米麗菊 張霽 左智天 王元忠 李富生
摘要: 該研究采用傅里葉變換紅外光譜結(jié)合化學(xué)計(jì)量學(xué),對條播、撒播、剪根后移栽、扦插和剪枝后移栽的滇龍膽進(jìn)行了分析,以篩選滇龍膽的最佳栽培方式。結(jié)果表明:(1)不同栽培方式的滇龍膽原始譜圖在峰形、峰位和峰強(qiáng)上有一定差異;用小波去噪法對光譜進(jìn)行優(yōu)化處理并進(jìn)行偏最小二乘判別分析(Partial least squares discriminant analysis, PLSDA),能較好地區(qū)分不同栽培方式的滇龍膽樣品,PLSDA二維得分圖顯示同一栽培方式的樣品聚在一起,表明相同栽培方式的滇龍膽化學(xué)組成和含量差異較小;播種滇龍膽樣品(條播和撒播)距離較近,移栽滇龍膽樣品(剪根、扦插和剪枝)距離較近,而播種和移栽滇龍膽樣品距離較遠(yuǎn),表明栽培方式對滇龍膽化學(xué)成分的積累有影響。(2)滇龍膽四種主要成分總含量大小依次是剪枝>剪根>撒播>條播>扦插,除剪根后移栽,剪枝后移栽滇龍膽中四種主要成分總含量顯著高于其他栽培方式下的滇龍膽(P<0.05),剪枝后移栽滇龍膽質(zhì)量最佳。(3)以液相數(shù)據(jù)為參考值,采用正交信號校正—偏最小二乘回歸模型預(yù)測不同栽培模式滇龍膽中龍膽苦苷、馬錢苷酸、獐牙菜苦苷和當(dāng)藥苷的含量。校正集和驗(yàn)證集的決定系數(shù)(R2)均大于0.90,校正均方根誤差、交叉驗(yàn)證均方差和預(yù)測均方根誤差均小于1.65,模型相關(guān)性和預(yù)測效果好,該方法對紅外光譜分析在中藥領(lǐng)域的推廣應(yīng)用提供了參考。
關(guān)鍵詞: 傅里葉變換紅外光譜, 偏最小二乘判別分析, 正交信號校正-偏最小二乘法, 栽培方式, 滇龍膽
中圖分類號: Q945
文獻(xiàn)標(biāo)識碼: A
文章編號: 10003142(2017)05061008
Abstract: Medicinal plants are the resources of traditional Chinese medicines (TCM), and selecting appropriate cultivation method is conductive to guarantee the quality of TCM from the source. In this research, in order to select optimal cultivation method for the Gentiana rigescens, Fourier transform infrared (FTIR) spectroscopy combined with chemometrics was used for analyzing the G. rigescens which were cultivated through sowing in drill, broadcast sowing, transplanting after root pruning, cutting and transplanting after pruning. The results were as follows: (1) Original FTIR spectra of G. rigescens from different cultivation methods had some differences in shape, position and intensity of peak. After preprocessed with the wavelet denoising, the spectral data were analyzed by partial least squares discriminant analysis (PLSDA), and samples with different cultivation methods could be distinguished well. The results of PLSDA demonstrated that samples with the same cultivation method could be grouped well. It suggested that the difference between chemical constituents and content of G. rigescens with the same cultivation method were relatively low. The G. rigescens through sowing (sowing in drill and broadcast sowing) were relatively close, so were the G. rigescens through transplanting (root pruning, cutting and pruning). However, samples by sowing were far from that of transplanting. It showed that cultivation method influence the accumulation of chemical constituents of G. rigescens. (2) The total content of four main components in G. rigescens was decreased in the order of pruning, root pruning, broadcast sowing, sowing in drill and cutting, and was significantly higher in samples through pruning than that of others except for root pruning (P<0.05). The G. rigescens through pruning could obtain optimum quality. (3) Based on the reference data performed by liquid chromatography, orthogonal signal correctionpartial least squares (OSCPLS) models were established for predicting the content of gentiopicroside, loganic acid, swertiamarin and sweroside in G. rigescens from different cultivation methods. Both of the determination coefficients (R2) of calibration and validation sets were above 0.90, root mean square error of estimation (RMSEE), root mean squared error of crossvalidation (RMSECV) and RMSEP were below 1.65. It demonstrated that the models showed good linear correlation and prediction accuracy. It provides the reference for the popularization and application of infrared spectroscopy in the field of TCM.
Key words: Fourier transform infrared spectroscopy, partial least squares discriminant analysis, orthogonal signal correctionpartial least squares, cultivation methods, Gentiana rigescens
中藥在預(yù)防、治療疾病和保障人類健康方面已顯現(xiàn)出巨大的實(shí)際應(yīng)用潛力,質(zhì)量穩(wěn)定可控是保證中藥安全有效的重要前提(Liu et al, 2015)。中藥品種繁多,化學(xué)成分十分復(fù)雜,且易受產(chǎn)地、栽培方式、加工、污染(重金屬、農(nóng)藥、細(xì)菌、真菌等)、儲藏等(Liu et al, 2008; Zhang et al, 2012)諸多因素的影響,其中栽培方式與藥材質(zhì)量關(guān)系緊密。Wang et al(2012)的研究顯示采用條播能顯著提高太子參質(zhì)量。Singh et al(2008)研究表明銀杏通過種子繁殖生長緩慢,扦插是其較為合適的繁殖方式。Saglam et al(2004)對香蜂花育苗移栽和扦插繁殖兩種方式的比較研究發(fā)現(xiàn),采用育苗移栽(行株距40 cm×20 cm)香蜂花產(chǎn)量(11 167 kg·hm2)在第二年達(dá)最高。因此,選擇合理栽培方式有利于從源頭上保證中藥質(zhì)量,促進(jìn)中藥的規(guī)?;彤a(chǎn)業(yè)化發(fā)展。
在中藥質(zhì)量研究中,主要采用DNA條形碼技術(shù)、氣相色譜—質(zhì)譜(GCMS)法、超高效液相色譜—串聯(lián)質(zhì)譜(UPLCMS/MS)法、紅外光譜(IR)法、毛細(xì)管電泳技術(shù)(CE)、高效液相色譜—紫外/熒光/蒸發(fā)光散射檢測法(HPLCUV/FD/ELSD)、液相色譜—核磁共振(LCNMR)聯(lián)用技術(shù)等(Jiang et al, 2010; Hu et al, 2014; Liang et al, 2009; Pan et al, 2015)。近年來,紅外光譜以簡便快速、樣品無需復(fù)雜預(yù)處理、可同時測定多組分、能反映分析物的整體結(jié)構(gòu)信息等優(yōu)勢,(Botelho et al, 2015; Hirri et al, 2015; Musingarabwi et al, 2015; SzymanskaChargot et al, 2015)在石油化工(Wang et al, 2015; dos Santos Grasel et al, 2016)、生命科學(xué)(Abramovich & Shulzinger, 2015)、農(nóng)產(chǎn)品(Yu et al, 2015; RasinesPerea et al, 2015)、燃料與能源(Mazivila et al, 2015; Odeh, 2015; Bekiaris et al, 2015)、醫(yī)藥(Zhao et al, 2014; Chavez et al, 2015; Chadha et al, 2015; Rohaeti et al, 2015)等領(lǐng)域的應(yīng)用受到普遍重視。
2015年版《中國藥典》收載的滇龍膽(Gentiana rigescens)為龍膽科(Gentianaceae)龍膽屬多年生、須根肉質(zhì)草本植物,藥用部位為根及根莖,其味苦、性寒,歸肝、膽經(jīng),具有清熱燥濕、瀉肝膽火之功效,用于驚風(fēng)抽搐、濕熱黃疸、脅痛口苦等病癥的治療(國家藥典委員會, 2015)?,F(xiàn)代植物化學(xué)及藥理研究發(fā)現(xiàn)滇龍膽含有豐富的環(huán)烯醚萜苷和裂環(huán)烯醚萜苷,其中龍膽苦苷、馬錢苷酸、獐牙菜苦苷和當(dāng)藥苷是其主要的化學(xué)成分。該類物質(zhì)具有抗細(xì)胞凋亡、抗炎鎮(zhèn)痛、預(yù)防肝衰竭、利膽、抗真菌等多種功效(Lian et al, 2010; Zhao et al, 2015; Xu et al, 2007; Xu et al, 2009),是中藥龍膽質(zhì)量評價(jià)的主要指標(biāo)(Pan et al, 2015; Wang et al, 2012; Pan et al, 2015)。由于野生生境日益惡化和人類無節(jié)制采挖,滇龍膽野生資源量銳減,已被列為國家重點(diǎn)保護(hù)野生藥材物種(三級),云南10個重要瀕危藥用植物之一(李智敏等, 2009)。因此,在云南省部分縣市興起了滇龍膽的人工栽培,且已形成一定規(guī)模。而人工栽培滇龍膽因病害侵染、自身繁殖缺陷(種子萌發(fā)率低、分蘗繁殖能力低)、復(fù)合種植模式、栽培技術(shù)等因素影響,導(dǎo)致產(chǎn)量、質(zhì)量參差不齊。目前,有關(guān)滇龍膽栽培方式(移栽、條播和撒播)篩選的研究尚未見報(bào)道。本研究采用傅里葉變換紅外光譜結(jié)合化學(xué)計(jì)量學(xué)對條播、撒播、扦插、剪根和剪枝等栽培方式的滇龍膽樣品進(jìn)行分析,篩選最適合滇龍膽生長的栽培方式,為中藥滇龍膽的規(guī)范化栽培提供科學(xué)依據(jù)。
1材料與方法
1.1 材料
2012年11月采自臨滄市永德縣云南省農(nóng)業(yè)科學(xué)院藥用植物研究所滇龍膽種植示范基地(99°42′21.50″ E,24°12′29.40″ N,海拔2 347 m),涉及條播、撒播、剪枝后移栽、扦插和剪根后移栽5種栽培方式的29份滇龍膽樣品(種植年限均為3 a),樣品信息詳見表1。所有樣品經(jīng)云南省農(nóng)業(yè)科學(xué)院藥用植物研究所金航研究員鑒定為龍膽科龍膽屬植物滇龍膽(Gentiana rigescens)的蘆頭。
1.2 儀器與試劑
Frontier型傅里葉變換紅外光譜儀(Perkin Elmer公司),配備DTGS檢測器;YP2壓片機(jī)(上海山岳科學(xué)儀器有限公司);CS101型電熱鼓風(fēng)干燥箱(浙江余姚溫度儀表四廠);日本島津液相色譜儀(LC30AD),配備二極管陣列紫外檢測器;MilliQ超純水系統(tǒng)(美國Millipore公司)。
對照品馬錢苷酸、龍膽苦苷、獐牙菜苦苷、當(dāng)藥苷均購自中國食品藥品檢定研究院(批號依次為111865201403,110770201313,10785201203,111742201101);甲醇、甲酸和乙腈均為色譜純,KBr為分析純,水為自制超純水。
1.3 樣品制備及光譜采集
不同栽培方式的滇龍膽樣品干燥(60 ℃)磨碎后裝于密封袋。精密稱取樣品粉末0.001 5 g與KBr粉末0.100 0 g放入瑪瑙研缽中,充分研磨、混勻后經(jīng)YP2壓片機(jī)制成厚度均勻的透明KBr薄片;儀器預(yù)熱30 min,扣除空白KBr背景后測定光譜,光譜掃描范圍為4 000~400 cm1,累計(jì)掃描次數(shù)16次,分辨率為4 cm1,每個樣品平行制備5份樣品片,共采集5種栽培方式的滇龍膽樣品譜圖145個。
1.4 色譜條件
采用島津Shimpack XRODS III(75×2.0 mm, 1.6 μm)色譜柱,流動相A為0.1%甲酸,流動相B為乙腈,流速為0.35 mL·min1,柱溫為40 ℃,進(jìn)樣量為2.00 μL,檢測波長為248 nm;梯度洗脫程序?yàn)?~0.01 min 23% B;0.01~7.50 min 23%~39% B;7.50~17.00 min 39%~63% B;17.00~19.00 min 63%~87% B和19.00~20.00 min 85% B。
2結(jié)果與分析
2.1 紅外光譜分析
圖1顯示,不同栽培方式滇龍膽樣品在3 395、2 925、2 854、1 735、1 613、1 423、1 267、1 070、928 cm1處有多個共有峰。3 395 cm1附近較寬的譜帶吸收峰為OH的伸縮振動峰,1 423 cm1為OH的面內(nèi)彎曲振動吸收峰,2 925和2 854 cm1為亞甲基中CH的反對稱和對稱伸縮振動吸收峰,1 735 cm1為羰基C=O伸縮振動吸收峰,1 613和1 070 cm1附近的強(qiáng)吸收峰為龍膽苦苷的主要吸收峰(楊紅霞等, 2014),分別代表芳環(huán)中C=C骨架振動吸收峰和糖環(huán)中COC伸縮振動吸收峰。
從整體上看,盡管在峰形、峰位和峰強(qiáng)上有一定差異,但直接通過譜圖難以鑒別不同栽培方式下的滇龍膽樣品,因此,需借助化學(xué)計(jì)量學(xué)方法建立判別模型。PLSDA是一種基于PLS的有監(jiān)督模式判別方法,能對多維復(fù)雜數(shù)據(jù)進(jìn)行降維,提取特征信息,該法以二進(jìn)制的類別變量作為Y變量,X變量為預(yù)測變量,預(yù)先將研究對象按原始類別屬性進(jìn)行分組,再建立判別分析模型(PérezEnciso & Tenenhaus, 2003)。原始光譜經(jīng)自動基線校正、自動平滑、縱坐標(biāo)歸一化和小波去噪預(yù)處理后進(jìn)行PLSDA分析,結(jié)果見圖2。從該圖2可以看出,(1)同一栽培方式的滇龍膽樣品能很好的聚在一起,相同栽培方式下的滇龍膽樣品可能在化學(xué)成分種類或含量上相似;(2)條播和撒播兩種栽培方式下的滇龍膽樣品相對聚集,扦插、剪枝和剪根后移栽的滇龍膽樣品距離較近,條播和撒播(播種)的滇龍膽樣品與扦插、剪枝和剪根(移栽)的滇龍膽樣品距離較遠(yuǎn)。
2.2 四種主要成分含量測定
參照2015年版《中國藥典》龍膽藥材中龍膽苦苷的含量測定方法,得標(biāo)準(zhǔn)品及樣品色譜圖(圖3)。以馬錢苷酸、獐牙菜苦苷、龍膽苦苷和當(dāng)藥苷為對照,以峰面積為縱坐標(biāo)(y),溶液濃度為橫坐標(biāo)(x)繪制標(biāo)準(zhǔn)曲線。
計(jì)算回歸方程:y馬錢苷酸=7 115.122 2 x+24.800 7,R2=0.999 9; y獐牙菜苦苷=7 976.867 9 x+25.167 3, R2=
0.999 9;y龍膽苦苷=5 830.281 7 x+164.995 3,R2=0.999 9;y當(dāng)藥苷=4 250.239 6 x-2.056 9,R2=0.999 9。
稱取滇龍膽粉末0.025 0 mg置于具塞試管中,加80%甲醇2.50 mL,30 ℃下超聲提取40 min,按“1.4”項(xiàng)下色譜條件進(jìn)行測定,每個樣品平行測定3次,根據(jù)標(biāo)準(zhǔn)曲線回歸方程計(jì)算各栽培方式下四種主要成分的平均含量(表2)。由表2可知,扦插苗根中馬錢苷酸和龍膽苦苷含量最低,分別為(1.06 ± 0.54)、(26.88 ± 4.47) mg
·g1,通過剪枝處理后移栽的滇龍膽中二者含量最高,分別為(4.24 ± 2.05)、(39.20 ± 0.57) mg
·g1;除剪根后移栽的滇龍膽外,剪枝后移栽的滇龍膽中馬錢苷酸和龍膽苦苷含量顯著高于其他栽培方式下的滇龍膽(P<0.05,下同),四種活性成分總含量也顯著高于其他栽培方式下的滇龍膽;不同栽培方式滇龍膽中獐牙菜苦苷含量差異不顯著(P>0.05,下同)。
2.3 OSCPLS模型的建立和分析
將29個滇龍膽樣品的145個原始紅外光譜數(shù)據(jù)經(jīng)OMINIC 8.2軟件進(jìn)行自動基線校正、自動平滑、縱坐標(biāo)歸一化預(yù)處理,并計(jì)算得其平均光譜數(shù)據(jù),將光譜數(shù)據(jù)導(dǎo)入Matlab中通過KennardStone法篩選校正集 (2/3,20)和驗(yàn)證集(1/3,9); 用正交信號校正(Orthogonal signal correction, OSC)對光譜進(jìn)行處理,濾除與Y變量不相關(guān)的正交主成分,簡化數(shù)據(jù)結(jié)構(gòu),提高模型的可解釋性(Niazi & Azizi, 2008; Yu & MacGregor, 2004)。建模時,主成分?jǐn)?shù)(Number of principal component, PCs)的選擇對模型的優(yōu)劣有重要影響,PCs太少,模型預(yù)測能力差;PCs太多,則易出現(xiàn)過擬合現(xiàn)象。PCs的確定取決于RMSECV和R2,RMSECV越小,R2越接近1時的PCs為最優(yōu)(Pande & Mishra, 2015);RMSEP越小,模型預(yù)測效果越好。分別以29個樣品中馬錢苷酸、獐牙菜苦苷、龍膽苦苷和當(dāng)藥苷為Y變量,基于SIMCAP+ 13.0軟件建立OSCPLS模型,并用Origin 9.0軟件作圖(圖4)。按照上述PCs選取原則,馬錢苷酸、獐牙菜苦苷、龍膽苦苷和當(dāng)藥苷的含量預(yù)測模型最優(yōu)PCs分別為3、8、3和4,校正集R2依次是0.91、1.00、0.95和0.98,RMSEE和RMSECV均小于1.65,驗(yàn)證集R2依次是0.94、0.97、0.99和1.00,RMSEP分別為0.65、0.04、1.21和0.02,其中R2均較接近1,表明紅外預(yù)測值與參考值(液相數(shù)據(jù))較接近,RMSEE、RMSECV和RMSEP均較小,該模型能對不同栽培方式滇龍膽中馬錢苷酸、獐牙菜苦苷、龍膽苦苷和當(dāng)藥苷四種主要成分含量進(jìn)行很好的預(yù)測。
3討論
本研究結(jié)果表明播種(條播和撒播)和移栽(扦插、剪枝和剪根)滇龍膽距離較遠(yuǎn),差異較大,其中,播種屬于有性繁殖,移栽為無性繁殖。肖承鴻等(2013)的研究顯示,有性繁殖和無性繁殖的太子參次生代謝產(chǎn)物太子參環(huán)肽B含量存在顯著差異。據(jù)此可推測,滇龍膽樣品距離較遠(yuǎn)可能是因繁殖方式不同而引起的化學(xué)成分或含量上的差異。
本研究栽培方式影響滇龍膽的質(zhì)量,不同栽培方式的滇龍膽中龍膽苦苷、馬錢苷酸、獐牙菜苦苷和當(dāng)藥苷含量有差異,從這四種主要活性成分的總含量來看,剪枝>剪根>撒播>條播>扦插,即剪枝后移栽的滇龍膽品質(zhì)較佳。Marasha et al(2013)的研究表明剪枝影響藥用植物Athrixia phylicoides的產(chǎn)量、化學(xué)組成和生物活性,影響則有利有弊。Maudu(2010) 研究指出剪枝使Athrixia phylicoides中總多酚含量降低,而未剪枝和不同程度剪枝處理對單寧酸和總抗氧化物含量影響不顯著。Andersen(2001)的研究表明剪根處理對歐洲山毛櫸的生長和成活率有影響,剪根程度加重,根系受損傷加大,幼苗死亡率增加,歐洲山毛櫸不宜進(jìn)行剪根處理。綜上所述,同一栽培方式對不同植物的影響有差異,需根據(jù)植物自身特點(diǎn),篩選合適的栽培方式;剪枝和剪根后移栽還應(yīng)考慮剪枝程度、剪根程度以及苗木的成活率。移栽成活率、剪枝和剪根程度、栽培環(huán)境等因素對滇龍膽質(zhì)量的影響還有待深入研究。具體實(shí)踐中,還應(yīng)考慮不同栽培方式的勞作強(qiáng)度,減輕農(nóng)民勞作強(qiáng)度具有重要現(xiàn)實(shí)意義。
此外,采用FTIR結(jié)合OSCPLS建立了滇龍膽中四種主要成分的定量分析模型,模型相關(guān)性和預(yù)測效果好,基于OSCPLS法能建立準(zhǔn)確的滇龍膽主要成分含量紅外預(yù)測模型,可為大批量滇龍膽中主要成分的含量測定提供一種新的方法,同時也為紅外光譜分析在中藥領(lǐng)域的推廣應(yīng)用提供依據(jù)。
參考文獻(xiàn):
ABRAMOVICH A, SHULZINGER A, 2015. Diagnostic and analysis of human sperm characteristics using Fourier transform infrared spectroscopy [J]. Open J Urol, 5(6): 97-101.
ANDERSEN L, 2001. Survival and growth of Fagus sylvatica seedlings rootpruned prior to transplanting under competitive conditions [J]. Scand J For Res, 16(4): 318-323.
BEKIARIS G, TRIOLO JM, PELTRE C, et al, 2015. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform midinfrared photoacoustic spectroscopy [J]. Bioresour Technol, 197: 475-481.
BOTELHO BG, REIS N, OLIVEIRA LS, et al, 2015. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using midinfrared spectroscopy and PLSDA [J]. Food Chem, 181: 31-37.
CHADHA R, HANEEF J, 2015. Near infrared spectroscopy: effective tool for screening of polymorphs in pharmaceuticals [J]. Appl Spectrosc Rev, 50(7): 565-583.
CHAVEZ PF, SACR PY, DE BLEYE C, et al, 2015. Active content determination of pharmaceutical tablets using near infrared spectroscopy as process analytical technology tool [J]. Talanta, 144: 1352-1359.
China Pharmacopoeia, 2015. Chinese pharmacopoeia of the Peoples Republic of China (Part Ⅰ). Beijing: China Medical Science Press. [國家藥典委員會,2015. 中華人民共和國藥典(一部) [M]. 北京: 中國醫(yī)藥科技出版社.]
DOS SANTOS GRASEL F, FERRO MF, WOLF CR, 2016. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis [J]. Spectrochimica Acta Pt AMol Biol, 153: 94-101.
HIRRI A, BASSBASI M, PLATIKANOV S, et al,2016. FTIR spectroscopy and PLSDA classification and prediction of four commercial grade virgin olive oils from Morocco [J]. Food Anal Method, 9(4): 974-981.
HU Y, KONG W, YANG X, et al,2014. GCMS combined with chemometric techniques for the quality control and original discrimination of Curcumae longae rhizome: analysis of essential oils [J]. J Sep Sci, 37(4): 404-411.
JIANG Y, DAVID B, TU P, et al, 2010. Recent analytical approaches in quality control of traditional Chinese medicines—a review [J]. Anal Chim Acta, 657(1): 9-18.
LI ZM, LIU L, LI WY, et al, 2009. Progress on research and development of G. rigescens as a raw material [J]. J Yunnan Univ (Nat Sci Ed), (S1): 485-487. [李智敏, 劉莉, 李晚誼, 等, 2009. 滇龍膽的藥用資源研究與開發(fā)進(jìn)展 [J]. 云南大學(xué)學(xué)報(bào)(自然科學(xué)版), (S1): 485-487.]
LIAN LH, WU YL, WAN Y, et al, 2010. Antiapoptotic activity of gentiopicroside in Dgalactosamine/lipopolysaccharideinduced murine fulminant hepatic failure [J]. Chemboil Inter, 188(1): 127-133.
LIANG X, JIN Y, WANG Y, et al, 2009. Qualitative and quantitative analysis in quality control of traditional Chinese medicines [J]. J Chromatogr A, 1216(11): 2033-2044.
LIU D, LI YG, XU H, et al, 2008. Differentiation of the root of cultivated ginseng, mountain cultivated ginseng and mountain wild ginseng using FTIR and twodimensional correlation IR spectroscopy [J]. J Mol Struct, 883: 228-235.
LIU SH, CHUANG WC, LAM W, et al, 2015. Safety surveillance of traditional Chinese medicine: current and future [J]. Drug Safety, 38(2): 117-128.
MARASHA N, MARIGA IK, NGEZIMANA W, et al, 2013. Effect of pruning on carbohydrate dynamics of herbal and medicinal plant species: prospects leading to research on the influence of pruning on productivity and biochemical composition of bush tea (Athrixia phylicoides DC) [J]. Afr J Agr, 8(27): 3528-3533.
MAUDU ME, 2010. Chemical profiles of bush tea (Athrixia Phylicoides DC.) at different phenological stages and as influenced by pruning and growth regulators [D]. Limpopo: University of Limpopo.
MAZIVILA SJ, DE SANTANA FB, MITSUTAKE H, et al, 2015. Discrimination of the type of biodiesel/diesel blend (B5) using midinfrared spectroscopy and PLSDA [J]. Fuel, 142: 222-226.
MUSINGARABWI DM, NIEUWOUDT HH, YOUNG PR, et al,2016. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fouriertransform infrared spectroscopy and multivariate data analysis [J]. Food Chem, 190: 253-262.
NIAZI A, AZIZI A, 2008. Orthogonal signal correctionpartial least squares method for simultaneous spectrophotometric determination of nickel, cobalt, and zinc [J]. Turk J Chem, 32(2): 217-228.
ODEH AO, 2015. Oualitative and quantitative ATRFTIR analysis and its application to coal char of different ranks [J]. J Fuel Chem Technol, 43(2): 129-137.
PAN Y, SHEN T, ZHANG J, et al, 2015. Simultaneous determination of six index constituents and comparative analysis of four ethnomedicines from genus Gentiana using a UPLCUVMS method [J]. Biomed Chromatogr, 29(1): 87-96.
PAN Y, ZHANG J, SHEN T, et al,2015. Liquid chromatography tandem mass spectrometry combined with Fourier transform midinfrared spectroscopy and chemometrics for comparative analysis of raw and processed Gentiana rigescens [J]. J Liq Chromatogr Relat Technol, 38(14): 1407-1416.
PAN Y, ZHANG J, SHEN T, et al, 2015. Optimization of ultrasonic extraction by response surface methodology combined with ultrafast liquid chromatographyultraviolet method for determination of four iridoids in Gentiana rigescens [J]. J Food Drug Anal, 23(3): 529-537.
PANDE R, MISHRA HN, 2015. Fourier transform nearinfrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds (Vigna radiata) [J]. Food Chem, 172: 880-884.
PREZENCISO M, TENENHAUS M, 2003. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLSDA) approach [J]. Hum Genet, 112(5-6): 581-592.
RASINESPEREA Z, PRIETOPEREA N, ROMERAFERNNDEZ M, et al, 2015. Fast determination of anthocyanins in red grape musts by Fourier transform midinfrared spectroscopy and partial least squares regression [J]. Eur Food Res Technol, 240(5): 897-908.
ROHAETI E, RAFI M, SYAFITRI UD, et al, 2015. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar [J]. Spectrochim Acta Pt AMol Biol, 137: 1244-1249.
SAGLAM C, ATAKISI I, TURHAN H, et al, 2004. Effect of propagation method, plant density, and age on lemon balm (Melissa officinalis) herb and oil yield [J]. New Zeal J Crop Hort, 32(4): 419-423.
SINGH B, KAUR P, SINGH RD, et al,2008. Biology and chemistry of Ginkgo biloba [J]. Fitoterapia, 79(6): 401-418.
SZYMANSKACHARGOT M, CHYLINSKA M, KRUK B, et al, 2015. Combining FTIR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development [J]. Carbohyd Polym, 115: 93-103.
WANG L, LIU E, CHENG Y, et al, 2015. Novel methodologies for automatically and simultaneously determining BTEX components using FTIR spectra [J]. Talanta, 144: 1104-1110.
WANG YM, XU M, WANG D, et al, 2012. Review on “LongDan”, one of the traditional Chinese medicinal herbs recorded in Chinese Pharmacopoeia [J]. Nat Prod Bioprospect, 2(1): 1-10.
WANG ZP, CHEN JX, YU BQ, et al, 2012. Effects of soil improvement and planting pattern on the yield of Radix Pseudostellariae [J]. Med Plant, 3(9): 1-2, 5.
XIAO CH, ZHOU T, JIANG WK, et al, 2013. Dynamic accumulation of biomass and secondary metabolites of Pesudostellaria heterophylla in Guizhou Province [J]. Chin Pharm J, 48(16): 27-32. [肖承鴻, 周濤, 江維克, 等, 2013. 貴州太子參生物量與次生代謝物積累的動態(tài)變化分析 [J]. 中國藥學(xué)雜志, 48(16): 27-32.]
XU M, WANG D, ZHANG YJ, et al, 2007. Dammarane triterpenoids from the roots of Gentiana rigescens [J]. J Nat Prod, 70(5): 880-883.
XU M, YANG CR, ZHANG YJ, 2009. Minor antifungal aromatic glycosides from the roots of Gentiana rigescens (Gentianaceae) [J]. Chin Chem Lett, 20(10): 1215-1217.
YANG HX, MA F, DU YZ, et al, 2014. Study on the Tibetan medicine Swertia mussotii Franch and its extracts by Fourier transform infrared spectroscopy [J]. Spectrosc Spectr Anal, 34(11): 2973-2977. [楊紅霞, 馬芳, 杜玉枝, 等, 2014. 藏藥川西獐牙菜及其不同提取物的紅外光譜分析 [J]. 光譜學(xué)與光譜分析, 34(11): 2973-2977.]
YU H, MACGREGOR JF, 2004. Post processing methods (PLSCCA): simple alternatives to preprocessing methods (OSCPLS) [J]. Chemometr Intell Lab Syst, 73(2): 199-205.
YU XZ, LI QH, SUN DJ, et al, 2015. Determination of the peroxide value of edible oils by FTIR spectroscopy using polyethylene films [J]. Anal Method, 7(5): 1727-1731.
ZHANG J, WIDER B, SHANG H, et al, 2012. Quality of herbal medicines: challenges and solutions [J]. Complement Ther Med, 20(1): 100-106.
ZHAO YL, ZHANG J, JIN H, et al,2015. Discrimination of Gentiana rigescens from different origins by Fourier transform infrared spectroscopy combined with chemometric methods [J]. J AOAC Int, 98(1): 22-26.
ZHAO YL, ZHANG J, YUAN TJ, et al,2014. Discrimination of wild Paris based on near infrared spectroscopy and high performance liquid chromatography combined with multivariate analysis [J]. PLoS ONE, 9(2): e89100.