張瀠元, 黑鵬飛*, 楊 靜, 金 軍, 周 剛
1.中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院, 北京 100081 2.中國環(huán)境科學(xué)研究院, 國家環(huán)境保護(hù)河口與海岸帶環(huán)境重點實驗室, 北京 100012
本底吸附物對長江沉積物磷吸附容量的影響
張瀠元1, 黑鵬飛1*, 楊 靜1, 金 軍1, 周 剛2
1.中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院, 北京 100081 2.中國環(huán)境科學(xué)研究院, 國家環(huán)境保護(hù)河口與海岸帶環(huán)境重點實驗室, 北京 100012
分別選取三峽大壩上游寸灘河段和下游武漢河段沉積物,用不同濃度(0~3 molL)的HCl對沉積物進(jìn)行清洗,降低本底吸附w(P)、w(Fe)、w(Al)、w(Ca)及w(OM)(OM為有機質(zhì)),通過測定沉積物的P平衡吸附量,研究長江沉積物上本底吸附物對P吸附容量的影響.結(jié)果表明:①經(jīng)稀HCl清洗后,兩種沉積物的w(Ca)、w(OM)、w(P)均顯著減少,沉積物的P平衡吸附量隨之減少,而w(Fe)、w(Al)則沒有明顯變化,同時,沉積物對P的平衡吸附量、沉積物中w(TP)均與本底w(Ca)、w(OM)呈顯著正相關(guān)(P<0.05),因此長江沉積物對P的吸附容量的主要影響因素為本底吸附OM和Ca;②三峽庫區(qū)內(nèi)沉積物中w(OM)及w(Ca)較高,二者分別為72.64、63.52 mgg,三峽大壩下游武漢段沉積物中則相對偏低,二者分別為52.20、45.03 mgg,說明庫區(qū)沉積物的P吸附容量明顯大于大壩下游沉積物,在三峽水庫運行前期,沉積物的P吸附量將逐漸增加,成為三峽水庫運行后期富營養(yǎng)化的潛在內(nèi)源.
本底吸附; 沉積物; 吸附; 磷; 長江
P是水生態(tài)系統(tǒng)的重要生源物質(zhì)和水體富營養(yǎng)的主要限制因子[1],過量的P將引起水體富營養(yǎng)化.沉積物作為P的“源”和“匯”[2- 3],對P的吸附及釋放作用是P在水生態(tài)系統(tǒng)中輸運的主要過程之一.研究表明,即使切斷外源,內(nèi)源污染依然可使水體保持富營養(yǎng)化數(shù)年甚至數(shù)十年(如6年[4]、10年[5]).沉積物與P的相互作用機理研究可為水體富營養(yǎng)化防治提供必要的理論基礎(chǔ).
長江三峽水庫在發(fā)揮防洪、發(fā)電和航運效益的同時,也改變了其上下游的水沙條件和營養(yǎng)輸送[6- 7].自蓄水以來,據(jù)報道,來自長江上游近70%的年輸沙量被截留在三峽庫區(qū)內(nèi)[8],年均2.14×104t的P隨沉積物“滯留”在庫底不能被輸送至下游[6],嚴(yán)重破壞了長江流域的P平衡[9- 10],導(dǎo)致庫區(qū)支流香溪河等屢次出現(xiàn)富營養(yǎng)化現(xiàn)象[11- 12].而有研究表明,在沉積物與P的相互作用過程中,本底吸附物質(zhì)扮演著不容忽視的角色[13].所謂本底吸附物,指的是沉積物的原生礦物基質(zhì)在與水中污染物長期作用下,表面所吸附的OM(有機質(zhì))、P、重金屬等外來次生物質(zhì),目前主要關(guān)注的是P、Ca、Fe[14]、Al[15]等活性金屬及OM[16]等,如WANG等[16]研究表明,沉積物表面附著的OM對P有較強的親和性;FeAl氫氧化物因有較大的比表面積,可以增加沉積物對P的吸附容量;顆粒態(tài)碳酸鹽對水體溶解態(tài)磷酸鹽的吸附與共沉淀作用也常見報道[17],ZHOU等[13]為減小本底吸附P的影響,提出了修正的Langmuir模型.正確理解沉積物與P相互作用機理,必須考慮本底吸附物對沉積物P的吸附特性的影響[13,18],但是目前鮮見關(guān)于長江流域沉積物在不同本底吸附條件下的吸附特性的系統(tǒng)研究.
該研究分別選取位于長江三峽大壩上、下游的重慶寸灘、武漢河段表層沉積物樣本,通過HCl清洗獲得不同本底吸附P、Fe、Al、Ca及OM的沉積物樣品,分析不同沉積物樣品對P的平衡吸附量,研究不同本底吸附對于P吸附特性的影響規(guī)律,以期為三峽水庫的生態(tài)調(diào)度提供理論參考.
1.1 樣品采集與分析
0~15 cm沉積物與上覆水是水體和沉積物之間物質(zhì)輸送與交換的重要邊界環(huán)境[19].該研究采用抓斗式采樣器分別在長江三峽庫區(qū)重慶寸灘河段(29°37′24″N、106°36′09″E)、三峽大壩下游的武漢河段(30°35′36″N、114°18′16″E)采集0~15 cm表層沉積物.樣品采集后,瀝干水分裝入聚乙烯塑料采樣袋,排出空氣后密封,運回實驗室.部分樣品置于德國Christ凍干機中干燥,隨后對其基本物理化學(xué)性質(zhì)進(jìn)行分析.沉積物中的w(OM)用550 ℃燒失量(LOI)表示;金屬元素通過對沉積物壓片制樣后,采用日本島津X射線熒光光譜儀(XRF- 1800)分析測量;沉積物粒徑組成經(jīng)美國麥奇客激光粒度儀(S- 3500)分析,隨后被分為黏土(<0.002 mm)、粉沙(0.002~0.05 mm)和沙粒(0.05~2 mm)[20].測定w(TP)與w(TN)時,分別將樣品用濃H2SO4與HCl消解后再用分光光度法測量.剩余的沉積物自然風(fēng)干后,武漢段沉積物篩分出D1(<0.05 mm)和D2(0.1~0.2 mm)兩個粒徑組,寸灘段沉積物的最大粒徑約為0.1 mm,則篩分出D1(<0.05 mm)及D3(0.05~0.1 mm)兩個粒徑組用于后續(xù)試驗.
1.2 沉積物本底吸附的清洗
稀HCl常被用于沉積物中污染物的提取,以及沉積物的清洗[21- 22].目前,用于沉積物上污染物提取的c(HCl)常在1 molL以內(nèi)[23],然而,用于沉積物清洗的c(HCl)尚不統(tǒng)一.YOKOO等[24]研究發(fā)現(xiàn),濃度較高的HCl(如3 molL)將對沉積物的硅酸鹽結(jié)構(gòu)造成破壞.該試驗在已有研究基礎(chǔ)上,選擇0、0.1、0.5、1.0、3.0 molL的HCl對天然沉積物進(jìn)行清洗,以獲得不同本底吸附條件的沉積物樣品.稱取10.0 g沉積物樣品置于干燥的150 mL具塞錐形瓶中,緩緩加入100 mL HCl溶液,蓋上塞子置于25 ℃恒溫振蕩器中,160 rmin下振蕩2 h后真空抽濾,并用去離子水反復(fù)清洗,直至濾液的pH與去離子水一致.根據(jù)清洗所用c(HCl)將清洗后的沉積物分別命名為S0、S0.1、S0.5、S1、S3,于烘箱中110 ℃烘干后置于干燥器中備用.
取清洗后的沉積物,分析清洗后沉積物中w(本底吸附物)的變化.w(TP)用歐洲標(biāo)準(zhǔn)測試測量組織所建立的SMT法[25]測定:將0.2 g沉積物用3.5 molL HCl消解16 h后,經(jīng)鉬藍(lán)法測量[26];w(Fe)、w(Al)、w(Ca)及w(OM)測量方法同1.1節(jié).
為更直觀地觀測到本底吸附去除前后沉積物顆粒的變化,將干燥的各沉積物樣品分別均勻地黏在導(dǎo)電膠布以及樣品托上,噴金處理后用日本日立S-4800 場發(fā)射掃描電鏡(SEM)對其微觀形貌進(jìn)行觀察.
1.3 平衡吸附試驗
稱取各采樣點不同粒徑的清洗沉積物樣品1.0 g,分別置于150 mL具塞錐形瓶中,緩緩加入20 mgL的磷酸二氫鉀(KH2PO4)溶液100 mL,將錐形瓶置于25 ℃恒溫振蕩器中以轉(zhuǎn)速160 rmin振蕩24 h使吸附達(dá)到平衡狀態(tài),隨后將溶液過0.45 μm醋酸纖維濾膜,用鉬藍(lán)法測量濾液中的ρ(P).對照試驗采用100 mL的KH2PO4溶液進(jìn)行相同的操作,減小溶液蒸發(fā)以及玻璃壁吸附等引起的試驗誤差.記對照試驗ρ(P) 為初始ρ(P)(C0).整個試驗平行做3次,試驗結(jié)果為3個平行樣的算術(shù)平均值,平行樣間變異系數(shù)均小于15%.平衡吸附量的計算方法:
Q=V(C0-Ce)m
(1)
式中:Q為平衡吸附量,mgg;C0和Ce分別為溶液中P的初始質(zhì)量濃度和平衡質(zhì)量濃度,mgL;V為溶液體積,mL;m為沉積物的質(zhì)量,g.
2.1 沉積物的基本理化特性
武漢、重慶寸灘河段沉積物的基本理化性質(zhì)見表1.由表1可見,2個采樣點間沉積物的理化性質(zhì)差異明顯,位于三峽庫區(qū)內(nèi)的重慶寸灘段沉積物中w(TP)、w(TN)遠(yuǎn)高于三峽大壩下游的武漢段沉積物,同時,庫區(qū)內(nèi)沉積物的w(OM)及w(Ca)也顯著高于大壩下游的武漢段沉積物,武漢段沉積物中沙粒所占比例最大,為65.46%;其次是粉沙,占34.54%.位于庫區(qū)內(nèi)的寸灘段沉積物則是φ(粉沙)最多,為72.78%;其次是沙粒,占26.28%.兩種沉積物的φ(黏土)都幾乎為零.自水庫運行以來,庫區(qū)流速下降,導(dǎo)致大量的懸移質(zhì)沉降,庫區(qū)內(nèi)沉積物粒級細(xì)化;而大壩下游懸移質(zhì)大量減少,導(dǎo)致其河段堤岸沖刷加劇,沉積物粗化.同時,沉積物顆粒的污染程度跟天然水體的污染程度直接相關(guān),三峽庫區(qū)水體污染較重屢見報道[9- 10],沉積物上w(本底吸附物)也相應(yīng)較高,進(jìn)一步說明了沉積物的性質(zhì)與所處水環(huán)境密切相關(guān).
表1 沉積物樣品的基本理化性質(zhì)
2.2 沉積物本底吸附量變化
沉積物的組成包括基體成巖作用所形成的基質(zhì)以及與水中污染物長期作用下,表面所吸附的營養(yǎng)鹽、金屬氧化物、礦物鹽、有機污染物以及重金屬等物質(zhì)[27].本底吸附物質(zhì)與沉積物的結(jié)合一般較為松散,在一定的條件下能再次釋放.不同c(HCl)對沉積物中本底吸附物的去除效果如圖1所示.
圖1 不同濃度的HCl清洗下沉積物中w(Fe)、w(Al)、w(Ca)、w(OM)及w(P)的變化Fig.1 Variation in w(Fe),w(Al),w(Ca),w(OM)and w(P)of sediment after washed by HCl of different concentrations
天然沉積物顆粒是以礦物顆粒(主要是黏土礦物)作為核心骨架,OM、N、P以及金屬氧化物等本底吸附物結(jié)合于礦物顆粒表面所形成.因此沉積物的表面形態(tài)與其礦物骨架和污染程度均有很大關(guān)系,在不同本底吸附條件下,沉積物顆粒微觀形貌呈現(xiàn)出各自的特性.以武漢段D1(<0.05 mm)粒徑沉積物為例,對不同本底吸附條件下的沉積物進(jìn)行微觀形貌觀測.放大2 000倍的沉積物SEM結(jié)果如圖2所示,天然沉積物顆粒表面呈現(xiàn)出復(fù)雜的不規(guī)則結(jié)構(gòu),由大量的小細(xì)顆粒包裹著,隨著c(HCl)的增加,沉積物本底吸附物質(zhì)逐漸減少,附著在沉積物表面的小顆粒逐漸減少,0.5~1.0 molL的HCl處理下的表面形貌較天然沉積物光滑很多,甚至裸露出沉積物基體.由此可見,沉積物顆粒在污染水體中經(jīng)過復(fù)雜的物理、化學(xué)和生物變化過程,形貌發(fā)生了較大改變,表面會增加很多吸附的水體污染物形成的小顆粒結(jié)構(gòu)[32],經(jīng)0.1 molL的HCl清洗后,表面顆粒結(jié)構(gòu)有少量減少,而在0.5~1.0 molL的HCl處理后,能較大程度地去除本底吸附物所形成的小顆粒結(jié)構(gòu).
圖2 武漢段D1(<0.05 mm)粒徑沉積物的SEM圖像Fig.2 SEM images of the washed sediment samples from Wuhan in the Yangtze River(Sample D1)
2.3 不同本底吸附條件下沉積物對P的平衡吸附量
沉積物對P的平衡吸附量常用于評價沉積物對P的吸附能力,同時也是沉積物與P相互作用機理模型中的重要參數(shù),不同本底吸附條件下的沉積物對P的平衡吸附量見圖3.由3個粒徑沉積物的P平衡吸附量可以看出,隨著粒徑的增大,平衡吸附量越小;在同一粒徑范圍內(nèi)(D1<0.05 mm),武漢段沉積物對P的平衡吸附量大于寸灘段沉積物,考慮到其沉積物中w(OM)及w(Ca)均低于寸灘段,分析原因可能是寸灘段沉積物中本底吸附P較多,占據(jù)大量吸附位點,這也說明沉積物對P的吸附行為受到顆粒粒徑和本底吸附物等性質(zhì)的共同影響.
總體而言,沉積物上本底吸附物的減少引起了平衡吸附量減少.采用0~0.5 molL的HCl清洗后,沉積物對P的平衡吸附量急劇下降,究其原因是本底吸附Ca及OM的大量去除;隨后,隨著c(HCl)增加,沉積物上的金屬元素及w(OM)已趨于穩(wěn)定,本底吸附的w(P)還在減少,為溶液中的PO43-提供一定的空白吸附位,使平衡吸附量相對有所回升.當(dāng)c(HCl)為1.0~3.0 molL時,沉積物中的本底吸附物質(zhì)已近乎去除,而平衡吸附量仍有所下降,究其原因是沉積物對P的吸附機制除有機質(zhì)及金屬氧化物等的配位吸附外,還存在空隙填充方式,而3.0 molL的HCl對沉積物的表層結(jié)構(gòu)產(chǎn)生破壞,引起其表面孔隙的坍塌[33- 34].
圖3 不同本底吸附條件下沉積物對P的平衡吸附量Fig.3 The equilibrium adsorption capacity of P on sediments washed with HCl of different concentrations
2.4 平衡吸附量與各元素本底吸附量的相關(guān)性
寸灘河段與武漢河段沉積物理化特性間的相關(guān)性分析見表2.從表2可看出,兩種沉積物中w(TP)均與w(OM)及w(Ca)顯著正相關(guān)(P<0.05),寸灘河段沉積物中相關(guān)系數(shù)分別為0.944和0.928,武漢段沉積物則為0.909和0.890,說明沉積物上的Ca及OM對P的吸附有重要作用[35- 36].TP與Fe、Al的相關(guān)性較弱,這可能與沉積物中P的賦存形態(tài)有關(guān).除此之外,Ca與OM的相關(guān)性也極為顯著(P<0.01),說明在長江流域沉積物中的本底吸附OM是通過與鈣質(zhì)礦物顆粒相互共生而富集,形成鈣鍵腐殖質(zhì)[37].
表2 寸灘、武漢河段沉積物理化性質(zhì)之間的相關(guān)性分析
注:*表示在P=0.05水平上顯著;**表示在P= 0.01水平上顯著.
在分析沉積物本底吸附量與P平衡吸附量的相關(guān)性時,由不同本底吸附條件下沉積物的化學(xué)性質(zhì)與對P的平衡吸附量相關(guān)性分析(見表3)可以得出.平衡吸附量與沉積物中w(Ca)、w(OM)呈顯著正相關(guān),說明Ca及OM是沉積物吸附P的重要影響因子[38];其次,沉積物的本底吸附P與平衡吸附量呈極顯著正相關(guān),這與其他文獻(xiàn)[13,39]報道的“本底吸附P因占據(jù)吸附位,與沉積物的吸附容量成反比”不符,主要是因為化學(xué)吸附在沉積物對P的吸附中占主導(dǎo)地位,當(dāng)把本底吸附P及活性金屬元素、OM等同時去除時,后者對沉積物吸附P的影響遠(yuǎn)超過本底吸附P.
表3 長江寸灘、武漢段沉積物對P的平衡吸附量與本底吸附物質(zhì)的相關(guān)性分析
注:*表示在P=0.05水平上顯著;**表示在P=0.01水平上顯著.
a) 本底吸附OM及Ca對長江沉積物吸附P的容量有較大影響,隨著二者含量的減少,P平衡吸附量也逐漸減少,本底吸附Fe、Al及P對長江沉積物的吸附容量影響則較小,相關(guān)性分析也顯示,沉積物中w(TP)以及沉積物對P的平衡吸附量均與w(Ca)、w(OM)呈顯著正相關(guān)(P<0.05).
b) 三峽庫區(qū)內(nèi)的沉積物中w(OM)及w(Ca)較高,二者分別為72.64、63.52 mgg;三峽大壩下游武漢段沉積物中則相對偏低,二者分別為52.20、45.03 mgg;而兩種沉積物中w(Fe)、w(Al)相近,這說明庫區(qū)沉積物的P吸附容量明顯大于大壩下游沉積物,這將會增加水庫運行初期庫區(qū)沉積物P的蓄積量,成為三峽水庫運行后期富營養(yǎng)化的潛在內(nèi)源.
[1] CARNEIRO C,KELDERMAN P,IRVINE K.Assessmentof phosphorus sediment-water exchange through water and mass budget in Passaúna Reservoir(Paraná State,Brazil)[J].Environmental Earth Sciences,2016,75(7):1- 12.
[2] FANG Hongwei,CHEN Minghong,CHEN Zhihe,etal.Effects of sediment particle morphology on adsorption of phosphorus elements[J].International Journal of Sediment Research,2013,28(2):246- 253.
[3] LURLING M,MACKAY E,REITZEL K,etal.Editorial:a critical perspective on geo-engineering for eutrophication management in lakes[J].Water Research,2016,97:1- 10.
[4] KOHLER J,HILT S,ADRIAN R,etal.Long-term response of a shallow,moderately flushed lake to reduced external phosphorus and nitrogen loading[J].Freshwater Biology,2005,50(10):1639- 1650.
[5] WELCH E B,COOKE G D.Internal phosphorus loading in shallow lakes:importance and control[J].Lake and Reservoir Management,2005,21(3):209- 217.
[6] WU Yanhong,WANG Xiaoxiao,ZHOU Jun,etal.The fate of phosphorus in sediments after the full operation of the Three Gorges Reservoir,China[J].Environmental Pollution,2016,214:282- 289.
[7] YANG Z,WANG H,SAITO Y,etal.Dam impacts on the Changjiang(Yangtze)River sediment discharge to the sea:the past 55 years and after the Three Gorges dam[J].Water Resourse Research,2006,42(4):501- 517.
[8] ZENG Hui,SONG Lirong,YU Zhigang,etal.Distribution of phytoplankton in the Three-Gorge Reservoir during rainy and dry seasons [J].Science of the Total Environment,2006,367(23):999- 1009.
[9] HUANG Lei,F(xiàn)ANG Hongwei,REIBLE D.Mathematical model for interactions and transport of phosphorus and sediment in the Three Gorges Reservoir[J].Water Research,2015,85:393- 403.
[10] 曹慧群,李青云,陳野.三峽水庫運行對長江干流磷傳輸?shù)挠绊懠皩Σ遊J].人民長江,2014(15):14- 17. CAO Huiqun,LI Qingyun,CHEN Ye.Impacts of Three Gorges Reservoir operation on phosphorus transportation in mainstream of Yangtze River and countermeasures[J].Yangtze River,2014(15):14- 17.
[11] JIANG Liguo,LIANG Bing,XUE Qiang,etal.Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed,Three Gorges Reservoir,China[J].Chemosphere,2016,150:130- 138.
[12] SHI Rujie.Ecological Environment Problems of the Three Gorges Reservoir Area and countermeasures[J].Procedia Environmental Sciences,2011,10(1):1431- 1434.
[13] ZHOU Aimin,TANG Hongxiao,WANG Dongsheng.Phosphorus adsorption on natural sediments:modeling and effects of pH and sediment composition[J].Water Research,2005,39(7):1245- 1254.
[14] 張仕軍,齊慶杰,王圣瑞,等.洱海沉積物有機質(zhì)、鐵、錳對磷的賦存特征和釋放影響[J].環(huán)境科學(xué)研究,2011,24(4):371- 377. ZHANG Shijun,QI Qingjie,WANG Shengrui,etal.Effects of organic matter,manganese and iron on phosphorus fractions and release in the sediments of Erhai Lake[J].Research of Environmental Sciences,2011,24(4):371- 377.
[15] HUSER B J,PILGRIM K M.A simple model for predicting aluminum bound phosphorus formation and internal loading reduction in lakes after aluminum addition to lake sediment[J].Water Research,2014,53(8):378- 385.
[16] WANG Shengrui,JIN Xiangcan,ZHAO Haichao,etal.Effect of organic matter on the sorption of dissolved organic and inorganic phosphorus in lake sediments[J].Colloids and Surfaces A Physicochemical and Engineering Aspects,2007,297(123):154- 162.
[17] BERG U,NEUMANN T,DONNERT D,etal.Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus[J].Applied Geochemistry,2004,19(11):1759- 1771.
[18] WANG Ying,SHEN Zhenyao,NIU Junfeng,etal.Adsorption of phosphorus on sediments from the Three-Gorges Reservoir(China)and the relation with sediment compositions[J].Journal of Hazardous Materials,2009,162(1):92- 98.
[19] 王永平,朱廣偉,洪大林,等.沉水植物對沉積物-水界面環(huán)境特征的影響[J].環(huán)境科學(xué)研究,2012,25(10):1133- 1139. WANG Yongping,ZHU Guangwei,HONG Dalin,etal.Effects of macrophytes on the environmental characteristics of sediment-water interface[J].Research of Environmental Science,2012,25(10):1133- 1139.
[20] JIN Xiangcan,WANG Shenrui,PANG Yan,etal.The adsorption of phosphate on different trophic lake sediments[J].Colloids and Surfaces A Physicochemical and Engineering Aspects,2005,254(123):241- 248.
[21] ZHANG Kun,CHENG Pengda,ZHONG Baochang,etal.Total phosphorus release from bottom sediments in flowing water[J].Journal of Hydrodynamics,2012,24(4):589- 594.
[22] 方紅衛(wèi),陳明洪,陳志和.沉積物顆粒污染前后表面孔隙力學(xué)特征分析[J].中國科學(xué)(G輯:物理學(xué)力學(xué)天文學(xué)),2008(6):714- 720. FANG Hongwei,CHEN Minghong,CHEN Zhihe.Surface pore tension and adsorption characteristics of polluted sediment[J].Science in China(Series G:Physics,Mechanics and Astronomy),2008(6):714- 720.
[23] SNAPE I,SCOULLER R C,STARK S C,etal.Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments[J].Chemosphere,2004,57(6):491- 504.
[24] YOKOO Y,NAKANO T,NISHIKAWA M,etal.Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific[J].Chemical Geology,2004,204(12):45- 62.
[26] MURPHY J R,RILEY J P.A modified single solution method for the determination of phosphate in natural waters[J].Analytica Chimica Acta,1962,27(00):31- 36.
[27] 申禹,李玲.天然水體中生物膜對磷的吸附動力學(xué)特征[J].環(huán)境科學(xué)學(xué)報,2013,33(04):1023- 1027. SHEN Yu,LI Ling.Kinetic characteristics of phosphorus adsorption on surface coatings in natural water[J].Acta Scientiae Circumstantiae,2013,33(4):1023- 1027.
[28] 丁悌平,高建飛,石國鈺,等.長江水中懸浮物含量與礦物和化學(xué)組成及其地質(zhì)環(huán)境意義[J].地質(zhì)學(xué)報,2013,87(5):634- 660. DING Tiping,GAO Jianfei,SHI Guoyu,etal.The contents and mineral and chemical compositions of suspended particulate materials in the Yangtze River,and their geological and environmental implications[J].Acta Geologica Sinica,2013,87(5):634- 660.
[29] SUTHERLAND R A.Comparison between non-residual Al,Co,Cu,F(xiàn)e,Mn,Ni,Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment[J].Applied Geochemistry,2002,17(4):353- 365.
[30] XIAO Yang,XIAO Lian,HAO Ke,etal.Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes[J].Water Science and Engineering,2013,6(3):262- 271.
[31] OSTROM M E.Separation of clay minerals from carbonate rocks by using acid[J].Journal of Sedimentary Research,1961(1):123- 129.
[32] 陳明洪.沉積物顆粒吸附磷的規(guī)律及微觀形貌變化的研究[D].北京:清華大學(xué),2008.
[33] YE H,CHEN F,SHENG Y,etal.Adsorption of phosphate from aqueous solution onto modified palygorskites[J].Separation and Purification Technology,2006,50(3):283- 290.
[34] LI Y,LIU C,LUAN Z,etal.Phosphate removal from aqueous solutions using raw and activated red mud and fly ash[J].Journal of Hazardous Materials,2006,137(1):374- 383.
[35] 孫靜,王圣瑞,曾清如,等.洱海表層沉積物有機磷形態(tài)分布特征及其影響因素[J].環(huán)境科學(xué)研究,2011,24(11):1226- 1232. SUN Jing,WANG Shengrui,ZENG Qingru,etal.Distribution characteristics of organic phosphorus fractions and influencing factors in surface sediments of Lake Erhai[J].Research of Environmental Sciences,2011,24(11):1226- 1232.
[36] 何宗健,劉文斌,王圣瑞,等.洱海表層沉積物吸附磷特征[J].環(huán)境科學(xué)研究,2011,24(11):1242- 1248. HE Zongjian,LIU Wenbin,WANG Shengrui,etal.Phosphate adsorption characteristics on the surface sediments of Erhai Lake [J].Research of Environmental Sciences,2011,24(11):1242- 1248.
[37] 蔡進(jìn)功,徐金鯉,楊守業(yè),等.泥質(zhì)沉積物顆粒分級及其有機質(zhì)富集的差異性[J].高校地質(zhì)學(xué)報,2006,12(2):234- 241. CAI Jingong,XU Jinli,YANG Shouye,etal.The fractionation of an argillaceous sediment and difference in organic matter enrichment in different fractions[J].Geological Journal of China Universities,2006,12(2):234- 241.
[38] 王彥,張進(jìn)忠,王振華,等.四川盆地丘陵區(qū)農(nóng)田土壤對磷的吸附與解吸特征[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2011,30(10):2068- 2074. WANG Yan,ZHANG Jinzhong,WANG Zhenhua,etal.Adsorption and desorption characteristics of phosphorus on cropland soils in the hilly area of Sichuan Basin,China[J].Journal of Agro-Environment Science,2011,30(10):2068- 2074.
[39] 楊宏偉,郭博書,邰朝魯門,等.黃河入河沙漠顆粒物對磷酸鹽的吸附特征[J].環(huán)境科學(xué),2010,31(8):1890- 1896. YANG Hongwei,GUO Boshu,TAI Chaolumen,etal.Phosphate adsorption characteristics on the desert particulates of inflow Yellow River[J].Environment Science,2010,31(8):1890- 1896.
Effects of Native Adsorptive Substances on Phosphorus Adsorption Capacity of Yangtze River Sediment
ZHANG Yingyuan1, HEI Pengfei1*, YANG Jing1, JIN Jun1, ZHOU Gang2
1.College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China 2.Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
The effects of native adsorptive substances in sediment on the P adsorption capacity of the Yangtze River were investigated.Sediments sampled from Cuntan and Wuhan were washed with HCl of different concentrations,and the native adsorptive P,F(xiàn)e,Al,Ca and organic matter(OM)on sediment released by different degrees was studied.The washed sediments were then used to investigate the P adsorption capacity by batch equilibrium adsorption experiments.The results showed that:(1)after being washed by diluted HCl,the contents of Fe and Al on sediment had little change,while the contents of Ca,OM,as well as P decreased significantly,which caused a reduction of P equilibrium adsorption capacity.A significant positive correlation(P<0.05)was observed between the equilibrium adsorption capacity of P and the content of TP and Ca,OM.Therefore,the native adsorptive OM and Ca on sediment were of great impact on the P adsorption capacity.(2)The contents of OM and Ca of sediment from Cuntan(OM:72.64 mgg,Ca:63.52 mgg)were significantly higher than those from Wuhan(OM:52.20 mgg,Ca:45.03 mgg),which indicated that the P adsorption capacity of sediment in the upstream of the Three Gorges Dam was much higher than that in the downstream.Namely,during the early operation of the Three Gorges reservoir,the sediment here can be a′sink′ for external P,and the adsorption on sediment increases gradually.However,along with the running time extension,the sediment will be a potential internal P load.
native adsorptive substances; sediment; adsorption; phosphorus; Yangtze River
2016- 08- 27
2017- 01- 03
國家水體污染控制與治理科技重大專項(2012ZX07505- 005)
張瀠元(1991-),女,貴州銅仁人,zyingyuan07@126.com.
*責(zé)任作者,黑鵬飛(1972-),男,陜西榆林人,講師,博士,主要從事水污染控制工程,heipf06@mails.tsinghua.edu.cn
X52
1001- 6929(2017)04- 0545- 07
A
10.13198j.issn.1001- 6929.2017.01.78
張瀠元,黑鵬飛,楊靜,等.本底吸附物對長江沉積物磷吸附容量的影響[J].環(huán)境科學(xué)研究,2017,30(4):545-551.
ZHANG Yingyuan,HEI Pengfei,YANG Jing,etal.Effects of native adsorptive substances on phosphorus adsorption capacity of Yangtze River sediment[J].Research of Environmental Sciences,2017,30(4):545-551.