• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil☆

    2017-05-28 08:50:24ShuangshuangTianZhongxinTanAlfredaKasiulienPingAi

    Shuangshuang Tian ,Zhongxin Tan ,*,Alfreda Kasiulien?,Ping Ai

    1 College of Resources and Environment,Huazhong Agricultural University,Wuhan 430070,China

    2 Waste Science and Technology,Department of Civil,Environmental and Natural Resources Engineering,Lule? University of Technology,SE-97187 Lule?,Sweden

    3 College of Engineering,Huazhong Agricultural University,Wuhan 430070,China

    1.Introduction

    In order to address the challenges of global climate change and to ensure the development of sustainable agriculture,biochar research is becoming increasingly important.Biochar is generated from biomass pyrolyzation under anoxic conditions,has a stable nature and contains more than 50%of carbon[1].Returning biochar to the soil can improve chemical and physical properties of the soil because biochar has intrinsic low viscosity and density,which abates bulk density and promotes soil softness[2–4].In addition,biochar can retain soil moisture,improve aeration and provide carbon,as well as energy and mineral nutrition for microorganisms[5–7].In the long term,biochar returned to the soil can reduce CO2,CH4and N2O emissions[8–10]and also increase fertility through an increase in the biochemical-conversion processes in the soil[11–13].It was also reported that biochar improves absorption in plants,which can promote growth and ripening of crops[14–16].

    Although returning biochar to the soil has many bene fits,biochar's reputation has been tainted by the presence of poor quality,commercially produced products.Biochar quality is affected by the following preparation conditions:when the pyrolysis temperature increased from 300 °C to 1000 °C,biochar yield decreased from 50.1%to 26.2%;when the temperature was less than 500°C,biochar N content increased from 1.55%to 1.86%;when the temperature was more than 500 °C,N content decreased to 1.23%[29–31].Mohanty[32]studied the effect of heating rate(450 °C·min?1and 2 °C·min?1)on the biochar nutrient elements(N,P and K)and obtained results,such as the content of N(0.9%of 450 °C·min?1< 0.8%of 2 °C·min?1),the content of P(3.6 g·kg?1of 450 °C·min?1> 3.5 g·kg?1of 2 °C·min?1)and the content of K(76.5 g·kg?1of 450 °C·min?1> 75.5 g·kg?1of 2 °C·min?1).When the pyrolysis gas(5%O2+Ar,5%CO2+Ar)is different,N species in the pyrolysis process are also changed;O2can promote the formation of HCN,NO,and HNCO,while CO2can inhibit the generation of HCN and HNCO[33].To date,few studies on the nutrients generated by biochar preparation have been conducted.In this article,the effects of a N2and CO2atmosphere on the pH,N,P,K and metal elements of biochar were systemically studied in order to provide better theoretical guidance for biochar preparation.

    2.Materials and Methods

    2.1.Feedstock

    Rice straw as raw biomass was obtained from a local farm at the Huazhong Agricultural University,Wuhan,China.

    2.2.Experimental setup

    Rice straw biochar was prepared using a fluidized bed pyrolysis furnace,as shown in Fig.1.The pyrolysis was performed at nine different temperatures:100 °C,150 °C,200 °C,250 °C,300 °C,350 °C,400 °C,500 °C,and 600 °C,both in CO2and N2atmospheres.In order to complete the reaction,the residence time was 40 min.

    Fig.1.Biochar preparation system.

    2.3.pH,acid and alkali functional groups and nutrients analysis

    pH:the pH of biochar was measured by adding biochar to deionized water in a mass ratio of 1:5.The solution was measured by a pH meter[24].

    Acid and alkali functional groups:Acid and alkali functional groups of biochar samples were determined using the Boehm's titration method:(1)A dried biochar sample(0.5 g)was mixed with 50 ml of a 0.05 mol·L?1solution of NaOH,which neutralizes all acidic groups including carboxyl,lactonic and phenolic groups;(2)A dried biochar sample(0.5 g)was mixed with 50 ml of a 0.1 mol·L?1solution of HCl,which neutralizes all basic groups including ketonic,pyronic,and chromenic groups;(3)The suspensions of biochar samples were shaken for 24 h,and all acidic groups were subsequently calibrated using 0.05 mol·L?1HCl with Methyl orange as indicator and all alkali groups were calibrated by using 0.1 mol·L?1NaOH to pH=7[34].

    Acidic functional groups:

    where:nis the amount of functional groups(mmol·g?1);Vis the volume(L);Cis the concentration(mmol·L?1);mis biocharquality(g)

    Nutrient elements:Total N content was determined by the semimicro Kjeldahl method[25].Total P content was measured using the Mo–Sb colorimeter and the contents of inorganic P and organic P were measured in accordance to the standardized method program[26].Total K content was assessed using inductively coupled plasma atomic emission spectrophotometer(ICP-AES)[27].The composition of different K species was determined by first washing biochar with water,NH4AC and HCl,and the K content of the solution was later measured by flame photometer[28].The content of trace metals in the biochar was determined by ICP-AES[27].

    2.4.Kinetic analysis

    In order to investigate biochar mass loss due to temperature,common kinetic equations such as the Elovich Eq.(1),two-constant Eq.(2)and the equation of different order kinetics(3)were used:

    whereyis the mass of biochar(g);Tis the temperature(K);Cis the constant coefficient of the equation;Dis the variable coefficient of the equation.By fitting three kinetic equations and comparing the coefficient of determination(R2)value,as given in Table 1,it can be concluded that the Eq.(3)of different order kinetics is more suitable for biochar mass loss evaluation.

    Table 1Effects of temperature and atmosphere of biochar preparation on the alkali metals' contents in the biochar solutions

    To determine the reaction order in the equation of different order kinetics,the reaction kinetics Eq.(4)was used as follows:

    During the straw pyrolysis process,kandTcan be calculated using Eqs.(6)and(7),respectively:

    For the general pyrolysis reaction,reaction activation energy(E)is not related to reaction temperature(T);thus,Eq.(7a)can be transformed into Eq.(7b):

    where:kis the reaction rate constant;α is the mass fraction;Mis the straw mass(g);Eis the reaction activation energy;Tis the reaction temperature(K);Ais the frequency factor;β is the heating rate(°C·min?1);R=8.314(J·mol?1·K?1).

    First,second and third order kinetics can be calculated using Eqs.(8),(9)and(10),respectively:

    Fig.2.Effects of N2 or CO2 on pH.

    3.Results and Discussion

    3.1.Changes of the biochar pH value in the N2 and CO2 atmospheres

    Changes in biochar pH influenced by the different pyrolysis atmospheres and temperatures are presented in Fig.2.As seen in Fig.2,biochar pH increased with rising temperature independent of the pyrolysis atmosphere.Thus,alkaline biochar could be used as a reliable tool for soil acidification reduction.When the temperature was below 350°C,the pH of the rice straw biochar was higher in the CO2atmosphere in comparison to the N2atmosphere.

    The content of alkali metals(Ca,K,Na and Mg)in the solutions from differently prepared biochar is presented in Table 2.It is clear from the table that metal content increased with rising temperature during biochar preparation.At higher pyrolysis temperatures,alkali metals in the produced biochar were more soluble in water and thus,more readily bioavail able.Therefore,another reason for rising pH values is that the aromatic degree of biochar increased along with the rising temperature,which caused the gradual increase of alkaline groups.The trends in Fig.3 identify the amount of acidic and alkaline functional groups in the biochar prepared under different working conditions.It can be observed that the difference between acidic and alkaline functional group amount below 350°C was smaller in the N2atmosphere,consequently the pH value was also lower.Meanwhile,biochar produced using CO2atmosphere exhibited a larger difference between acidic and alkaline functional group amount,hence the pH value was higher.However,when the reaction temperature rose above 350°C,the difference between acidic and alkaline functional group amount was not obviously different between the biochar produced under the CO2and N2atmospheres,so the pH values were the same.The mechanism of pH transformation can be shown schematically in Fig.4,according to the changed characteristics of functional groups and alkali metals.

    3.2.Biochar mass changes in the N2 and CO2 atmospheres

    Fig.5 shows the variation in straw quality resulting from straw pyrolysis.Initially,straw mass started to decrease because water evaporated at temperatures up to 200 °C.From 200 to 350 °C,cellulose and hemi-cellulose in the straw pyrolysed into gases,such as CO,CO2,etc.Straw also contains a significant amount of lignin and minerals,which can produce acetates during the pyrolysis.Consequently,acetate could promote the pyrolysis reaction itself[20,21].Above 350°C,the biocharmass decreased continuously,but the speed of the mass loss was very low.In the CO2atmosphere,the mass abruptly dropped because biochar gasification started to occur above 700°C(C+CO2→ 2CO).

    Table 2Alkali metal content in the solutions of differently prepared biochar(time of dissolution equilibrium–2 h)

    Identified reaction characteristics,such as temperature,atmosphere and products(Fig.5),enabled the calculation of the straw pyrolysis kinetics.The changes of biochar mass along with rising temperature were simulated using the aforementioned equation of the different order kinetics(3)as the most suitable for biochar mass loss evaluation(Table 1).First,second and third order kinetic equations were calculated and the results are presented in Fig.6.

    Fig.3.Effects of N2 or CO2 on the quantity of acid and alkali functional groups.

    Fig.4.The mechanism of pH transformation during biochar preparation(N2 and CO2).

    The equation of the first order kinetics was the most accurate for considering the mass loss regardless the N2and O2atmospheres during the pyrolysis.Via linear fitting from Fig.6,frequency factor(A)and activation energy(E)were obtained,and the kinetics equations for the different pyrolysis atmospheres are shown in Table 3.

    Fig.5.Effects of N2 or CO2 on mass loss with temperature.

    3.3.Effects of N2 or CO2 on nutrients(N,P and K)

    3.3.1.The mechanism of N transformation during biochar preparation

    Fig.7 shows the N percentage during biochar preparation.N percentage decreased with rising temperature regardless of the N2or CO2atmosphere.However,N was reduced quicker in the N2atmosphere in comparison to the CO2atmosphere,when the temperature was below 700°C.Therefore,if there is an intention to return biochar to the soil,from the perspective of nutrients and N in particular,the preparation of the biochar in a CO2atmosphere is more favorable.

    Fig.6.Straw mass loss simulated using different order kinetics equations.

    Under the N2or CO2atmosphere,the N percentage started to decrease starting at 150 °C,as cellulose began to degrade.From 250 °C to 500°C,the N percentage was reduced even more because of the pyrolysed cellulose,hemi-cellulose and lignin.In contrast,the N loss in the CO2atmosphere was lower than in the N2atmosphere because(i)the temperature at which N volatiles are formed is different in different atmospheres,and(ii)such compounds as NH3,HCN and NO are inhibited in the CO2atmosphere.As shown in Table 4,the temperatures at which NH3,HCN and NO are formed are lowest under the N2atmosphere compared with other atmospheres.The CO2atmosphere can inhibit the initiation of NH3,HCN and NO compounds,so more nitrogen will be retained in the biochar,which is advantageous when biochar is returned to the soil.According to the formation temperature of volatile N compounds(Table 4)and the trends for N loss(Fig.7),the migration and transformation mechanisms of nitrogen during the biochar preparation are shown in Fig.8.

    Table 3Frequency factor(A),activation energy(E)and kinetic equations for the biochar produced in the N2 and CO2 atmospheres

    Fig.7.Effect of N2 or CO2 on N.

    3.3.2.The mechanism of P transformation during biochar preparation

    The biochar's loss of P in the N2and CO2atmospheres under the different pyrolysis conditions is presented in Fig.9.The loss of P increases with rising temperature regardless of the N2or CO2atmosphere.The P loss in the N2atmosphere is higher than in the CO2atmosphere.For ambient temperature up to 250°C,the content of P in the N2atmosphere was almost 100%;from 250 to 300°C,the P percentage decreased to 79%and became stabile.However,the percentage of P loss in the CO2atmosphere was different from that in the N2atmosphere.Modest P loss in the CO2atmosphere is reduced very slowly from 100%to 88%with ambient temperature up to 600 °C.Next,from 700 °C,the speed of P loss sharply increased because the gasification of biochar occurred(C+CO2→2CO).

    Fig.8.The mechanism of N transformation in the process of biochar preparation(N2 and CO2).

    Phosphorus in the straw is comprised of two species:organic(OP)and inorganic(IP).It is difficult to volatilize IP at ambient temperature as it is an inert compound found in the straw,but when the temperature increases,inorganic P will be lost through volatilization.Organic P is unstable in the thermal environment and it is easily decomposed into phosphates and phosphorus oxides,etc.,which are released from the biochar without difficulty.The content of P in the N2atmosphere decreased much more than in the CO2atmosphere,where OP decomposed quicker in the N2atmosphere and the CO2inhibited the decomposition of OP,thus,the loss of P was lesser.The transformation trends of OP,IP and volatile P in the biochar are shown in Fig.10.Below 600°C,OP in the CO2atmosphere slowly decreased with temperature,but the OP in the N2atmosphere was reduced quicker;the content of IP increased along with rising temperature as a part of the OP was transferred into IP.According to the transformation of P,the conversion mechanism of IP,OP and volatile P is shown in Fig.11.Phosphorus is not lost below 250°C,but with rising temperature and the distribution of IP,OP andvolatile P,started to change because OP decomposes into IP and volatile P,such as P4O10.

    Table 4Effect of N2 or CO2 on the temperature at which NH3,HCN and NO form

    Fig.9.Effect of N2 or CO2 on P.

    Fig.12.Effect of N2 or CO2 on the K percentage of biochar.

    Fig.10.The distribution of IP,OP and volatile P with temperature.

    Fig.11.The mechanism of P transformation during biochar preparation(N2 and CO2).

    Fig.13.The distribution of K species with biochar temperature.

    3.3.3.The mechanism of K transformation during the biochar preparation process

    The trend of the percentage K loss in CO2and N2atmospheres under the different working temperatures is shown in Fig.12.The percentage of K decreases with rising temperature.In the N2atmosphere,when temperature was below 300°C,the K percentage was almost unchanged.A decline in K percentage was observed at higher temperatures and at 400°C,the K percentage in the biochar was 84%.Between 500 and 700°C,the K percentage was relatively steady and remained at 75%.In the CO2atmosphere,below 700°C,the K percentage decreased slower than in the N2atmosphere and at 600°C,the K percentage was 84%which was higher than in the N2atmosphere(75%).Therefore,a CO2atmosphere is better for keeping K in the biochar compared with a N2atmosphere.Specifically,biochar created in a CO2atmosphere produces better results when returned to soil.

    Fig.14.The mechanism of K transformation in the process of biochar preparation(N2 and CO2).

    The transformation trend of different K species along with increasing temperature is shown in Fig.13.Below 250°C,total K remained almost unchanged,regardless of the different atmospheres.From 250°C up to 700°C,the biochar K was mainly in the water soluble K(WSK)form[22].Water soluble components can be transformed into the organic K(OK),silicate K(SK)and volatile K(VK)such as KCl,KOH and K2SO4[23]and volatiles can escape from the biochar.Biochar obtained using CO2atmospheres contained higher contents of K below 700°C,which is better for returning biochar to soil.According to the trends presented in Fig.13,the transformation mechanism of K species is shown in Fig.14.Below 500°C,the WSK transformed into OK,(e.g.R-COOK and VK).From 500 °C up to 700 °C,OK transformed into VK and SK.The transformation steps are shown in Fig.14.

    3.4.Effects of N2 or CO2 on the metal elements in the biochar preparation

    The trends ofmetal(Na,Ca,Mg,Al,Cu,Mn,Fe and Zn)content in the biochar prepared using different atmospheres are presented in Fig.15.In the N2atmosphere,metal content increased with rising temperature because the mass of biochar was reduced.Metal content changes in the CO2atmosphere were similar to those in the N2atmosphere,but only up to 700 °C.From 700 °C to 900 °C,metal content in the CO2atmosphere was abruptly reduced because gasification of the biochar occurred(C+CO2→2CO).Changes in the metal content can be described as a three-step process:(i)below 300°C,metal content in the biochar changes slowly;(ii)from 300 to 500°C,metal content rapidly increases because the straw mass is being reduced with the onset of the pyrolysis;(iii)from 500 °C to 700 °C,metal content in the biochar changes very slowly because the biochar mass is being reduced at a slow pace.

    Both in the N2and CO2atmospheres,content of Na varies widely because sodium is mainly in volatile compounds,which are easily released from the biochar.Contents of Ca and Mg are more stable compared to Na because both Ca and Mg exhibit+II valence state;thus,it is easier to bond with C or Si and be retained in the biochar.There were no obvious differences among the trends of Al,Cu,Mn,Fe and Zn contents,and all the elements of Al,Cu,Mn,Fe and Zn are better enriched in the biochar.In sum,most of the metal elements are very well enriched in the biochar,which is beneficial for returning biochar to soil and to maintain soil balance with respect to metal elements.

    4.Conclusions

    Proper biochar preparation method is the key for the successful return of biochar to soil since nutrient loss occurs easily during preparation.Several conclusions can be drawn from the results of this study with regard to the biochar preparation.(i)The pH of biochar is always alkaline no matter in what atmosphere the pyrolysis is performed and this is beneficial for soil acidity reduction.(ii)The best temperature range for biochar preparation is from 350°C to 450°C,as macronutrient(N,P and K)loss is reduced,and the CO2atmosphere is more favorable than the N2atmosphere.(iii)Metal content in the biochar is the highest at a temperature range from 350 °C to 450 °C.(iv)The comparison of pH trends,changes in mass,nutrients and metals indicates that the most suitable temperature for biochar preparation is 350°C,and the CO2atmosphere is more favorable.

    Fig.15.Effects of N2 or CO2 on the metal contents of biochar.

    [1]J.Lehmann,J.Gaunt,M.Rondon,Bio-char sequestration in terrestrial ecosystems—A review,Mitig.Adapt.Strat.Gl.11(2006)403–427.

    [2]A.Masulili,W.H.Utomo,M.S.Syechfani,Rice husk bio-char for rice based cropping system in acid soil 1.The characteristics of rice husk bio-char and its influence on the properties of acid sulfate soils and rice growth in west Kalimantan,Indonesia,J.Agric.Sci.2(2010)39–47.

    [3]M.Yamato,Y.Okimori,I.F.Wibowo,Effects of the application of charred bark ofAcacia mangiumon the yield of maize,cowpea,peanut and soil chemical properties in south Sumatra,Indonesia,Soil Sci.Plant Nutr.52(2006)489–495.

    [4]S.Yoshizawa,S.Tanaka,M.Ohata,Proliferation effect of aerobic microorganisms during composting of rice bran by addition of biomass charcoal,Proceedings of the International Agrichar Conference,Terrigal NSW,Australia 2007,pp.26–27.

    [5]D.D.Warnock,J.Lehmann,T.W.Kuyper,Mycorrhizal responses to bio-char in soil concepts and mechanisms,Plant Soil300(2007)9–20.

    [6]M.Saito,T.Marumoto,Inoculation with arbuscular mycorrhizal fungi:The status quo in Japan and the future prospects,Plant Soil244(2002)273–279.

    [7]J.Meng,W.M.Zhang,S.B.Wang,Z.J.Xu,W.F.Chen,Developments and prospect of carbonization and returning technology of agro-forestry residue,J.Shenyang Agric.Univ.42(2011)387–392.

    [8]M.Rondon,J.Ramirez,J.Lehmann,Charcoal additions reduce net emissions of greenhouse gases to the atmosphere,Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration,2005,March 21–24,Baltimore,MD 2005,p.208.

    [9]J.Lehmann,S.Joseph,Bio-Char for Environmental Management:Science and Technology,Earthscan Publications Ltd,London,2009.

    [10]K.A.Spokas,W.C.Koskinen,J.M.Baker,D.C.Reicosky,Impacts of wood-chip bio-char additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil,Chemosphere77(2009)574–581.

    [11]B.Glaser,J.Lehmann,W.Zech,Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-A review,Biol.Fertil.Soils35(2002)219–230.

    [12]C.Steiner,B.Glaser,W.Teixeira,Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal,J.Plant Nutr.Soil Sci.171(2008)893–899.

    [13]B.Liang,J.Lehmann,D.Solomon,Black carbon increases cation exchange capacity in soils,Soil Sci.Soc.Am.J.70(2006)1719–1730.

    [14]D.A.Wardle,O.Zackrisson,M.C.Nilsson,The charcoal effect in Boreal forests:Mechanisms and ecological consequences,Oecologia115(1998)419–426.

    [15]M.W.I.Schmidt,A.G.Noack,Black carbon in soils and sediments:analysis,distribution,implications,and current challenges,Glob.Biogeochem.Cycles14(2000)777–793.

    [16]B.Glaser,L.Haumaier,G.Guggenberger,The “Terra Preta”phenomenon:A model for sustainable agriculture in the humid tropics,Naturwissenschaften88(2001)37–41.

    [17]F.J.Tian,B.Q.Li,Y.Chen,C.Z.Li,Formation of NOxprecursors during the pyrolysis of coal and biomass.Part V.Pyrolysis of a sewage sludge,Fuel81(2002)2203–2208.

    [18]Q.Q.Ren,C.S.Zhao,NOxand N2O precursors from biomass pyrolysis:Nitrogen transformation from amino acid,Environ.Sci.Technol.46(2012)4236–4240.

    [19]Z.H.Wang,Research on Form Transformation and Releasing Regulation of Fuel-N during the Pyrolysis and Gasification(Ph.D.Dissertation)Huazhong University of Science and Technology,Wuhan,2011.

    [20]H.Zhang,R.Xiao,D.Wang,G.He,S.Shao,J.Zhang,Z.Zhong,Biomass fast pyrolysis in a fluidized bed reactor under N2,CO2,CO,CH4and H2atmospheres,Bioresour.Technol.102(2011)4258–4264.

    [21]C.Jindarom,V.Meeyoo,T.Rirksomboon,B.Kitiyanan,P.Rangsunvigit,Production of bio-oil by oxidative pyrolysis of sewage sludge in rotating fixed bed reactor,Asian J.Energy Environ.4(2006)401–409.

    [22]H.Zheng,Z.Y.Wang,X.Deng,J.Zhao,Y.Luo,J.Novak,S.Herbert,B.S.Xing,Characteristics and nutrient values of biochars produced from giant reed at different temperatures,Bioresour.Technol.130(2013)463–471.

    [23]C.Boman,Particulate and Gaseous Emissions from Residential Biomass Combustion(Ph.D.Dissertation)Ume? University,Sweden,2005.

    [24]L.Tsechansky,E.R.Graber,Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration,Carbon66(2014)730–733.

    [25]E.M.Smit,An ultra-micromethodfor the determination of total nitrogen in biological fluids based on Kjeldahl digestion and enzymatic estimation of ammonia,Clin.Chim.Acta4(1979)129–135.

    [26]A.Boenke,The standards,measurements and testing programme(SMT),the European support to standardisation,measurements and testing projects,Mikrochim.ActaSupplement 15(1998)387–392.

    [27]E.Borai,M.Eid,H.Aly,Determination of REEs distribution in monazite and xenotime minerals by ion chromatography and ICP-AES,Anal.Bioanal.Chem.372(2002)537–541.

    [28]W.R.Knolle,A simple modification of a flame photometer for routine trace potassium analysis,Appl.Spectrosc.27(2)(1973)142.

    [29]P.Fu,W.Yi,X.Bai,et al.,Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues,Bioresour.Technol.102(17)(2011)8211–8219.

    [30]S.Wang,B.Gao,A.R.Zimmerman,et al.,Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass,Chemosphere134(2015)257–262.

    [31]W.Wu,M.Yang,Q.Feng,et al.,Chemical characterization of rice straw-derived biochar for soil amendment,Biomass Bioenergy47(2012)268–276.

    [32]Q.Q.Ren,C.S.Zhao,W.U.Xin,etal.,Formation of NOx precursors during wheat straw pyrolysis and gasification with O2and CO2,Fuel89(5)(2010)1064–1069.

    [33]J.Zhang,J.Liu,R.Liu,Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate,Bioresour.Technol.176(2015)288–291.

    [34]L.Tsechansky,E.R.Graber,Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration,Carbon66(2014)730–733.

    亚洲性久久影院| 欧美日韩视频高清一区二区三区二| 婷婷色综合www| 晚上一个人看的免费电影| 日韩欧美一区视频在线观看| 国产成人精品在线电影| 欧美人与性动交α欧美精品济南到 | 欧美亚洲日本最大视频资源| 久久av网站| 伊人亚洲综合成人网| 爱豆传媒免费全集在线观看| 一本一本综合久久| 老熟女久久久| 欧美最新免费一区二区三区| 国产一区二区在线观看av| 亚洲欧美日韩卡通动漫| 欧美成人午夜免费资源| 成人亚洲欧美一区二区av| 看非洲黑人一级黄片| 校园人妻丝袜中文字幕| 国产精品一二三区在线看| 少妇被粗大的猛进出69影院 | 免费高清在线观看视频在线观看| 美女xxoo啪啪120秒动态图| 亚洲人与动物交配视频| 日日摸夜夜添夜夜添av毛片| 午夜日本视频在线| 黑人欧美特级aaaaaa片| 少妇熟女欧美另类| 国产成人freesex在线| av播播在线观看一区| 亚洲欧洲精品一区二区精品久久久 | 欧美一级a爱片免费观看看| 国产av码专区亚洲av| 日韩制服骚丝袜av| 免费日韩欧美在线观看| h视频一区二区三区| 高清黄色对白视频在线免费看| 日韩大片免费观看网站| 欧美日韩av久久| 青春草视频在线免费观看| 永久网站在线| 欧美精品国产亚洲| 在线免费观看不下载黄p国产| 一级毛片aaaaaa免费看小| 人妻夜夜爽99麻豆av| 日韩中文字幕视频在线看片| 久久青草综合色| 美女国产高潮福利片在线看| 午夜91福利影院| 最近2019中文字幕mv第一页| 热re99久久精品国产66热6| 国产高清三级在线| 久久久欧美国产精品| 人妻一区二区av| 九九在线视频观看精品| 国产国拍精品亚洲av在线观看| 国内精品宾馆在线| 另类亚洲欧美激情| 制服诱惑二区| 18禁在线无遮挡免费观看视频| 国产深夜福利视频在线观看| 高清黄色对白视频在线免费看| 欧美精品国产亚洲| 久久99热6这里只有精品| a级片在线免费高清观看视频| 这个男人来自地球电影免费观看 | 大香蕉久久网| 国产精品国产三级国产av玫瑰| 最近手机中文字幕大全| 亚洲欧美色中文字幕在线| 免费观看在线日韩| 激情五月婷婷亚洲| 亚洲精品成人av观看孕妇| 亚洲欧美成人精品一区二区| 日韩中字成人| 国产在视频线精品| 成人午夜精彩视频在线观看| 成人黄色视频免费在线看| 日韩成人av中文字幕在线观看| 飞空精品影院首页| 亚洲经典国产精华液单| 亚洲综合色网址| 成年人午夜在线观看视频| 久久婷婷青草| 日本av免费视频播放| 久久久久久久精品精品| 高清在线视频一区二区三区| 成人毛片a级毛片在线播放| √禁漫天堂资源中文www| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 久久99蜜桃精品久久| 久久青草综合色| 久久精品国产亚洲av天美| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 亚洲av免费高清在线观看| 精品一品国产午夜福利视频| 国产 一区精品| 亚洲欧美日韩卡通动漫| 免费少妇av软件| 成人毛片a级毛片在线播放| 男女国产视频网站| 熟妇人妻不卡中文字幕| 欧美三级亚洲精品| 久久久久人妻精品一区果冻| 高清毛片免费看| 久久久久久久久久人人人人人人| 高清av免费在线| 狂野欧美白嫩少妇大欣赏| 色5月婷婷丁香| av免费观看日本| 热re99久久国产66热| 丝袜喷水一区| 久久久亚洲精品成人影院| 国产片内射在线| 亚洲精品456在线播放app| av有码第一页| 日韩精品免费视频一区二区三区 | 只有这里有精品99| av在线播放精品| 女的被弄到高潮叫床怎么办| 天堂中文最新版在线下载| 国产亚洲午夜精品一区二区久久| 在线亚洲精品国产二区图片欧美 | 国产黄色视频一区二区在线观看| 91精品三级在线观看| 国产精品秋霞免费鲁丝片| 亚洲综合精品二区| kizo精华| 一级毛片 在线播放| 国产精品熟女久久久久浪| 考比视频在线观看| 日本av免费视频播放| 男女高潮啪啪啪动态图| a级毛片黄视频| 狂野欧美激情性bbbbbb| 在线观看www视频免费| 亚洲国产精品国产精品| 午夜福利,免费看| 插逼视频在线观看| av播播在线观看一区| 视频区图区小说| 国产片内射在线| 欧美日韩国产mv在线观看视频| 国产黄色视频一区二区在线观看| 亚洲av不卡在线观看| 91精品一卡2卡3卡4卡| 免费观看在线日韩| 大又大粗又爽又黄少妇毛片口| 久久精品国产亚洲av涩爱| 国产欧美日韩综合在线一区二区| 成年人午夜在线观看视频| 国产又色又爽无遮挡免| 少妇人妻 视频| 国产精品久久久久成人av| 人妻 亚洲 视频| 日本午夜av视频| 性色avwww在线观看| 成人综合一区亚洲| 国产极品粉嫩免费观看在线 | 一个人看视频在线观看www免费| 少妇人妻久久综合中文| 久久99热6这里只有精品| videosex国产| 久久久久人妻精品一区果冻| 亚洲国产毛片av蜜桃av| 亚洲色图 男人天堂 中文字幕 | 99热6这里只有精品| 国产成人freesex在线| av免费在线看不卡| 美女视频免费永久观看网站| 母亲3免费完整高清在线观看 | 日本午夜av视频| 婷婷色综合www| 97超碰精品成人国产| 成人国产麻豆网| 男人爽女人下面视频在线观看| 国产精品99久久久久久久久| 少妇的逼好多水| 欧美 日韩 精品 国产| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| videos熟女内射| 视频在线观看一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| av福利片在线| 在线免费观看不下载黄p国产| 性高湖久久久久久久久免费观看| 国产国拍精品亚洲av在线观看| 国产一级毛片在线| 母亲3免费完整高清在线观看 | 精品一区二区免费观看| 麻豆精品久久久久久蜜桃| 性高湖久久久久久久久免费观看| 伦理电影免费视频| tube8黄色片| 中文欧美无线码| 亚洲精品国产av成人精品| 午夜免费男女啪啪视频观看| 成人国语在线视频| 中文字幕制服av| 美女大奶头黄色视频| 亚洲,一卡二卡三卡| 久久狼人影院| 久久久久久伊人网av| 九色亚洲精品在线播放| 国产av码专区亚洲av| 18禁在线播放成人免费| 99久久精品一区二区三区| 亚洲欧洲国产日韩| 欧美3d第一页| 亚洲激情五月婷婷啪啪| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 国产免费又黄又爽又色| 久久久久久伊人网av| 建设人人有责人人尽责人人享有的| 人体艺术视频欧美日本| 日本av手机在线免费观看| 在线观看一区二区三区激情| 国产极品粉嫩免费观看在线 | 精品熟女少妇av免费看| 啦啦啦视频在线资源免费观看| 免费人成在线观看视频色| 国产极品粉嫩免费观看在线 | 亚洲欧美一区二区三区黑人 | 欧美性感艳星| av专区在线播放| 精品久久久久久电影网| 特大巨黑吊av在线直播| 婷婷色麻豆天堂久久| 日韩欧美精品免费久久| 麻豆成人av视频| 在线观看三级黄色| 新久久久久国产一级毛片| 在线观看免费日韩欧美大片 | 欧美亚洲 丝袜 人妻 在线| 午夜老司机福利剧场| 久久久久久久久久成人| 伦理电影免费视频| h视频一区二区三区| 极品人妻少妇av视频| 久久久精品区二区三区| 亚洲av中文av极速乱| 亚洲欧美清纯卡通| 久久久国产精品麻豆| 伦理电影免费视频| 日韩一区二区视频免费看| 草草在线视频免费看| 日本黄色片子视频| 18在线观看网站| 久久国内精品自在自线图片| 久久久久久久久久久免费av| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| videos熟女内射| 国产永久视频网站| 春色校园在线视频观看| 波野结衣二区三区在线| 亚洲,一卡二卡三卡| 国产成人午夜福利电影在线观看| 午夜激情久久久久久久| 国产色爽女视频免费观看| 最黄视频免费看| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| 国产亚洲精品久久久com| 国产在线免费精品| xxxhd国产人妻xxx| 国产毛片在线视频| 成人漫画全彩无遮挡| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片| 国产精品蜜桃在线观看| 22中文网久久字幕| 国产高清有码在线观看视频| 日日啪夜夜爽| 97超碰精品成人国产| 美女主播在线视频| 久久精品久久精品一区二区三区| 国产精品蜜桃在线观看| 久久精品国产亚洲av涩爱| 人人妻人人澡人人看| 亚洲精品国产av成人精品| 欧美精品高潮呻吟av久久| 男女免费视频国产| 国产精品人妻久久久影院| 欧美日韩av久久| 少妇被粗大的猛进出69影院 | 午夜福利在线观看免费完整高清在| 欧美另类一区| 美女视频免费永久观看网站| 一级毛片黄色毛片免费观看视频| 一级二级三级毛片免费看| 老女人水多毛片| 一级,二级,三级黄色视频| 中文字幕精品免费在线观看视频 | 国产一区二区在线观看av| 国产精品久久久久久精品古装| 久久久久久久久久久久大奶| 午夜激情av网站| 亚洲欧美一区二区三区黑人 | 高清不卡的av网站| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图 | 亚洲综合色惰| 日日啪夜夜爽| 桃花免费在线播放| 午夜福利视频在线观看免费| 色吧在线观看| 极品少妇高潮喷水抽搐| 日日撸夜夜添| 久久久久久久久久久丰满| 五月伊人婷婷丁香| 如何舔出高潮| 国产精品偷伦视频观看了| 免费黄色在线免费观看| av网站免费在线观看视频| 国产亚洲精品久久久com| 国产av精品麻豆| 午夜福利视频精品| 国产成人精品在线电影| 精品国产国语对白av| av有码第一页| 18禁在线无遮挡免费观看视频| 欧美激情极品国产一区二区三区 | 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 99热6这里只有精品| 久久热精品热| 秋霞在线观看毛片| 一区二区三区精品91| 在线免费观看不下载黄p国产| 成人毛片a级毛片在线播放| 一本一本综合久久| 欧美精品一区二区大全| 丝袜脚勾引网站| 我的老师免费观看完整版| 免费日韩欧美在线观看| 交换朋友夫妻互换小说| 51国产日韩欧美| 成人毛片a级毛片在线播放| 日韩亚洲欧美综合| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲四区av| 狠狠婷婷综合久久久久久88av| av电影中文网址| 精品国产露脸久久av麻豆| 美女内射精品一级片tv| 久久久久久久久久人人人人人人| 亚洲精品国产av成人精品| 国产有黄有色有爽视频| 免费观看的影片在线观看| 熟女电影av网| 久久国内精品自在自线图片| 永久免费av网站大全| a级毛片黄视频| 天天操日日干夜夜撸| 五月天丁香电影| 国产成人精品无人区| 老司机影院成人| 欧美xxⅹ黑人| 国产成人aa在线观看| 日韩人妻高清精品专区| 一级黄片播放器| 这个男人来自地球电影免费观看 | 精品久久久久久电影网| 午夜福利视频在线观看免费| 国产成人精品婷婷| 国产午夜精品一二区理论片| 中国国产av一级| 久久av网站| 欧美日韩视频高清一区二区三区二| 欧美人与善性xxx| 视频中文字幕在线观看| 女性生殖器流出的白浆| 国语对白做爰xxxⅹ性视频网站| 九九在线视频观看精品| 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 青春草国产在线视频| 超色免费av| 99热这里只有是精品在线观看| 中文欧美无线码| 国产一级毛片在线| 亚洲怡红院男人天堂| 97在线人人人人妻| 精品久久蜜臀av无| 午夜视频国产福利| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 大片免费播放器 马上看| 大陆偷拍与自拍| 久久国内精品自在自线图片| 久久免费观看电影| 欧美3d第一页| 精品国产一区二区久久| 午夜福利视频在线观看免费| 国产精品三级大全| 高清视频免费观看一区二区| 男男h啪啪无遮挡| 精品国产一区二区三区久久久樱花| 一级毛片我不卡| 精品熟女少妇av免费看| 亚洲人与动物交配视频| 欧美日韩视频精品一区| 欧美成人午夜免费资源| 国产精品人妻久久久影院| 久久婷婷青草| 人人澡人人妻人| 国产在线视频一区二区| 午夜91福利影院| 欧美xxⅹ黑人| 少妇熟女欧美另类| 欧美bdsm另类| 久久久国产欧美日韩av| 国国产精品蜜臀av免费| 99re6热这里在线精品视频| 久久 成人 亚洲| 黑丝袜美女国产一区| 最近手机中文字幕大全| 久久久亚洲精品成人影院| 少妇人妻精品综合一区二区| 婷婷色综合大香蕉| 日本91视频免费播放| 中文精品一卡2卡3卡4更新| 80岁老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 99国产综合亚洲精品| 日本欧美国产在线视频| 国产极品天堂在线| 国产爽快片一区二区三区| 99久久中文字幕三级久久日本| 美女中出高潮动态图| 中文字幕最新亚洲高清| www.av在线官网国产| av国产久精品久网站免费入址| 一区二区av电影网| av在线老鸭窝| 国产高清国产精品国产三级| 五月开心婷婷网| 一区二区三区乱码不卡18| 成人毛片60女人毛片免费| 一边摸一边做爽爽视频免费| 超色免费av| 中文字幕免费在线视频6| 亚洲综合色惰| 成人午夜精彩视频在线观看| 午夜免费鲁丝| 亚洲成人av在线免费| 一本一本综合久久| 国产精品偷伦视频观看了| 自线自在国产av| 日韩三级伦理在线观看| 午夜免费男女啪啪视频观看| 国产免费视频播放在线视频| 亚洲国产精品一区二区三区在线| 丰满饥渴人妻一区二区三| 日韩不卡一区二区三区视频在线| 精品一区二区三卡| 人人妻人人添人人爽欧美一区卜| 久久久久久久久久人人人人人人| 欧美另类一区| 亚洲精品久久成人aⅴ小说 | 男人爽女人下面视频在线观看| 日本免费在线观看一区| videossex国产| 亚洲av二区三区四区| 在线观看免费高清a一片| 日本黄色日本黄色录像| 天堂8中文在线网| a级片在线免费高清观看视频| 精品一区在线观看国产| 成年女人在线观看亚洲视频| 国产精品人妻久久久影院| 久久久a久久爽久久v久久| 18禁裸乳无遮挡动漫免费视频| 中文字幕人妻熟人妻熟丝袜美| 国产伦精品一区二区三区视频9| 成年av动漫网址| 日韩制服骚丝袜av| 久久精品国产a三级三级三级| 大片电影免费在线观看免费| 伊人久久精品亚洲午夜| 午夜福利影视在线免费观看| 日产精品乱码卡一卡2卡三| 纯流量卡能插随身wifi吗| 国产欧美另类精品又又久久亚洲欧美| 国产伦理片在线播放av一区| 一级毛片我不卡| 伊人亚洲综合成人网| 如何舔出高潮| 啦啦啦在线观看免费高清www| a级片在线免费高清观看视频| 99久久综合免费| 国产永久视频网站| 亚洲人成网站在线播| 精品久久蜜臀av无| 91精品三级在线观看| 国产在视频线精品| 一区二区三区精品91| 国产日韩欧美亚洲二区| 亚洲欧洲精品一区二区精品久久久 | 精品久久久久久久久亚洲| 久久久久久久亚洲中文字幕| 青青草视频在线视频观看| 国产熟女欧美一区二区| 韩国高清视频一区二区三区| 成人国语在线视频| 麻豆成人av视频| 一本大道久久a久久精品| 大香蕉久久成人网| 免费黄频网站在线观看国产| 亚洲国产精品一区三区| 在线天堂最新版资源| 99热6这里只有精品| av免费观看日本| 亚洲国产成人一精品久久久| 视频区图区小说| 免费黄网站久久成人精品| 视频区图区小说| 中文字幕人妻熟人妻熟丝袜美| 最近最新中文字幕免费大全7| 亚洲国产精品国产精品| 亚洲国产av新网站| 高清在线视频一区二区三区| 久久久久久久久大av| 日本91视频免费播放| 18禁裸乳无遮挡动漫免费视频| 精品久久久噜噜| 丰满乱子伦码专区| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 人人妻人人澡人人爽人人夜夜| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 2021少妇久久久久久久久久久| 亚洲欧美精品自产自拍| 午夜激情av网站| 久久99精品国语久久久| 另类精品久久| 免费观看a级毛片全部| 久久久久久人妻| 美女国产视频在线观看| 久久久a久久爽久久v久久| 国产国拍精品亚洲av在线观看| av视频免费观看在线观看| 久久综合国产亚洲精品| 岛国毛片在线播放| 能在线免费看毛片的网站| 午夜福利网站1000一区二区三区| 中文字幕亚洲精品专区| 国产精品三级大全| 国产男女超爽视频在线观看| 国产精品国产三级国产专区5o| 中国三级夫妇交换| 伊人久久精品亚洲午夜| 下体分泌物呈黄色| 亚洲美女视频黄频| 日韩成人伦理影院| 国产精品熟女久久久久浪| 最黄视频免费看| 成人午夜精彩视频在线观看| 亚洲国产最新在线播放| av播播在线观看一区| 日韩视频在线欧美| 毛片一级片免费看久久久久| 日产精品乱码卡一卡2卡三| 又黄又爽又刺激的免费视频.| 久久精品久久精品一区二区三区| 伊人亚洲综合成人网| 日日啪夜夜爽| 人人妻人人添人人爽欧美一区卜| 交换朋友夫妻互换小说| 精品亚洲乱码少妇综合久久| 国产精品女同一区二区软件| 天堂中文最新版在线下载| 久久久久久久国产电影| 国产视频首页在线观看| 中文字幕人妻丝袜制服| 飞空精品影院首页| 男女国产视频网站| 免费观看在线日韩| 中文字幕免费在线视频6| 成人影院久久| 寂寞人妻少妇视频99o| 熟妇人妻不卡中文字幕| 亚洲国产精品一区三区| 成人毛片60女人毛片免费| 99久久人妻综合| 视频中文字幕在线观看| 22中文网久久字幕| 老女人水多毛片| 亚洲精品av麻豆狂野| 午夜日本视频在线| 亚洲欧美色中文字幕在线| 在线观看免费高清a一片| 亚洲精品,欧美精品| 精品视频人人做人人爽| 欧美日韩国产mv在线观看视频| 男人操女人黄网站| 国产午夜精品一二区理论片| 久久国内精品自在自线图片| 成人国产麻豆网| 麻豆成人av视频| 日韩 亚洲 欧美在线| 各种免费的搞黄视频| 久久精品人人爽人人爽视色| 欧美3d第一页|