• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical Properties and Finite Element Analysis on Medical Neck Collar Made of Micron Wood Fiber

    2017-06-05 09:07:55ZhangYangMaYan
    林業(yè)科學(xué) 2017年4期
    關(guān)鍵詞:抗壓夾板曲面

    Zhang Yang Ma Yan

    (Forestry and Woodworking Machinery Engineering Centre, Northeast Forestry University Harbin 150040)

    ?

    Mechanical Properties and Finite Element Analysis on Medical Neck Collar Made of Micron Wood Fiber

    Zhang Yang Ma Yan

    (ForestryandWoodworkingMachineryEngineeringCentre,NortheastForestryUniversityHarbin150040)

    【Objective】 This paper investigated the mechanical properties of neck collar made of micron wood fiber and stimulated the numerical values of the neck collar under the load by external force, and analyzed the numerical values to determine if the neck collar can meet the strength requirement when it applied on human body. 【Method】 ThePinuskoraiensiswood fiber with the diameter of 16 μm was used to prepare the test specimen in this paper. The three-point bending mechanical tests were applied on this micron wood fiberboard, its microstructure was characterized by scanning electron microscopy (SEM). ABAQUS program was used to simulate the compression and impact property of micron wood fiber neck collar and analyzed the simulation result. 【Result】 The results showed that micron wood fiber neck collar from inside to the outside along the curved surface corresponding to the upper neck length, and bearing capacity of back neck collar was slightly higher than that of front neck collar. Anti-pressure capacity of the micron wood fiber neck collar’s compression from outside to the inside along side curved surface was higher than that of compression from inside to the outside along the curved surface corresponding to the upper neck length. Damage degree of micron wood fiber neck collar under low velocity impact was studied by applying different impact energies to the sample, the results revealed that the impact damage increased with the increasing of impact energy.【Conclusion】 The value of mechanical properties in neck collar determined by finite element stimulation was similar to that by three-point bending test, indicating the rationality of the experiment. The maximum bear stress of the neck collar was 30 MPa and met the requirements on human body.

    micron wood fiber; neck collar; finite element; mechanics property

    In recent years, because of the enhanced requirements for biomedical materials, especially for their mechanical properties (Chandraetal., 1998; Yangetal., 2008), for biomedical materials mechanics performance requirements more stringent, traditional metal and alloying non-metal materials in the process of manufacturing of medical materials is more and more cannot satisfy the use requirement(Diaoetal., 1996; Ma, 2003). For example, new material with good absorbability, permeability, and compatibility with human skin is required to make elastic and plastic light materials (Zhanetal., 2003; Xi, 2006).

    Micron-size wood fiber as a biomedical material is a kind of advanced material- as the base material. A new fiber process technology produces longer micron fiber than traditional and artificial board fiber (Yoshiokaetal., 2003; Yangetal., 2008). Its thickness is less than the traditional artificial board fiber, and they have used for mold pressing to fabricate specific shapes and reach specific performance indices in medicine (Ma, 2001; 2002).

    Comparing with traditional wood, the medical instruments made from this kind of wood fiber in micron have the advantages of better air permeability, compatibility, high compression ratio, and high toughness modulus for human skin (Maekawaetal., 1999, Hilletal., 1999). Nowadays, thanks to the development of micron technology and micron wood fiber process technology, non-defective imitation wood is made from recombinant wood fiber by changing the cell arrangement (Singhetal., 2001). With almost pure wood fiber, micron recombinant orientational fiber board was produced, it is with unidirectional strength and similar to various steels (Watanabeetal., 1999).

    Our investigation focused on mechanical properties analysis of a neck collar made of micron wood fiber. According to modern theory on designing a collar made for treating bone fractures, theoretically, researched the characteristics of a bone-fracture neck collar from the microstructure angle (Wangetal., 2001) of the material. We analyzed how to build a reasonable finite element model for a micron wood fiber neck collar and achieved the performance results we were looking for, using ABAQUS software.

    1 Materials and methods

    1.1 Materials preparation

    When making the neck collar, wood is shaved by a cutting machine along the fiber direction to get the micron wood fiber to a thickness of 21 μm. Wood fiber at this level is soft, so the pressed neck collar has better compatibility with human skin. Considering the size of the neck collar, the wood fiber should be molded into filaments (Fig.1a) with a width of 2-6 mm and a length of 12-28 mm by the crusher. Type 14L960 polyvinyl acetate emulsion was selected as the adhesive because of its suitability of the adhesion of wood fiber materials with better economical efficiency. It has a pH value of 6.5-7.0, a viscosity of 1.6-2.3 Pa·s, dry strength of 8-12 MPa and wet strength of 5.7-7.2 MPa. Polyvinyl acetate adhesive, of which the composition are synthesized by polyvinyl acetate(64%) and poval(29%) with water(7%) added, is used as the adhesive because it can cure at room temperature, cure fast, with higher adhesive strength.

    Fig.1 Wood fiber morphology of Pinus koraiensis after planning and the neck collar after mould pressinga. Micron wood fiber morphology; b. Material object picture after mould pressing.

    The mold-pressed wood-fiber neck collar (Fig.1b) is first mixed and then pressed using the 16 μm diameter wood fiber and adhesives. Fig.2 is the microstructure picture of the wood-fiber surface, which shows that the wood fiber and the adhesives are well combined with no obvious interface defects. Due to the random distribution of wood fiber in a neck collar, the unidirectional porous structure in the wood fiber is distributed in all directions inside the neck collar, and the porous structure presents as three-dimensional. This way, a preparative neck collar can maintain a certain strength and high toughness in all directions, which will improve the comfort and therapeutic effect of this kind of neck collar. According to Fig.3, under the function of the adhesive after the mold and press, the wood fiber is combined with no stratification, which proves that the preparation technology is reasonable.

    Fig.2 The microstructure picture of the wood fiber surface

    Fig.3 The scan picture of micron wood fiber neck collar

    1.2 Experimental methods

    Firstly, we test the mechanical properties of micron wood fiber material. Then we apply the three-point bending test on wood-fiber materials, which are 120 mm × 20 mm × 10 mm (length × width × height). According to European standard EN310—1989,EN3191995, as well as the national standard GB/T17657—1999, take specimen making and testing, in the SANS-CMT5504 universal mechanical testing machine, using three point bending method to determine the material’s elastic modulus and static bending strength. Type MW-4 mechanical testing machine for wood is used to test the impact toughness of the specimen.

    The analysis of the mechanical curve of the wood-fiber material, a mathematical model of a neck collar with the physiological parameters of human vertebrae vertebra is built. According to the established mathematical model and neck collar material parameters, we one completes the statics analysis of the model with ABAQUS.

    2 Results and discussion

    2.1 The mechanical properties of the micron wood fiber materials

    In order to provide a reference basis to the finite-element static analysis of the neck collar in a later period, a three-point bending mechanical test of wood fiber board is required. The stress-strain bending curve of the wood fiber board is seen in Fig.4. Along with straining, the mechanical properties of the curve also presents an obviously rising trend, but when the strain reaches 3%, the bending stress of material reaches the maximum, which is 30 MPa. Then the mechanics of the curve begins to fall suddenly, which illustrates that the materials have lost efficacy at the moment.

    Fig.4 The stress-strain bending curve of the wood fiber board

    For fiber materials, only fibers with certain aspect ratio or the length greater than the critical length can contribute to the strength of composite materials, and fibers with length less than critical length are ineffective. Critical length can be measured according to the following formula (Guo, 1994):

    (1)

    where:σisthetensilestrengthofcarbonfiber(MPa);γistheradiusofcarbonfiber(mm);τistheinterfacialshearstrength.

    Observationofbentmicronwoodfibermaterialhasbeencompleted.AsshowninFig.5,itcanbefoundthatthecenterpartoftheentiresampleisbentanddeformedtoacertainextent;loadisappliedonthesurfacewoodfiber,aftertheinterlayerwoodfiberisunderstressed,theloadispassedtotheoutermostlayerofwoodfiberandthebendingdeformationisformed,seenasthemicrostructurepointedbyArrowAinFig.6.TherearescanningelectronmicrographsoffracturemorphologyofoutermostlayerinmicronwoodfibermaterialasshowninFig.7.

    Fig.7 The scan pictures of carbon fiber reinforced wood-based composite materials a.Interface bonding state;b.Single carbon fiber bundle.

    Fig.5 The macroscopic damage morphology of carbon fiber reinforced wood-based composite materials

    Fig.6 The scan picture of wood fiber board fracture morphology

    ThereisdamageintheinterlayerofwoodfiberboardandthedamageisinsidetheinterlayerwoodfiberboardaspointedbyArrowBinFig.6.TousescanningelectronmicroscopetoobservethemicrostructurepointedbyArrowCinFig.6andfindtheinterfacialbondingbetweenthewoodfiberbundlesisstillgood.Meanwhile,inFig.5,itcanbeobservedclearlythatthereisnodelaminatingphenomenonbetweenlayers,whichindicatesthestrengthofadhesiveisstronganditcanmeetthestrengthrequirementwhenmaterialisunderthestress.Thetestresultshowstheselectionofadhesiveisreasonable,ithasrelativelyhighworkingstrengthanditcantransfertheloadwellwhenmaterialisunderthestress.

    2.2 Finite element analysis of statics

    2.2.1 The establishing of the model The paper sets up a 1∶1 finite element model via ABAQUS finite element software and unit of finite element model is subject to the standard unit.Fig.8 and Fig.9 are dimension figures of front and back of micron wood fiber neck collar respectively.

    Fig.8 The mathematical model of front neck collar

    Fig.9 The mathematical model of back neck collar

    L2:length of upper neck of human body;L1:length of lower neck of human body;R:maximum radius of human neck;r:minimum radius of human neck;C:thickness of neck collar. Tab.1 is the geometrical parameters of micron wood fiber neck collar.

    Tab.1 The geometrical parameters of micron wood fiber neck collars

    According to the given dimensions, the implementation of solid modeling has been completed. As the structure has curved surface, firstly model a elliptic cylinder body and delete the redundant part via Boolean combination data so that the required numerical data can be acquired. Fig.10a is the model of front micron wood fiber neck collar and Fig.10b is the model of back micron wood fiber neck collar. The main difference between the front model and back model is the difference of lengths of upper and lower human neck.

    Fig.10 The model of front micron wood fiber neck collar (a) and the model of back micron wood fiber neck collar(b)

    2.2.2 Grid partition To partition the structure by grid, adopt grid adaptive technology and self-control finite element to analyze the density of grid and formulate corresponding error criterion. Unit number partitioned on the front micron wood fiber neck collar is 173 953 and unit number of back neck collar is 221 935.

    2.2.3 Failure criterion of the material Because micron wood fiber neck collar has anisotropy and complex micro-structure, the failure mechanism is relatively complex. The maximum principle strain failure criterion is adopted in the paper, which means when the strains in the units reach the strain limits of materials, the units are ineffective without bearing capacity any more.

    2.3 Compression simulation from inside to the outside along curved surface corresponding to upper neck length

    ABAQUS finite element software is used in this paper in order to carry out numerical simulation, below are the material parameters needed of the unit in the simulation and properties needed to be given to the unit. The material property model of micron wood fiber neck collar is anisotropy. There are 7 parameters need to be input: shear modulusG12,G23,G13,elasticity modulusE11,E22,Poisson’s ratiovand density. Tab.2 is the mechanical property of of micron wood fiber.

    Tab.2 Mechanical property of of micron wood fiber neck collar

    Micron wood fiber neck collar has certain pressure bearing capacity and deformation forms at the same time. Meanwhile, the thickness of the board is far less than the sizes of the other two directions. Therefore, in this paper, shell element is used as the transition element to simulate the semi-rigidity element of the neck collar.

    2.3.1 Load and boundary conditions Due to the random distribution of wood fiber in the neck collar in the preparation process, unidirectional porous structures inside the wood fiber also distribute in different directions. Porous structures show three-dimensional characteristics which make the neck collar can retain certain strength and gain high toughness at the same time. This meets the orthotropic material condition in mechanics of composite materials, thus enhanced the utilization strength of the neck collar with this complex structure. There are two compression modes for micron wood fiber in the paper. One is to compress micron wood fiber neck collar from outside to the inside along the side curved surface (simulating the possible compression when not in use) and the other one is to compress the neck collar from inside to the outside along the curved surface corresponding to upper neck length. When the neck collar is compressed from the inside to the outside along the curved surface corresponding to the upper neck length (simulating the compression in the actual use), set the bottom surface as fixed constraint, which means displacements inX,YandZdirections and all the rotation degree of freedom are constrained. Upper curved surface is loaded subject to quasi-static displacement.

    Fig.11 Load surface(a) and fixed constraint surface (b)

    Fig.12 Stress distribution for the compression on curved surface

    To extract element counterforce of bottom surfaces on both sides and whole stress distribution information to acquire the load limit of the entire structure after the calculation. Fig.11a is the load surface; Fig.11b is fixed constraint surface. Fig.12 is the equivalent stress nephogram of compression from inside to the outside along the curved surface corresponding to upper neck length.

    2.3.2 Numerical simulation of compression process Stress distribution results of compression from inside to the outside along the curved surface corresponding to the upper neck length show that the stress is mainly concentrated on the curved surface of upper neck and the upper edge of side surfaces shows the stress concentration. As micron wood fiber neck collar is symmetrical, the stress distribution is symmetrical as well. With the increase of load, the stress is spread to the entire curved surface gradually. For the front micron wood fiber neck collar, damage shows as fracture appears in bottom edge. For the back micron wood fiber neck collar, damage occurs on the curved surface of upper neck and fracture appears in the middle part of outer edge. Fig.13 is the damage status when the micron wood fiber neck collar is compressed from inside to the outside along the curved surface corresponding to the upper neck length.

    2.3.3 Numerical simulation result analysis To formulate a data report of model subsets and determine the constraint counterforce of the bottom surface in three directions in the report. Components of the total constraint counterforce of this set of nodes are included in the row “Total”. Fig.14 is the stress-strain bending curve for compression from inside to the outside of micron wood fiber neck collar along the curved surface corresponding to the upper neck length. It can be known from the Figure that the bearing capacity of back micron wood fiber neck collar is slightly higher than that of the front neck collar. From the stress nephogram, the maximum stress value in the back part of the neck collar is 33.79 MPa. It is very close to the maximum stress value of 30 MPa in the three-point bending test. These results show that the finite element model has been established correctly. The error is mainly due to the differences in modeling and dimension.

    Fig.13 Stress distribution for the compression on curved surface

    Fig.14 Stress and strain bending curve for compression

    2.4 Numerical simulation of impact

    2.4.1 Material model of impact body Impact body is a rigid sphere with a radius of 15 mm. It has slight shape change in the impact process. To improve the accuracy and speed of calculation, rigid model in the finite element simulation is adopted and the impact speed of the rigid sphere is set as 10 m·s-1.

    2.4.2 Load boundary conditions The paper simulates the fixed boundary conditions for front and back of the neck collar by constraining displacements inX,YandZdirections of nodes in the junction surface of front and back micron wood fiber neck collar; the impact ball is moving in vertical direction at the speed of 10 m·s-1, displacements and corners in other directions are constrained. By setting different speeds of rigid sphere, impacts with different energies have been simulated on the model. Impact displacement is the interface between the border of upper and lower necks and axis. Fig.15 is the rigid sphere before the impact and status of impacted neck collar.

    Fig.15 Rigid sphere and front micron wood fiber neck collar (a)and rigid sphere and back micron wood fiber neck collar (b)

    2.4.3 Numerical simulation of impact process Fig.16 shows the changes of micron wood fiber neck collar under the impact load at different moments in the simulation. The Figure shows, when the time of contact between the rigid sphere and neck collar is prolonged, the deformation of the neck collar is increased. From the perspective of impact process of micron wood fiber neck collar, when the energy is 5 J, the neck collar is not damaged, the stress and deformation are distributed symmetrically. As the constraints on both ends of fixed component are symmetrical, the impact load is symmetrical as well. When the energy is 10 J, the neck collar is penetrated.

    Fig.16 Damage morphology of neck collar under 5 J impact energy

    Fig.17 Damage morphology of neck collar under 10 J impact energy

    Fig.17 shows the impact damage of numerical simulation results when the impact for micron wood fiber neck collar is 10 J. The damage degree of neck collar is shown in different color: red means the composite material’s losing effect basically; gray means the material loses effect approximately; blue means the material is in good condition. White means the gird is deleted for the excessive deformation after the material’s losing effect.

    2.4.4 Numerical simulation result analysis ABAQUS is adopted in the paper to analyze the dynamic response and relevant deformation of micron wood fiber neck collar under impact load and load-time curve, and energy absorption curve of neck collar are acquired. Impact resistance of neck collar under impact load is verified from perspectives of load and energy absorption.

    It can be seen from Fig.18 that the difference of peak loads produced in the impacts for the front sample is small when the impact energies are 5 J and 10 J respectively. However, the acting time of 10 J impact energy lasts longer and rigid sphere keeps partial energy after the sample is penetrated so that the energy absorptivity is relatively low. Fig.19 is the response curve of back sample under different impact energy. As material properties and dimensions are approximate, difference of peak loads of energy on the front and back samples is small and the energy absorptivity of the front and back samples are approximate.

    Fig.18 Response curve of front sample under different impact energy

    Fig.19 Response curve of back sample under different impact energy

    Numerical simulation results from the tests show the different mechanical properties of the front part and the back part of neck collar. The maximum stress value of 33.79 MPa meets the requirement of supporting human’s head. The indexes of mechanical properties of the neck collar made of micron wood fiber are related to the density during compression molding which proves the rationality of compression molding density of strength. However, if the porosity under this compression molding density can meet the requirement of the absorption of sweat is still undetermined. The porosity is the main element of determining the moisture absorption and moisture absorption rate, the animation of researching on porosity is to prevent the skin follicle from inflammation. The research on the porosity of neck collar later can use the value of mechanical properties and the material die density in this essay for reference, in order to make better fiber cervical neck collar which can not only meet the strength requirements but also have better absorption for human sweat.

    3 Conclusions

    1) It can be seen in the stress - strain bending curve of the three-point bending mechanical test, the mechanical property curve of wood fiber board has a sharp rising trend in the preliminary stage of strain. When the strain is 3%, the bending strain of the material can reach a maximum of 30 MPa, and then the mechanic curve suddenly drops thereafter, it means the material has lost effect at the moment.

    2) Scanning electron microscope (SEM) is used to observe the microstructure in the fracture of micron wood fiber material and it can be observed clearly that there is no delaminating in the board, which means polyvinyl acetate adhesive has strong working strength and it can transfer load well under the stress.

    3) When micron wood fiber neck collar is compressed from inside to the outside along the curved surface corresponding to upper neck length, the bearing capacity of back micron wood fiber neck collar is lightly greater than that of front neck collar. Stress resistance of micron wood fiber neck collar being compressed from outside to the inside along the side curved surface is higher than that when being compressed from inside to the outside along the curved surface corresponding to the upper neck length. The paper has studied the damage degree of micron wood fiber neck collar under low-speed impact via different impact energies and the impact damage is increased in line with the increase of impact energy.

    Reference

    Chandra R, Rustgis R. 1998. Biodegradable polymers. Prog Polym Sci, 16:22-66.

    Diao X, Furuno T, Uehara T. 1996. Analysis of cell arrangement in soft wood susing two-dimensional fast Fourier transformation. Mokuzaishi 42(7):634-641.

    Guo Q S. 1994. Man-machine engineering design. Tianjin, China: Tianjin University Press, 56-79.

    Hill C A S, Jones D. 1999. Dimensional changes in Corsican Pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung, 53(3):267-271.

    Ma Y. 2003. Study on cell break theory of using wood fiber micro-meter aligned reconstituted technology forming super high-strength wood-based panel. Scientia Silvae Sinicae, 39(3):111-115.

    Ma Y. 2001. Prospect nanometer and micrometer science and technology for applying to the wood industry. Scientia Silvae Sinicae, 37(8):109-113.

    Ma Y. 2002. Study on quantitatively calculated theory of micro-meter wood fiber directional reconstituted content of cell fiber. Journal of Biomathematics, 17(3):353-357.

    Maekawa T, Fujita M, Saiki H. 1999. Characterization of cell arrangement by polar coordinate analysis of power spectral patterns. J Soc Mater Sci Jpn, 42(473):126-131.

    Singh A P, Geoffrey D. 2001. The S2 layer in the tracheid walls ofPiceaabieswood: inhomogeneity in lignin distribution and cell wall. Holzforschung, 55(4):373-378.

    Wang Y Q, Zhang J W, Gang X Z,etal. 2001. Development and application of the neck collar. Chin J Radiol, 35(2):102.

    Watanabe U, Norimoto M. 1999. Tangential Young’s modulus of coniferous early wood investigated using cell models. Holzforschung, 53(2):209-214.

    Xi T F. 2006. The current situation and developmental trend of biomedical materials. Thematic Forum (Material & manufacture), 12(5):1-4.

    Yang C M, Lv H, Ma Y. 2008. Fiber micro cutting theory and micron wood fiber formation mechanism research. Forestry Machinery & Woodworking Equipment, 36(5):22-24.

    Yoshioka T, Tsuru K, Hayakawa S,etal. 2003. Preparation of alginic acid layers on stainless-steel substrates for biomedical applications. Biomaterials, 24(17):2889-2894.

    Zhan L, Yang C M, Ma Y. 2003. Study on theory of nano-micro-meter and micrometer wood fiber and its industrialized future. Forestry Machinery & Woodworking Equipment, 31(5):4-6.

    (責(zé)任編輯 石紅青)

    微米木纖維醫(yī)用頸椎夾板的力學(xué)性能及有限元分析

    張 楊 馬 巖

    (東北林業(yè)大學(xué)林業(yè)與木工機械工程技術(shù)中心 哈爾濱 150040)

    【目的】 研究微米木纖維醫(yī)用頸椎夾板的力學(xué)性能,模擬頸椎夾板受到外力時的力學(xué)數(shù)值,分析其是否可以滿足人體使用強度要求?!緝?nèi)容】選擇直徑為16 μm的紅松木纖維制備試驗試樣,對木纖維板進(jìn)行三點彎曲力學(xué)性能測試,并運用掃描電鏡(SEM)對其微觀結(jié)構(gòu)進(jìn)行表征。利用ABAQUS程序?qū)ξ⒚啄纠w維頸錐夾板進(jìn)行壓縮和沖擊性能的模擬,并對其模擬結(jié)果進(jìn)行分析?!窘Y(jié)果】 微米木纖維頸錐夾板沿上頸長度對應(yīng)曲面由內(nèi)向外壓縮,后片的承載能力略高于前片;沿側(cè)曲面由外向內(nèi)壓縮的抗壓能力高于沿上頸長度對應(yīng)曲面由內(nèi)向外壓縮的抗壓能力。通過選用不同的沖擊能量研究微米木纖維頸錐夾板在低速沖擊作用下的損傷程度,沖擊損傷隨著沖擊能量的增大而增大?!窘Y(jié)論】 頸錐夾板的有限元力學(xué)性能數(shù)值模擬與實際三點彎曲力學(xué)試驗數(shù)值接近,說明試驗的合理性。夾板最大可承受30 MPa的應(yīng)力,可滿足人體使用強度要求。

    微米木纖維; 頸托; 有限元; 力學(xué)性能

    S781.2

    A

    1001-7488(2017)04-0129-10

    10.11707/j.1001-7488.20170415

    Received date:2016-04-15; Revised date:2016-07-13.

    Foundation Project:Natural Science Foundation Project of Heilongjiang Province(C201413).

    猜你喜歡
    抗壓夾板曲面
    專利名稱:一種鉬絲夾持電磁退火爐
    廢舊輪胎橡膠顆粒——黏土的單軸抗壓特性
    排便訓(xùn)練前 先訓(xùn)練你的抗壓神經(jīng)
    媽媽寶寶(2019年9期)2019-10-10 00:53:48
    相交移動超曲面的亞純映射的唯一性
    圓環(huán)上的覆蓋曲面不等式及其應(yīng)用
    鈦夾板應(yīng)用于美學(xué)區(qū)引導(dǎo)骨組織再生1例
    邊條翼夾板結(jié)構(gòu)強度設(shè)計
    基于紅外熱像的襯砌混凝土抗壓損傷試驗研究
    基于曲面展開的自由曲面網(wǎng)格劃分
    華東師范大學(xué)學(xué)報(自然科學(xué)版)(2014年1期)2014-04-16 02:54:52
    性少妇av在线| 老汉色∧v一级毛片| 午夜免费成人在线视频| 国产欧美亚洲国产| 男人操女人黄网站| 啦啦啦中文免费视频观看日本| 午夜两性在线视频| 亚洲第一青青草原| 亚洲精品自拍成人| 久久久精品94久久精品| 国产精品99久久99久久久不卡| 搡老岳熟女国产| 久久久国产精品麻豆| 久久九九热精品免费| 婷婷丁香在线五月| 中文字幕精品免费在线观看视频| 精品人妻1区二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品第二区| 91成人精品电影| 女性生殖器流出的白浆| 人人妻人人澡人人看| 搡老乐熟女国产| 女性被躁到高潮视频| 日本91视频免费播放| 国产精品自产拍在线观看55亚洲 | 欧美精品人与动牲交sv欧美| 777米奇影视久久| 女人爽到高潮嗷嗷叫在线视频| 自线自在国产av| 亚洲精品粉嫩美女一区| 久久这里只有精品19| 亚洲精品av麻豆狂野| 建设人人有责人人尽责人人享有的| 久久精品熟女亚洲av麻豆精品| 男女之事视频高清在线观看| 可以免费在线观看a视频的电影网站| 王馨瑶露胸无遮挡在线观看| 精品人妻1区二区| 久久国产精品大桥未久av| 国产国语露脸激情在线看| av国产精品久久久久影院| 妹子高潮喷水视频| 亚洲久久久国产精品| 黄片大片在线免费观看| 久久久久久久久免费视频了| 午夜精品国产一区二区电影| 大香蕉久久网| 久久久久久亚洲精品国产蜜桃av| 欧美精品啪啪一区二区三区 | 国产极品粉嫩免费观看在线| 欧美乱码精品一区二区三区| 啦啦啦免费观看视频1| 免费观看av网站的网址| 亚洲国产中文字幕在线视频| 建设人人有责人人尽责人人享有的| 久久亚洲国产成人精品v| 最近最新免费中文字幕在线| 欧美另类一区| 亚洲欧美日韩另类电影网站| 深夜精品福利| 香蕉国产在线看| 久久久久久久久免费视频了| 乱人伦中国视频| 色94色欧美一区二区| 精品国产一区二区久久| 高清欧美精品videossex| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 人人妻人人添人人爽欧美一区卜| 老熟妇仑乱视频hdxx| 国产一区二区激情短视频 | 国产xxxxx性猛交| 丝袜美腿诱惑在线| 日本猛色少妇xxxxx猛交久久| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 午夜精品久久久久久毛片777| 国产99久久九九免费精品| 美女视频免费永久观看网站| 最近中文字幕2019免费版| 国产97色在线日韩免费| 岛国在线观看网站| 国产精品香港三级国产av潘金莲| 国产精品成人在线| 国产免费一区二区三区四区乱码| 久久国产精品男人的天堂亚洲| 国产福利在线免费观看视频| av天堂久久9| 黄网站色视频无遮挡免费观看| 亚洲成人国产一区在线观看| 亚洲国产av影院在线观看| 久久精品国产综合久久久| 精品亚洲成a人片在线观看| 欧美xxⅹ黑人| 国产高清国产精品国产三级| 丝袜在线中文字幕| 叶爱在线成人免费视频播放| 多毛熟女@视频| 亚洲精品乱久久久久久| 国产成+人综合+亚洲专区| 国产一区有黄有色的免费视频| 久久精品国产亚洲av高清一级| 国产激情久久老熟女| 亚洲欧美日韩另类电影网站| www.999成人在线观看| 久9热在线精品视频| 久久 成人 亚洲| 久久精品国产a三级三级三级| 人妻 亚洲 视频| av超薄肉色丝袜交足视频| 久久ye,这里只有精品| 一区二区三区激情视频| 成年人免费黄色播放视频| 日韩有码中文字幕| 国产精品久久久久成人av| 久久精品aⅴ一区二区三区四区| 亚洲激情五月婷婷啪啪| 真人做人爱边吃奶动态| 青春草视频在线免费观看| 色精品久久人妻99蜜桃| 国精品久久久久久国模美| 十八禁高潮呻吟视频| 免费观看av网站的网址| 夫妻午夜视频| 亚洲中文字幕日韩| 国产精品自产拍在线观看55亚洲 | 亚洲av日韩在线播放| 久久久精品94久久精品| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花| 极品人妻少妇av视频| 亚洲色图综合在线观看| 超碰成人久久| svipshipincom国产片| 亚洲色图综合在线观看| 亚洲五月色婷婷综合| 亚洲色图综合在线观看| 欧美性长视频在线观看| 亚洲第一av免费看| 99精国产麻豆久久婷婷| 国产成人一区二区三区免费视频网站| 91精品伊人久久大香线蕉| 三上悠亚av全集在线观看| 1024香蕉在线观看| 国产成人精品久久二区二区91| 午夜老司机福利片| 精品高清国产在线一区| 久久久精品区二区三区| 欧美午夜高清在线| 欧美在线一区亚洲| 国产成人欧美在线观看 | 黄频高清免费视频| 亚洲国产av影院在线观看| 国产99久久九九免费精品| 久久久精品区二区三区| 久久毛片免费看一区二区三区| 国产成人精品久久二区二区91| 一本色道久久久久久精品综合| 91精品国产国语对白视频| 亚洲成人免费电影在线观看| 蜜桃在线观看..| 丝袜人妻中文字幕| 9色porny在线观看| 少妇 在线观看| 精品亚洲成国产av| www.999成人在线观看| 啪啪无遮挡十八禁网站| 一本—道久久a久久精品蜜桃钙片| 91精品国产国语对白视频| 12—13女人毛片做爰片一| 亚洲精品一二三| 亚洲av欧美aⅴ国产| 精品久久蜜臀av无| 超碰成人久久| 精品亚洲成国产av| 最近中文字幕2019免费版| 久久久精品国产亚洲av高清涩受| 国产成人精品久久二区二区免费| 欧美+亚洲+日韩+国产| 国产精品九九99| 久久香蕉激情| 曰老女人黄片| 成人亚洲精品一区在线观看| 男女国产视频网站| 丁香六月天网| 成人黄色视频免费在线看| 一本大道久久a久久精品| 男人添女人高潮全过程视频| 中文字幕人妻丝袜制服| 亚洲国产av新网站| 大片免费播放器 马上看| 麻豆乱淫一区二区| 国产精品影院久久| 99re6热这里在线精品视频| 超色免费av| 大片免费播放器 马上看| 午夜免费观看性视频| 国产极品粉嫩免费观看在线| 黑人巨大精品欧美一区二区mp4| 国产免费现黄频在线看| 中国国产av一级| 老熟女久久久| 母亲3免费完整高清在线观看| 啦啦啦视频在线资源免费观看| 男女无遮挡免费网站观看| 波多野结衣一区麻豆| 亚洲欧美清纯卡通| 国产三级黄色录像| 中国国产av一级| 国产日韩欧美亚洲二区| 波多野结衣一区麻豆| 女性被躁到高潮视频| 久久久久精品人妻al黑| av网站在线播放免费| 亚洲国产欧美日韩在线播放| 国产福利在线免费观看视频| 99九九在线精品视频| 国产免费av片在线观看野外av| 99久久国产精品久久久| 欧美性长视频在线观看| 人人妻人人澡人人爽人人夜夜| svipshipincom国产片| 嫩草影视91久久| 麻豆av在线久日| 精品国产国语对白av| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| 国产无遮挡羞羞视频在线观看| 少妇被粗大的猛进出69影院| 婷婷丁香在线五月| 狂野欧美激情性bbbbbb| 亚洲第一青青草原| 欧美另类一区| 欧美在线黄色| av片东京热男人的天堂| 丝袜在线中文字幕| 免费人妻精品一区二区三区视频| 亚洲欧美清纯卡通| 久久女婷五月综合色啪小说| 黄色怎么调成土黄色| 啦啦啦免费观看视频1| 国产极品粉嫩免费观看在线| 亚洲精品中文字幕在线视频| 丝袜人妻中文字幕| 黄色视频在线播放观看不卡| 国产成人精品在线电影| 亚洲 欧美一区二区三区| 久久久精品94久久精品| 国产深夜福利视频在线观看| 男人操女人黄网站| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 91大片在线观看| 丝袜喷水一区| 日本撒尿小便嘘嘘汇集6| 天堂俺去俺来也www色官网| 日本a在线网址| 日日爽夜夜爽网站| 91精品三级在线观看| www.精华液| 人人妻,人人澡人人爽秒播| 久久免费观看电影| 亚洲午夜精品一区,二区,三区| 岛国毛片在线播放| av天堂久久9| 日本91视频免费播放| 午夜精品久久久久久毛片777| 狂野欧美激情性bbbbbb| 亚洲黑人精品在线| 99九九在线精品视频| 国产欧美日韩精品亚洲av| 免费av中文字幕在线| 99久久人妻综合| 久久性视频一级片| 国产精品免费视频内射| 大型av网站在线播放| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 成年女人毛片免费观看观看9 | 欧美久久黑人一区二区| 考比视频在线观看| 午夜久久久在线观看| videos熟女内射| 免费观看a级毛片全部| 国产精品免费视频内射| 日韩人妻精品一区2区三区| 91九色精品人成在线观看| www.999成人在线观看| 免费av中文字幕在线| 国产精品久久久av美女十八| 一进一出抽搐动态| 纯流量卡能插随身wifi吗| 国产成人影院久久av| 成年人午夜在线观看视频| 俄罗斯特黄特色一大片| 黑人操中国人逼视频| 在线精品无人区一区二区三| 黑人欧美特级aaaaaa片| avwww免费| 日韩大片免费观看网站| 亚洲成人免费av在线播放| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 国产黄频视频在线观看| 性色av一级| 国产精品 国内视频| 又黄又粗又硬又大视频| 黄色视频,在线免费观看| 久久青草综合色| 国产精品国产av在线观看| 久久久久视频综合| 搡老岳熟女国产| e午夜精品久久久久久久| 成年av动漫网址| 成年人黄色毛片网站| 亚洲精品成人av观看孕妇| 永久免费av网站大全| 人妻人人澡人人爽人人| 欧美激情高清一区二区三区| 欧美乱码精品一区二区三区| 久久中文字幕一级| 搡老熟女国产l中国老女人| 19禁男女啪啪无遮挡网站| 青青草视频在线视频观看| 久久精品国产亚洲av香蕉五月 | 一区二区av电影网| 乱人伦中国视频| 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| 中亚洲国语对白在线视频| 老司机深夜福利视频在线观看 | 777久久人妻少妇嫩草av网站| 男女免费视频国产| 曰老女人黄片| 一级,二级,三级黄色视频| 欧美激情久久久久久爽电影 | 成人三级做爰电影| 国产xxxxx性猛交| 各种免费的搞黄视频| 女人高潮潮喷娇喘18禁视频| 免费不卡黄色视频| 国产野战对白在线观看| 十分钟在线观看高清视频www| www.自偷自拍.com| 亚洲国产av新网站| 亚洲成人免费av在线播放| 亚洲av男天堂| 午夜免费成人在线视频| 18禁裸乳无遮挡动漫免费视频| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 91字幕亚洲| 99热国产这里只有精品6| 国产高清视频在线播放一区 | 伊人久久大香线蕉亚洲五| 色精品久久人妻99蜜桃| 亚洲国产欧美网| h视频一区二区三区| 免费观看a级毛片全部| 精品少妇一区二区三区视频日本电影| 18在线观看网站| 亚洲欧美精品综合一区二区三区| 一级,二级,三级黄色视频| 欧美精品亚洲一区二区| 亚洲精品日韩在线中文字幕| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 成人手机av| 亚洲中文字幕日韩| 国产欧美日韩一区二区精品| 久久久久久久大尺度免费视频| 香蕉国产在线看| 亚洲精品国产区一区二| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 日本vs欧美在线观看视频| 亚洲精品国产av蜜桃| 麻豆av在线久日| 一本综合久久免费| 国产深夜福利视频在线观看| 国产精品国产av在线观看| 各种免费的搞黄视频| 999久久久国产精品视频| 国产成人影院久久av| 热99国产精品久久久久久7| 亚洲精品国产精品久久久不卡| 亚洲欧洲精品一区二区精品久久久| 韩国精品一区二区三区| 汤姆久久久久久久影院中文字幕| 午夜福利影视在线免费观看| 美女高潮到喷水免费观看| 成人影院久久| 久久精品aⅴ一区二区三区四区| 日本一区二区免费在线视频| 我要看黄色一级片免费的| 五月开心婷婷网| 中文字幕最新亚洲高清| 久久精品aⅴ一区二区三区四区| 少妇人妻久久综合中文| 无限看片的www在线观看| 男女床上黄色一级片免费看| 99热国产这里只有精品6| 99久久综合免费| h视频一区二区三区| 狂野欧美激情性xxxx| 飞空精品影院首页| 久久天躁狠狠躁夜夜2o2o| 国产精品熟女久久久久浪| 亚洲九九香蕉| 中文字幕av电影在线播放| 一本一本久久a久久精品综合妖精| 午夜久久久在线观看| 青春草视频在线免费观看| 久久久久视频综合| 一个人免费看片子| 少妇人妻久久综合中文| 久久精品国产a三级三级三级| 一区二区三区精品91| 99国产精品一区二区三区| a级片在线免费高清观看视频| 欧美亚洲 丝袜 人妻 在线| 免费日韩欧美在线观看| 国产精品久久久人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 午夜视频精品福利| 国产一区二区三区av在线| 国产精品国产三级国产专区5o| 男女下面插进去视频免费观看| 不卡av一区二区三区| 99精国产麻豆久久婷婷| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀| 一级毛片电影观看| 欧美在线黄色| 美女主播在线视频| 欧美日韩黄片免| 纵有疾风起免费观看全集完整版| 午夜91福利影院| www.av在线官网国产| 天堂8中文在线网| 人妻 亚洲 视频| 日韩一卡2卡3卡4卡2021年| 午夜两性在线视频| 国产一区二区三区在线臀色熟女 | 国产熟女午夜一区二区三区| 99久久99久久久精品蜜桃| 欧美av亚洲av综合av国产av| 黄片大片在线免费观看| 免费在线观看视频国产中文字幕亚洲 | 老汉色av国产亚洲站长工具| 欧美老熟妇乱子伦牲交| 日韩大码丰满熟妇| www日本在线高清视频| 国产精品av久久久久免费| 美女福利国产在线| 老汉色av国产亚洲站长工具| 高清av免费在线| 国产亚洲精品第一综合不卡| 精品国产一区二区久久| 亚洲精品在线美女| 超色免费av| 少妇 在线观看| 1024视频免费在线观看| 99热全是精品| 最新的欧美精品一区二区| 老司机在亚洲福利影院| 欧美激情高清一区二区三区| 日日夜夜操网爽| 亚洲国产精品999| 国产男女内射视频| 国产欧美日韩一区二区三区在线| 国产精品久久久久久人妻精品电影 | 首页视频小说图片口味搜索| 乱人伦中国视频| 热99re8久久精品国产| 在线亚洲精品国产二区图片欧美| 国产精品偷伦视频观看了| 国产精品一区二区精品视频观看| 国产成人精品久久二区二区91| 美国免费a级毛片| 性高湖久久久久久久久免费观看| 一区二区三区四区激情视频| 精品人妻熟女毛片av久久网站| 国产精品一区二区免费欧美 | 99久久精品国产亚洲精品| 老汉色∧v一级毛片| av网站免费在线观看视频| 久久精品亚洲熟妇少妇任你| 日韩视频一区二区在线观看| 一级毛片女人18水好多| 国产欧美日韩一区二区三 | 9色porny在线观看| 亚洲精品一区蜜桃| 国产欧美日韩一区二区精品| 国产亚洲一区二区精品| 母亲3免费完整高清在线观看| 国产精品久久久久成人av| 91av网站免费观看| 免费在线观看日本一区| 人妻 亚洲 视频| 精品欧美一区二区三区在线| 亚洲精品一区蜜桃| 欧美日韩一级在线毛片| 成人av一区二区三区在线看 | 欧美 亚洲 国产 日韩一| 亚洲久久久国产精品| 午夜久久久在线观看| 新久久久久国产一级毛片| bbb黄色大片| 欧美 日韩 精品 国产| 国产精品偷伦视频观看了| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 精品高清国产在线一区| avwww免费| 可以免费在线观看a视频的电影网站| 精品亚洲乱码少妇综合久久| 一进一出抽搐动态| 午夜精品国产一区二区电影| 亚洲熟女精品中文字幕| 久久人人爽人人片av| 欧美精品一区二区大全| 视频在线观看一区二区三区| 性少妇av在线| 咕卡用的链子| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 午夜福利免费观看在线| 丰满少妇做爰视频| 母亲3免费完整高清在线观看| 激情视频va一区二区三区| 18禁黄网站禁片午夜丰满| 少妇粗大呻吟视频| 日韩一卡2卡3卡4卡2021年| 亚洲欧美色中文字幕在线| 老司机午夜福利在线观看视频 | 亚洲精品美女久久av网站| 国产亚洲精品一区二区www | 免费女性裸体啪啪无遮挡网站| 日韩一区二区三区影片| 精品久久久久久电影网| 国产av一区二区精品久久| 看免费av毛片| 国内毛片毛片毛片毛片毛片| 秋霞在线观看毛片| 精品久久久久久电影网| 亚洲精品一二三| 国产成人精品久久二区二区免费| 最近最新中文字幕大全免费视频| 国产精品一二三区在线看| 热99re8久久精品国产| av在线老鸭窝| 黑人欧美特级aaaaaa片| 亚洲九九香蕉| 日韩中文字幕欧美一区二区| av片东京热男人的天堂| 宅男免费午夜| 一区二区三区乱码不卡18| 丝袜人妻中文字幕| 亚洲伊人色综图| www.熟女人妻精品国产| 国产免费现黄频在线看| 老司机亚洲免费影院| 国产av又大| 亚洲国产看品久久| 一区二区三区四区激情视频| 国产福利在线免费观看视频| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美精品永久| 啦啦啦 在线观看视频| 女性被躁到高潮视频| 国产熟女午夜一区二区三区| 日韩视频在线欧美| 国产av国产精品国产| 69av精品久久久久久 | 国产欧美日韩精品亚洲av| av不卡在线播放| 国产欧美日韩一区二区精品| 亚洲国产毛片av蜜桃av| 午夜免费鲁丝| 亚洲一码二码三码区别大吗| 欧美日韩亚洲高清精品| 亚洲avbb在线观看| 性高湖久久久久久久久免费观看| 亚洲午夜精品一区,二区,三区| av福利片在线| 国产欧美日韩一区二区三 | 在线天堂中文资源库| 热99国产精品久久久久久7| 麻豆国产av国片精品| 亚洲国产毛片av蜜桃av| 亚洲精品久久午夜乱码| 69av精品久久久久久 | 国产精品av久久久久免费| 亚洲欧美日韩另类电影网站| av片东京热男人的天堂| 精品人妻熟女毛片av久久网站| www日本在线高清视频| 99香蕉大伊视频| 亚洲精品久久成人aⅴ小说| 亚洲中文日韩欧美视频| 久久久久国内视频| 日本91视频免费播放| 久久久久久久精品精品| 亚洲精华国产精华精| 日本五十路高清| 亚洲情色 制服丝袜| 99国产精品一区二区蜜桃av | 啦啦啦啦在线视频资源| 欧美一级毛片孕妇| av有码第一页| 久久人人爽人人片av| 一本色道久久久久久精品综合|