 Gas Field.After its commissioning,however,some problems occurred gradually,such as wellbore plugging and restricted downhole performance monitoring,so it is necessary to evaluate and optimize this technology.Investigation and statistics show that the abnormal phenomenon of sharp tubing pressure drop appears in 75% of production wells which are completed by means of combined logging and perforating technology in the early stage of productivity construction.This abnormal tubing pressure was analyzed based on gas reservoir engineering theories and workover practices.And it is indicated that its essential cause is that the holes of production screens (i.e.,holed tubing) at the end of combined testing and perforating string are blocked due to plugging agent flowback and formation sand production.To solve this problem,perforating and testing is carried out by stages in the middle and late period of productivity construction.Consequently,thephenomenon of wellbore plugging is reduced,and it is favorable for the implementation of production performance monitoring.The application of this optimized well completion technology in Dina 2 Gas Field can be used as the reference for similar gas fields.Before the well completion technology of combined testing and perforating,it is necessary to carry out sufficient adaptability evaluation and specific modification and optimization.
perforating;production test;well completion;integrated string;wellbore plugging
胡素明,王好,肖香姣,陳寶新,張永賓.迪那2氣田測射聯(lián)作完井工藝評價(jià)與優(yōu)化[J].石油鉆采工藝,2017,39(2):207-211.
TE256
:A
1000-7393(2017)02-0207-05
10.13639/j.odpt.2017.02.015
: HU Suming,WANG Hao,XIAO Xiangjiao,CHEN Baoxin,ZHANG Yongbin.Evaluation and optimization on the well completion technology of combined testing and perforating in Dina 2 Gasfield[J].Oil Drilling &Production Technology,2017,39(2): 207-211.
國家科技重大專項(xiàng) “塔里木盆地庫車前陸沖斷帶油氣開發(fā)示范工程”(編號(hào):2011ZX05046-03)、中國石油股份公司重大科技專項(xiàng) “前陸沖斷帶超深超高壓氣藏開發(fā)技術(shù)”項(xiàng)目(編號(hào):2014E-2104)。
胡素明(1986-),2012年畢業(yè)于中國石油大學(xué)(北京)油氣田開發(fā)工程專業(yè),獲碩士學(xué)位,現(xiàn)從事凝析氣田開發(fā)動(dòng)態(tài)分析及管理工作。電話:0996-2179946。E-mail:husuming-tlm@petrochina.com.cn