• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Integrated ozone–photo–Fenton process for the removal of pollutant from industrial wastewater☆

    2017-05-28 08:50:33AsaithambiBaharakSajjadiAbdulRamanAbdulAziz

    P.Asaithambi*,Baharak Sajjadi,Abdul Raman Abdul Aziz*

    Department of Chemical Engineering,Faculty of Engineering,University of Malaya,50603,Malaysia

    1.Introduction

    Organic,inorganic and biorefractory organic pollutants are main water pollutants.Different types of organic effluents that are known to cause serious environmental problems are produced by the pulp and paper industry[1,2],leather industry[3,4],sugar industry[5],dairy industry[6],rubber processing industry[7],agricultural industry[8],distillery industry[9–12],food industry[13],textile industry[14–16],olive processing industry[17],wood based industry[18],etc.Amongst these industries,the distillery industry[12]generates a large amount of wastewater,which has a considerable impact on water bodies.The effluent from the distillery industry is colored and has high chemical oxygen demand(COD),biological oxygen demand(BOD),total solids(TS),total dissolved solids(TDS),total suspended solids(TSS),total volatile solids(TVS)and other organic,inorganic matters such as chlorides,sulfates,total nitrogen,potassium,phosphorous,sodium and calcium which causes pollution when discharged into water bodies without proper treatment[19].Much research has been carried out on different treatment methods of the distillery industrial effluent,including biological flocculation[20],biotreatment[21],biological treatment using thermotolerantPediococcus acidilactici[22],ozone-based advanced oxidation[23],micro filtration[24],reverse osmosis[25],activated carbon[26],ozonation[27],electrochemical degradation[28],electrocoagulation[29],UV photocatalytic[30],cavitationally induced process[31],ultrasound and ozone assisted biological processes[32].These methods are associated with some disadvantages such as high operating cost,lower pollutant removal efficiency,transfer of pollutants from one phase to another.

    Some effective and environmental friendly alternatives to conventional oxidative methods have been developed for water treatment.They are generally referred as advanced oxidation processes(AOPs)and they mainly involve UV light in the presence of hydrogen peroxide(H2O2)orozone(O3),UV-nearvisible light in the presence of Fenton reagent,ultrasound,etc.These methods degrade and decolorize pollutants by using highly oxidizing hydroxyl radicals(?OH)radicals that are formed at ambient temperature and atmospheric pressure within the treatment systems.The principal mechanism of AOPs includes generation of very powerful and non-selective oxidizing agents and free hydroxylradicals(?OH)to destroy hazardous organic and inorganic pollutants.A single AOP usually does not completely remove pollutants.Consequently,combining two or more AOPs enhances hydroxyl radical generation,which leads to higher oxidation rates[33].For example,a combination of the photo-Fenton with ozonation process maximizes the removal efficiency of pollutants with minimal operational cost.

    To the best of our knowledge,there is limited research on the use of hybrid AOPs for industrial effluent treatment.Kusicet al.did a comparative investigation of the efficiency of several ozone-and/or UV-based processes for the mineralization of phenol.The highest mineralization efficiency was achieved by the UV/H2O2/O3process[34].Catalkaya and Kargi employed different AOPs to treat pulp mill effluent.They found that TiO2-assisted photo-catalysis yielded higher total organic carbon(TOC)and toxicity removals compared to the other AOPs[35].Wuet al.studied isopropyl alcohol degradation and its major degradation intermediate-acetone.The results showed that the UV/H2O2/O3process was the most efficient compared to the other AOPs such as the O3,O3/UV,H2O2/UV,H2O2/O3processes[36].Wu and Ng investigated decolorization of C.I.Reactive Red 2 using ozone-and photo-based AOPs.They observed that the UV/O3/H2O2/Fe3+system were the most suitable for high pollutant removal with minimum power consumption[37].Lucaset al.used a Fenton reagent(H2O2/Fe2+)for the removal of COD from olive mill wastewater in a batch reactor[23].Chandrasekara Pillaiet al.treated terephthalic acid wastewater by ozonation catalyzed process with Fe2+,H2O2and UV irradiation.The combined O3/H2O2/Fe2+/UV process yielded high pollutant removal percentage of around 90%at 240 min compared to other AOPs[38].Hadavifaret al.demonstrated the Fenton and photo-Fenton processes for the treatment of alcohol distillery industries.They concluded that higher removal efficiency was achieved in the photo–Fenton(18%to 97%)process compared to the Fenton(5%to 47%)process alone[39].Most of the previous research focused on pollutant removal efficiency from industrial effluent and wastewater.In the photo-and ozone-based AOPs,electrical energy per order is an important parameter from the economical point ofview.Besides,most of the previous research work focused on removal of pollutants from industrial effluent and wastewater using single AOP.It is not economical to use a single AOP for industrial wastewater treatment due to its high operating cost and lower pollutant removal efficiency.Therefore,it is suggested to integrate these technologies with other methods such as the photo,ozonation and Fenton processes.However,to the best of our knowledge,the removal of color and COD and determination of electrical energy per order of distillery industrial effluent by different AOPs such as the UV/H2O2,Fe2+/H2O2,UV/Fe2+/H2O2and O3/UV/Fe2+/H2O2processes have not been reported yet.

    The present work focused on combinations of AOPs such as the UV/H2O2,Fe2+/H2O2,UV/Fe2+/H2O2and O3/UV/Fe2+/H2O2processes for the removal of color,COD and electrical energy per order from distillery industrial effluent.According to our experimental results,the O3/UV/Fe2+/H2O2process achieved complete pollutant removal with minimum electrical energy per order.Therefore,this process was used in the study for the treatment of industrial effluent.Effects of various operating parameters such as H2O2concentration(30 to 180 mmol·L?1),Fe2+concentration(0.05 to 0.80 mmol·L?1),effluent pH(2 to 11),COD concentration(1500 to 6000 mg·L?1)and effect of UV power(8 and 16 W)on color removal,COD removal and electrical energy per order were studied.

    2.Material and Methods

    2.1.Characterization of distillery industrial ef fl uent

    The effluent was collected from nearby distillery premises at Kuala Lumpur,Malaysia.The main characteristics of the effluent were pH:4.1–4.3;COD:80000–90000 mg·L?1;BOD:7000–8000 mg·L?1;TSS:15.44 g·L?1;TDS:5550–5750 mg·L?1;color— dark brown;odor—burnt sugar.The chemicals used in the experiments to adjust the pH value were H2O2(50 wt%),FeSO4·7H2O,H2SO4and NaOH.All the chemicals were of analytical grade and purchased from Merck Specialist Private Limited.Only double distilled water was used for preparing the needed solutions.

    2.2.Methods

    The experimental setup for the present investigation is schematically shown in Fig.1.The experimental setup consisted of an ozone reactor and a photo-chemical reactor.The photo-chemical reactor was made of borosilicate glass with a net capacity of 600 ml.The reactor was surrounded with a water jacket to remove the heat produced by the lamp and to maintain a constant temperature.The reactor was covered with an aluminum foil to prevent light leakage from the reactor.The reactor was placed on a magnetic stirrer in order to maintain a uniform concentration.The reactor had inlet ports for feeding reactants and for withdrawing sample with measuring temperature at the top.The source of UV irradiation was 16 W low-pressure mercury vapor lamp with the maximum emission of 254 nm,placed in a quartz tube.The lamp tube was immersed in the solution for treatment.

    O3was generated using a lab-scale O3generator and O3was bubbled into the photo reactor through a ceramic diffuser for the O3based AOPs.The flow rate and concentration of O3were controlled at 10 L·min?1and 2 g·h?1.The O3concentration was determined using an iodimetric method.All the experiments lasted around 4 h and 10 ml of samples was collected from the sampling port at different time intervals.The samples were then quenched with Na2SO3and filtered using a filter paper to determine the color removal(UV–visible absorbance at the wavelength of λ=290 nm)and COD removal(closed re flux method).

    2.3.Analysis

    2.3.1.Color removal

    The color removal was calculated using Eq.(1).

    where,Abs0andAbstare the absorbance atinitialtime and any timetfor corresponding wavelength,λmax.

    2.3.2.COD removal

    The COD removal was calculated using Eq.(2).

    where,COD0and CODt(in mg·L?1)are the chemical oxygen demand(COD)at timet=0(initial)andt(reaction time)respectively.

    2.3.3.Electrical energy per order evaluation

    The main operating cost of the ozone–photo–Fenton process is associated with electrical energy perorderduring the process.The equations to identify electrical energy per order(EE/O)are discussed below.

    Electrical energy per order represents a major fraction of the operating costs.Simple figures-of-merit based on electric energy consumption can be very useful and informative.A thorough understanding of the overall kinetic behavior of organic and inorganic industrial effluents is necessary for describing meaningful electrical efficiencies.Electrical energy per order can be defined as kW·h(kilo watt hour)of electrical energy required to reduce the concentration of a pollutant by 1 order of magnitude in 1 m3of contaminated water.The electrical energy per order EE/O(kW·h·m?3)can be calculated by using the following Eq.(3).

    where,EE/O is the electrical energy per order(kW·h·m?3),Pelis the electrical power input(kW),tis the irradiation time(min),Vis the volume of effluent used(L),C0andCtare the initial and final effluent COD concentrations(mg·L?1),respectively.

    The color and COD removals of industrial effluents were investigated using the pseudo first-order kinetic model,as shown in Eq.(4)

    kis the pseudo first-or derrate constant for the decay of effluent concentration(min?1).

    Fig.1.Schematic diagram of ozone–photo–Fenton system.

    Combining Eqs.(3)and(4)gives an equation for the electrical energy determination in the following form:

    The total electrical energy per order of ozone–photo–Fenton system can be calculated by using Eq.(6).

    where,EE/OUV,EE/OO3—electrical energy per order for the photo and ozonation processes.

    3.Results and Discussion

    3.1.Comparisons of UV/H2O2,Fe2+/H2O2,UV/Fe2+/H2O2,O3/UV/Fe2+/H2O2

    Previous research has shown that the ozonation(O3)and photo(UV)processes are not very effective for complete removal of pollutants when used separately[40–42].However,when they are combined with the Fenton process,they have a significant synergistic effect on pollutant removal,mainly due to considerable amount of?OH that is produced from the O3,UV and Fe2+/H2O2processes.The treatment process using this combination starts with the photolysis of ozone,which produces hydroxyl radicals(?OH),as shown in the following equations.

    Oxidation of H2O2catalyzed by Fe2+via the classical Fenton's reaction could be one of the main sources of?OH generation.This reaction could be further catalyzed through photo reduction of Fe3+and its reaction with O3,as shown in the following chemical reactions[38].

    The color removal percentages,COD removal efficiency and electrical energy per order of four AOPs—UV/H2O2,Fe2+/H2O2,UV/Fe2+/H2O2and O3/UV/Fe2+/H2O2are compared and shown in Fig.2(a)and(b).The figures show that the color and COD removals was about 70.75%,52%,100%,100%and 62.75%,49%,95%,100%for the UV/H2O2,Fe2+/H2O2,UV/Fe2+/H2O2,O3/UV/Fe2+/H2O2processes respectively.Based on Fig.2(a)and(b),it was evident that the color and COD removal efficiencies were significantly higher for the UV/Fe2+/H2O2and O3/UV/Fe2+/H2O2processes compared to the UV/H2O2and Fe2+/H2O2processes.The above results indicated that introducing H2O2,Fe2+and O3into the UV system led to a significant increase in the color and COD removals.This could be attributed to the available parallel pathways to generate abundant?OH radicals for efficient color and COD removals from distillery effluent within a shorter reaction time.

    The economic feasibility of hybrid ozonation and photo processes is associated with electrical energy per order.The minimum electrical energy per order of 0.015 kW·h·m?3was required for the removal of color(100%)and COD(100%)in the O3/UV/Fe2+/H2O2process.The other hybrid processes such as the UV/H2O2and UV/Fe2+/H2O2processes required high power consumption for color and COD removals compared to the O3/UV/Fe2+/H2O2process.

    3.2.Effect of experimental parameters on O3/UV/Fe2+/H2O2 process

    The effects of selected operating parameters of the O3/UV/Fe2+/H2O2process,including H2O2and Fe2+concentration,effluent pH,COD concentration and UV power on decolorization and degradation of distillery industrial wastewater were investigated in this study and the results are discussed below.

    Fig.2.Comparison of various AOPs such as UV/H2O2,Fe2+/H2O2,UV/Fe2+/H2O2 and O3/UV/Fe2+/H2O2 on(a)color and COD removals and(b)electrical energy per order.

    3.2.1.Effect of H2O2 concentration

    The oxidation of industrial effluent by the O3/UV/Fe2+/H2O2process was tested with the feed amounts of oxidants(H2O2)chosen from the preliminary experiments.The results are shown in Fig.3.It can be ascertained from Fig.3 that the H2O2concentration varied from 30 to 120 mmol·L?1and the color and COD removals increased from 53.06%to 100%and 40.26%to 91.65%,respectively within 3 h.The COD removal slightly decreased from 91.65%to 90.43%by further increasing the concentration of H2O2from 120 to 180 mmol·L?1.This phenomenon,which is known as?OH scavenging by H2O2,has been widely reported in the literature[43,44].The reactions are shown in Eqs.(13)–(15).

    Fig.3.Effect of H2O2 concentration on color and COD removals and electric energy per order in O3/UV/Fe2+/H2O2 process(conditions:COD concentration:3000 mg·L?1;Fe2+concentration:0.40 mmol·L?1;effluent pH:7;UV lamp:16 W and 254 nm;O3 flow rate:10 L·min?1 and reaction time:3 h).

    The electrical energy per order was calculated based on different concentrations of H2O2shown in Fig.3.The electrical energy per order decreased from 0.95 to 0.51 kW·h·m?3with increasing H2O2concentration from 30 to 120 mmol·L?1.It was due to generation of more?OH radicals.However,the electrical energy per order tend to increase slightly from 0.51 to 0.55 kW·h·m?3with increasing concentration of H2O2from 120 to 180 mmol·L?1,which may be attributed to coincident?OH consumption at high H2O2concentrations[45].

    3.2.2.Effect of Fe2+concentration

    The amount of Fe2+concentration in the O3/UV/Fe2+/H2O2process is an important parameter affecting the oxidation processes.Fe2+acts as a catalyst,does not precipitate in the reaction and enhances the O3/UV/Fe2+/H2O2process.Therefore,with increasing Fe2+iron,the surface of iron and simultaneous production of free radicals increased,which eventually increased the color and COD removal efficiencies.The results are shown in Fig.4.The figure shows that when Fe2+concentration increased from 0.05 to 0.40 mmol·L?1,the color and COD removals increased from 88.52%to 100%and from 82.30%to 95.53%,respectively.Further increase in Fe2+concentration from 0.40 to 0.80 mmol·L?1slightly decreased the color and COD removals from 100%to 98%and 95.53%to 94.05%,respectively.It could be explained by redox reaction that?OH is either scavenged by hydroxyl radicals or Fe2+,as shown in the following equations[46].

    Fig.4.Effect of Fe2+concentration on color and COD removals and electric energy per order in O3/UV/Fe2+/H2O2 process(conditions:COD concentration:3000 mg·L?1;H2O2 concentration:120 mmol·L?1;effluent pH:7;UV lamp:16 W and 254 nm;O3 flow rate:10 L·min?1 and reaction time:3 h).

    The effect of Fe2+concentration on electrical energy per order is shown in Fig.4.Experiments with varying Fe2+concentrations from 0.05 to 0.80 mmol·L?1were conducted.When the concentration of Fe2+increased from 0.05 to 0.40 mmol·L?1,the electrical energy per order decreased from 1.21 to 0.51 kW·h·m?3.Further increasing the initial concentration of Fe2+from 0.40 to 0.80 mmol·L?1increased the electrical energy per order from 0.51 to 0.87 kW·h·m?3.The above results indicated that more hydroxyl radicals could be produced with optimum Fe2+and H2O2concentrations in the UV and O3processes.

    3.2.3.Effect of pH

    The optimum pH for removal of pollutants by using the Fenton and photo–Fenton processes is between 2 and 4.5[47–49].However,the ozonation process is more efficient at high pH values compared to under an acidic condition due to the presence of hydroxyl radicals[50].Fig.5.shows the effect of the effluent pH value during the use of O3/UV/Fe2+/H2O2process.It can be ascertained from the figure that the color and COD removals increased from 88.90%to 100%and from 80.76%to 95.45%with increasing effluent pH from2 to 7.Further increasing effluent pH from 7 to 11 slightly decreased the color and COD removals.

    Electrical energy perorder of the O3/UV/Fe2+/H2O2process at different effluent pH was studied and the results are shown in Fig.5.It was observed that the electrical energy per order decreased from 1.19 to 0.51 kW·h·m?3with increasing effluent pH from 2 to 7,hence the electrical energy per order also increased from 0.51 to 0.96 kW·h·m?3with further increase of the initial effluent pH from 7 to 11.The above results indicated that more hydroxyl radicals were produced at neutral condition than at acidic and alkali conditions.

    Fig.5.Effect of pH on color and COD removals and electric energy per order in O3/UV/Fe2+/H2O2 process(conditions:COD concentration:3000 mg·L?1;H2O2 concentration:120 mmol·L?1;Fe2+concentration:0.4 mmol·L?1;UV lamp:16 W and 254 nm;O3 flow rate:10 L·min?1 and reaction time:3 h).

    3.2.4.Effect of COD concentration

    The effect of COD concentration on color and COD removals of the distillery industrial effluent by the O3/UV/Fe2+/H2O2process and the associated electrical energy per order were investigated.Pollutant concentration is an important parameter in any effluent treatment techniques.The influence of COD concentration is shown in Fig.6.The figure showed that the color and COD removals decreased from 100%to 75%and from 100%to 63%with increasing COD concentration from 1500 to 6000 mg·L?1within 3 h.It was also observed that the electrical energy per order increased with increasing COD concentration.It was attributed to the fact that an increase in COD concentration increases the number of organic molecules but the adding of H2O2and Fe2+was constant,consequently,the generation of?OH radicals is constant.The results showed that the?OH radicals produced at high COD concentration were inefficient to absorb all the COD concentrations in the solution which decrease the color and COD removals.Increasing the number of organic molecules also obstructs the penetration of photons into the solution,therefore producing less?OH radicals[51].It was suggested that the optimal COD concentration for the O3/UV/Fe2+/H2O2process in the experiment was 3000 mg·L?1and the color and COD removal percentages reached 100%and 95.50%.

    Fig.6.Effect of COD concentration on color and COD removals in O3/UV/Fe2+/H2O2 process(conditions:H2O2 concentration:120 mmol·L?1;Fe2+concentration:0.4 mmol·L?1;effluent pH:7;UV lamp:16 W and 254 nm;O3 flow rate:10 L·min?1 and reaction time:3 h).

    3.2.5.Effect of UV power

    The effects of UV power have important parameters to check performance of O3/UV/Fe2+/H2O2process.UV is mainly used for photolysis of H2O2and photo reduction of ferric ion to ferrous ion.The influence of UV on color and COD removals of distillery industrial effluent was investigated by using two different UV powers—8 and 16 W.The results are shown in Fig.7.The color and COD removals increased from95%to 100%and from90%to 100%within 3 h when the UV powers were 8 and 16 W,respectively.This could be attributed to increased number of photons that reacted with Fe3+ions,which increased the number of active species and formed hydroxyl radicals.The photolysis rate of H2O2and photo reduction of Fe3+reduced at low UV power.

    3.3.Instrumental analysis

    Treatment(color and COD removals)of distillery industrial effluent by the O3/UV/Fe2+/H2O2process was performed in this study.After a predetermined time interval,the samples were evaluated using UV/Vis spectra and the results are shown in Fig.8.The absorbance of UV/Vis peak decreased by increasing the reaction time of the O3/UV/Fe2+/H2O2system.The position of the peak in the UV/Vis region also changed from 301 nm to around 260 nm,which indicated formation of new smaller organic byproducts.According to the UV/Vis data,it might be attributed to the color and COD removals of the distillery effluent.

    Fig.7.Effect of UV power on color and COD removals in O3/UV/Fe2+/H2O2 process(conditions:COD concentration:3000 mg·L?1;H2O2 concentration:120 mmol·L?1;Fe2+concentration:0.4 mmol·L?1;effluent pH:7;UV lamp:16 W and 254 nm;O3 flow rate:10 L·min?1 and reaction time:3 h).

    4.Conclusions

    In this study,the color and COD removals of distillery industrial effluent using the UV/H2O2,H2O2/Fe2+,UV/H2O2/Fe2+and O3/UV/Fe2+/H2O2processes,together with the associated electrical energy per order were investigated successfully.The results showed that the hybrid system of O3/UV/Fe2+/H2O2completely removed color and COD from the effluent within 3 h with minimum electrical energy per order.Various operating parameters of the hybrid AOPs(O3/UV/Fe2+/H2O2)were studied.It was concluded that the O3/UV/Fe2+/H2O2process was effective compared to other processes reported in the present investigation.The results of the O3/UV/Fe2+/H2O2process for removal of pollutants from industrial effluent showed that this hybrid process could be used as an efficient,effective and environmental friendly technique for complete removal of organic and inorganic pollutants,which increases the reusability of wastewater.

    [1]O.Ashra fi,L.Yerushalmi,F.Haghighat,Waste water treatment in the pulp-andpaper industry:A review of treatment processes and the associated greenhouse gas emission,J.Environ.Manag.158(2015)146–157.

    [2]M.Kamali,Z.Khodaparast,Review on recent developments on pulp and paper mill wastewater treatment,Ecotoxicol.Environ.Saf.114(2015)326–342.

    [3]T.Mandal,D.Dasgupta,S.Mandal,S.Datta,Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process,J.Hazard.Mater.180(1–3)(2010)204–211.

    [4]R.Thankappan,T.V.Nguyen,S.V.Srinivasan,S.Vigneswaran,J.Kandasamy,P.Loganathan,Removal of leather tanning agent syntan from aqueous solution using Fenton oxidation followed by GAC adsorption,J.Ind.Eng.Chem.21(2015)483–488.

    [5]O.P.Sahu,P.K.Chaudhari,Electrochemical treatment of sugar industry wastewater:COD and color removal,J.Electroanal.Chem.739(2015)122–129.

    [6]S.Martín-Rilo,R.N.Coimbra,J.Martín-Villacorta,M.Otero Ricardo,Treatment of dairy industry wastewater by oxygen injection:Performance and outlay parameters from the full scale implementation,J.Clean.Prod.86(2015)15–23.

    [7]H.I.Owamah,M.A.Enaboifo,O.C.Izinyon,Treatment of wastewater from raw rubber processing industry using water lettuce macrophyte pond and the reuse of its effluent as biofertilizer,Agric.Water Manag.146(2014)262–269.

    [8]H.Ahmed Hegazi,Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents,HBRC J.9(3)(2013)276–282.

    [9]S.Basu,S.Mukherjee,A.Kaushik,V.Batr,M.Balakrishnan,Integrated treatment of molasses distillery wastewater using micro filtration(MF),J.Environ.Manage.158(2015)55–60.

    [10]N.Kazemi,O.Tavakoli,S.Seif,M.Nahangi,High-strength distillery wastewater treatment using catalytic sub-and supercritical water,J.Supercrit.Fluids97(2015)74–80.

    [11]E.Wicher,K.Seifert,R.Zagrodnik,B.Pietrzyk,M.Laniecki,Hydrogen gas production from distillery wastewater by dark fermentation,Int.J.Hydrog.Energy38(19)(2013)7767–7773.

    [12]A.k.Prajapati,P.K.Chaudhari,Physicochemical treatment of distillery wastewater—A review,Chem.Eng.Commun.202(2015)1098–1117.

    [13]C.Chen-Yeon,L.Tung,C.-Y.Lin,Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture,Int.J.Hydrog.Energy38(35)(2013)15849–15855.

    [14]T.K.F.S.Freitas,V.M.Oliveira,M.T.F.Souza,H.C.L.Geraldino,V.C.Almeida,S.L.Fávaro,J.C.Garcia,Optimization of coagulation- flocculation process for treatment of industrial textile wastewater using okra(A.esculentus)mucilage as natural coagulant,Ind.Crops Prod.76(2015)538–544.

    [15]R.A.R.Boaventura,J.P.VilarVítor,Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater,Environ.Sci.Pollut.Res.22(2)(2015)833–845.

    Fig.8.Instrumental analysis(UV/Vis characteristics).

    [16]M.Tichonovas,E.Krugly,V.Racys,R.Hippler,V.Kauneliene,I.Stasiulaitiene,D.Martuzevicius,Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment,Chem.Eng.J.229(2013)9–19.

    [17]M.U?urlu,I.Kula,Decolourization and removal of some organic compounds from olive mill wastewater by advanced oxidation processes and lime treatment,Environ.Sci.Pollut.Res.Int.14(5)(2007)319–325.

    [18]H.Hansson,F.Kaczala,A.Amaro,M.Marques,W.Hogland,Advanced oxidation treatment of recalcitrant wastewater from a wood-based industry:A comparative study of O3and O3/UV,Water Air Soil Pollut.226(2015)229–236.

    [19]Technical EIAguidance manual for distilleries,prepared for Ministry of Environment and Forests Government of India.By IL and FS Ecosmart Limited Hyderabad,September 2009.

    [20]W.Zhang,R.Xiong,G.Wei,Biological flocculation treatment on distillery wastewater and recirculation of wastewater,J.Hazard.Mater.172(2–3)(2006)1252–1257.

    [21]T.Watanabe,M.Tanaka,K.Masaki,T.Fujii,H.Iefuji,Decolorization and treatment of Kokuto-shochu distillery wastewater by the combination treatment involving biodecolorization and biotreatment byPenicillium oxalicumD,physical decolorization by ozonation and treatment by activated sludge,Biodegradation21(6)(2010)1067–1075.

    [22]S.Tiwari,P.Rai,S.K.Yadav,R.Gaur,A novel thermotolerantPediococcus acidilacticiB-25 strain for color,COD,and BOD reduction of distillery effluent for end use applications,Environ.Sci.Pollut.Res.20(6)(2013)4046–4058.

    [23]M.S.Lucas,A.Peres,G.L.Puma,Treatment of winery wastewater by ozone-based advanced oxidation processes(O3,O3/UV and O3/UV/H2O2)in a pilot-scale bubble column reactor and process economics,Sep.Purif.Technol.72(2010)235–241.

    [24]S.Basu,S.Mukherjee,A.Kaushik,V.Batra,M.Balakrishnan,Integrated treatment of molasses distillery wastewater using micro filtration(MF),J.Environ.Manag.158(2015)55–60.

    [25]C.Sagne,C.Fargues,R.Lewandowski,M.-L.Lameloise,M.Decloux,Screening of reverse osmosis membranes for the treatment and reuse of distillery condensates into alcoholic fermentation,Desalination219(1–3)(2008)335–347.

    [26]B.Kumar,Treatment of distillery effluent using activated charcoal, fly ash,wood ash for irrigation purpose,Int.J.Novel Res.Life Sci.2(2)(2015)27–39.

    [27]T.Mandal,S.Maity,D.Dasgupta,S.Datta,Advanced oxidation process and bio treatment:Their roles in combined industrial wastewater treatment,Desalination250(2010)87–94.

    [28]R.Krishna Prasad,S.N.Srivastava,Electrochemical degradation of distillery spent wash using catalytic anode:Factorial design of experiments,Chem.Eng.J.146(1)(2009)22–29.

    [29]F.Infant,A.Ponselvan,M.Kumar,J.R.Malviya,V.C.Srivastava,I.D.Mall,Electrocoagulation studies on treatment of biodigester effluent using aluminum electrodes,Water Air Soil Pollut.199(2009)371–379.

    [30]S.Apollo,M.S.Onyango,A.Ochieng,An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater,J.Hazard.Mater.26(2013)435–442.

    [31]K.V.Padoley,V.Kumar Saharan,S.N.Mudliar,R.A.Pandey,A.B.Pandit,Cavitationally induced biodegradability enhancement of a distillery wastewater,J.Hazard.Mater.219–220(2012)69–74.

    [32]P.C.Sangave,P.R.Gogate,A.B.Pandit,Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater,Chemosphere68(1)(2007)42–50.

    [33]J.Beltran-Heredia,J.Torregrosa,J.R.Dominguez,J.A.Peres,Comparison of the degradation ofp-hydroxybenzoic acid in aqueous solution by several oxidation processes,Chemosphere42(4)(2001)351–359.

    [34]H.Kusic,N.Koprivanac,A.L.Bozic,Minimization of organic pollutant content in aqueous solution by means of AOPs:UV-and ozone-based technologies,Chem.Eng.J.123(3)(2006)127–137.

    [35]E.C.Catalkaya,F.Kargi,Color,TOC and AOX removals from pulp mill effluent by advanced oxidation processes:A comparative study,J.Hazard.Mater.139(2)(2007)244–253.

    [36]J.J.Wu,J.S.Yang,M.Muruganandham,C.C.Wu,The oxidation study of 2-propanol using ozone-based advanced oxidation processes,Sep.Purif.Technol.62(2008)39–46.

    [37]C.H.Wu,H.-Y.Ng,Degradation of C.I.Reactive Red 2(RR2)using ozone-based systems:Comparisons of decolorization efficiency and power consumption,J.Hazard.Mater.152(1)(2008)120–127.

    [38]K.C.Pillai,T.O.won II,S.Moon,Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+,H2O2and UV light:Direct versus indirect ozonation reactions,App.Catal.B:Environ.91(1–2)(2009)319–328.

    [39]M.Hadavifar,A.A.Zinatizadeh,H.Younesi,M.Galehdar,Fenton and photo-Fenton treatment of distillery effluent and optimization of treatment conditions with response surface methodology,Asia Pac.J.Chem.Eng.5(3)(2009)454–464.

    [40]E.Oguz,B.Keskinler,Z.Celik,Ozonation of aqueous Bomaplex Red CR-L dye in a semi-batch reactor,Dyes Pigments64(2)(2005)101–108.

    [41]I.Arslan,I.A.Balcioglu,Effect of common reactive dye auxiliaries on the ozonation of vinylsulphone and aminochlorotriazine containing dyehouse effluents,Desalination130(1)(2014)61–71.

    [42]G.Mascolo,R.Ciannarella,L.Balest,A.Lopez,Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater:A laboratory investigation,J.Hazard.Mater.152(3)(2008)1138–1145.

    [43]M.Y.Ghaly,G.Hartel,R.Mayer,R.Haseneder,Photochemical oxidation of pchlorophenol by UV/H2O2and photo-Fenton process,a comparative study,Waste Manag.21(1)(2001)41–47.

    [44]A.K.De,B.Chaudhuri,S.Bhattacharjee,B.K.Dutta,Estimation of?OH radical reaction rate constants for phenol and chlorinated phenols using UV/H2O2photo-oxidation,J.Hazard.Mater.64(1999)91–104.

    [45]J.Saien,V.Moradi,A.R.Soleymani,Investigation of a jet mixing photo-reactor device for rapid dye discoloration and aromatic degradation via UV/H2O2process,Chem.Eng.J.183(2012)135–140.

    [46]P.K.Malik,S.K.Saha,Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst,Sep.Purif.Technol.31(3)(2003)241–250.

    [47]N.Modirshahla,M.A.Behnajady,F.Ghanbary,Decolorization and mineralization of C.I.Acid Yellow 23 by Fenton and photo-Fenton processes,Dyes Pigm.73(3)(2007)305–310.

    [48]M.Muruganandham,M.Swaminathan,Decolourisation of reactive Orange 4 by Fenton and photo-Fenton oxidation technology,Dyes Pigments63(3)(2004)315–321.

    [49]H.Katsumata,S.Kaneco,T.Suzuki,K.Ohta,Y.Yobiko,Photo-Fenton degradation of alachlor in the presence of citrate solution,J.Photochem.Photobiol.,A180(1–2)(2006)38–45.

    [50]K.Turhan,I.Durukan,S.A.Ozturkcana,Z.Turgut,Decolorization of textile basic dye in aqueous solution by ozone,Dyes Pigments92(3)(2012)897–901.

    [51]F.Feng,Z.Xu,X.Li,W.You,Y.Zhen,Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process,J.Environ.Sci.22(11)(2010)1657–1665.

    亚洲成人精品中文字幕电影 | 久久精品国产综合久久久| 免费久久久久久久精品成人欧美视频| 免费观看人在逋| 亚洲精品中文字幕一二三四区| a级片在线免费高清观看视频| 国产黄a三级三级三级人| 两个人免费观看高清视频| 国产一区二区三区视频了| 亚洲av片天天在线观看| 国产区一区二久久| 香蕉国产在线看| 国产单亲对白刺激| 国产亚洲欧美98| 久久精品国产99精品国产亚洲性色 | 正在播放国产对白刺激| 两性夫妻黄色片| 精品免费久久久久久久清纯| 日本精品一区二区三区蜜桃| 身体一侧抽搐| 亚洲成人精品中文字幕电影 | 国产亚洲欧美98| 男女高潮啪啪啪动态图| 在线观看日韩欧美| av欧美777| 国产有黄有色有爽视频| 香蕉国产在线看| √禁漫天堂资源中文www| 午夜日韩欧美国产| www日本在线高清视频| 美女国产高潮福利片在线看| 久久久久亚洲av毛片大全| 大型黄色视频在线免费观看| a级片在线免费高清观看视频| 亚洲av成人av| 桃红色精品国产亚洲av| 精品久久久久久成人av| 亚洲av片天天在线观看| 曰老女人黄片| 99国产精品一区二区三区| 国产精品免费视频内射| 亚洲成人免费av在线播放| 丰满的人妻完整版| 黄频高清免费视频| 中文欧美无线码| 国产97色在线日韩免费| 成人18禁高潮啪啪吃奶动态图| 91精品国产国语对白视频| 欧美日韩瑟瑟在线播放| 亚洲精品在线美女| 亚洲视频免费观看视频| 极品教师在线免费播放| 精品熟女少妇八av免费久了| 天堂中文最新版在线下载| 美女午夜性视频免费| 身体一侧抽搐| 久久国产精品男人的天堂亚洲| 少妇粗大呻吟视频| 亚洲精品一二三| 国产av精品麻豆| 99香蕉大伊视频| 极品人妻少妇av视频| 日本vs欧美在线观看视频| 老司机午夜福利在线观看视频| 久久国产精品人妻蜜桃| 免费在线观看完整版高清| 久久久久国产精品人妻aⅴ院| 国产1区2区3区精品| 久久精品亚洲精品国产色婷小说| 精品高清国产在线一区| 又紧又爽又黄一区二区| 嫩草影视91久久| 亚洲欧美精品综合一区二区三区| 黄色毛片三级朝国网站| 亚洲欧美精品综合久久99| 午夜精品久久久久久毛片777| 国产精品美女特级片免费视频播放器 | 免费不卡黄色视频| 黄色视频不卡| 天堂√8在线中文| 久久人人精品亚洲av| 两个人免费观看高清视频| 午夜福利在线免费观看网站| 男人操女人黄网站| 99久久国产精品久久久| 亚洲精品久久成人aⅴ小说| 99国产精品免费福利视频| 一级,二级,三级黄色视频| 操美女的视频在线观看| 人妻丰满熟妇av一区二区三区| 色播在线永久视频| 亚洲精品一卡2卡三卡4卡5卡| 精品人妻1区二区| 久久午夜综合久久蜜桃| bbb黄色大片| 欧美人与性动交α欧美精品济南到| 久久99一区二区三区| 伦理电影免费视频| 国产熟女xx| 欧美另类亚洲清纯唯美| 热99re8久久精品国产| 亚洲五月天丁香| 91av网站免费观看| 久热这里只有精品99| 伊人久久大香线蕉亚洲五| 一区二区日韩欧美中文字幕| 欧美成人性av电影在线观看| 老司机午夜十八禁免费视频| 色综合婷婷激情| 97碰自拍视频| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久毛片微露脸| 免费在线观看亚洲国产| 欧美中文综合在线视频| 黄色毛片三级朝国网站| 人妻丰满熟妇av一区二区三区| 99精品在免费线老司机午夜| 变态另类成人亚洲欧美熟女 | 色婷婷久久久亚洲欧美| 日韩中文字幕欧美一区二区| 久久久久亚洲av毛片大全| 国产精品香港三级国产av潘金莲| 国产三级黄色录像| 久久九九热精品免费| 免费久久久久久久精品成人欧美视频| 搡老熟女国产l中国老女人| 国产欧美日韩一区二区三区在线| 80岁老熟妇乱子伦牲交| 久久中文字幕一级| 亚洲人成伊人成综合网2020| 夜夜躁狠狠躁天天躁| 国产精品免费视频内射| 日本欧美视频一区| 久久久久久大精品| 国产av又大| 色尼玛亚洲综合影院| 国产精品乱码一区二三区的特点 | 男女午夜视频在线观看| 99在线人妻在线中文字幕| 黄片大片在线免费观看| 免费久久久久久久精品成人欧美视频| 免费在线观看视频国产中文字幕亚洲| 久久亚洲精品不卡| 热99re8久久精品国产| 老司机亚洲免费影院| 他把我摸到了高潮在线观看| 国产成人一区二区三区免费视频网站| 精品少妇一区二区三区视频日本电影| 久久久水蜜桃国产精品网| 操美女的视频在线观看| 精品国产超薄肉色丝袜足j| 女性生殖器流出的白浆| 亚洲精品国产一区二区精华液| 97人妻天天添夜夜摸| 日韩欧美三级三区| 国产成人欧美在线观看| 亚洲一区二区三区色噜噜 | 久久人人爽av亚洲精品天堂| 亚洲激情在线av| 18禁裸乳无遮挡免费网站照片 | 国产成人一区二区三区免费视频网站| 亚洲专区国产一区二区| 国产精品九九99| 中文字幕色久视频| 999精品在线视频| 免费高清在线观看日韩| 免费久久久久久久精品成人欧美视频| 97碰自拍视频| 日韩大码丰满熟妇| 好看av亚洲va欧美ⅴa在| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡免费网站照片 | 色婷婷av一区二区三区视频| 免费一级毛片在线播放高清视频 | 久热爱精品视频在线9| 在线观看日韩欧美| 两个人看的免费小视频| 一区二区三区激情视频| 午夜福利一区二区在线看| 最近最新中文字幕大全免费视频| 最新在线观看一区二区三区| 9色porny在线观看| 欧美国产精品va在线观看不卡| 乱人伦中国视频| 久久久久久久午夜电影 | 老司机深夜福利视频在线观看| 亚洲精品在线观看二区| 91成年电影在线观看| 黄色片一级片一级黄色片| 丁香六月欧美| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩精品亚洲av| 国产精品成人在线| 国产精品一区二区免费欧美| 亚洲精品成人av观看孕妇| av欧美777| 69av精品久久久久久| 精品午夜福利视频在线观看一区| 美国免费a级毛片| 99久久人妻综合| 免费女性裸体啪啪无遮挡网站| 91麻豆av在线| av免费在线观看网站| 一进一出好大好爽视频| 嫁个100分男人电影在线观看| 国产人伦9x9x在线观看| 一区二区三区激情视频| 国产男靠女视频免费网站| 亚洲av成人一区二区三| 久久久久久免费高清国产稀缺| 男女下面进入的视频免费午夜 | 久久人妻熟女aⅴ| 国产成人系列免费观看| 一二三四社区在线视频社区8| 亚洲国产精品一区二区三区在线| 少妇的丰满在线观看| 欧美乱色亚洲激情| 自线自在国产av| 国产一区二区激情短视频| 国产精品秋霞免费鲁丝片| 在线观看舔阴道视频| 神马国产精品三级电影在线观看 | 国产精品久久视频播放| 黑人欧美特级aaaaaa片| 三上悠亚av全集在线观看| 亚洲精品美女久久av网站| 国产精品美女特级片免费视频播放器 | 亚洲av熟女| 色综合欧美亚洲国产小说| 9热在线视频观看99| 日本五十路高清| 亚洲精品粉嫩美女一区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国内亚洲2022精品成人| 黄色 视频免费看| 成在线人永久免费视频| 国产精品亚洲av一区麻豆| 国产成+人综合+亚洲专区| 最好的美女福利视频网| 最近最新中文字幕大全免费视频| 精品午夜福利视频在线观看一区| 一边摸一边抽搐一进一出视频| 成人三级黄色视频| 久久人妻福利社区极品人妻图片| 最新在线观看一区二区三区| 亚洲国产精品合色在线| 午夜福利一区二区在线看| 日韩大码丰满熟妇| 可以在线观看毛片的网站| 国产男靠女视频免费网站| 99国产综合亚洲精品| 亚洲熟妇熟女久久| 亚洲中文字幕日韩| 亚洲片人在线观看| 91成年电影在线观看| 69精品国产乱码久久久| 国产亚洲精品综合一区在线观看 | a级片在线免费高清观看视频| 国产色视频综合| 久久热在线av| 女人被躁到高潮嗷嗷叫费观| 五月开心婷婷网| 午夜老司机福利片| 免费一级毛片在线播放高清视频 | 男人舔女人下体高潮全视频| 狠狠狠狠99中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲人成网站在线播放欧美日韩| 日韩欧美一区视频在线观看| 1024视频免费在线观看| xxxhd国产人妻xxx| 国产成人av激情在线播放| 日本黄色视频三级网站网址| 亚洲一码二码三码区别大吗| 亚洲午夜理论影院| 19禁男女啪啪无遮挡网站| 亚洲avbb在线观看| 亚洲国产精品999在线| 99精品久久久久人妻精品| 欧美日韩国产mv在线观看视频| 午夜a级毛片| 欧美日韩视频精品一区| 亚洲av五月六月丁香网| 日本a在线网址| 久久青草综合色| 国产主播在线观看一区二区| 色综合欧美亚洲国产小说| 亚洲av片天天在线观看| 精品一品国产午夜福利视频| www国产在线视频色| 亚洲 欧美 日韩 在线 免费| 高清毛片免费观看视频网站 | 80岁老熟妇乱子伦牲交| 亚洲免费av在线视频| 在线观看www视频免费| 18禁美女被吸乳视频| 亚洲色图综合在线观看| 在线免费观看的www视频| 色综合欧美亚洲国产小说| 波多野结衣高清无吗| 久久九九热精品免费| 9热在线视频观看99| 国产午夜精品久久久久久| 最近最新中文字幕大全电影3 | 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在| 黄频高清免费视频| 亚洲一区二区三区不卡视频| 久久精品影院6| 国产高清videossex| 日韩成人在线观看一区二区三区| 欧美丝袜亚洲另类 | 9热在线视频观看99| 色在线成人网| 淫秽高清视频在线观看| 午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| 欧美成狂野欧美在线观看| a在线观看视频网站| 欧美丝袜亚洲另类 | 精品人妻1区二区| 最近最新中文字幕大全免费视频| 天堂影院成人在线观看| 一进一出抽搐gif免费好疼 | 欧美 亚洲 国产 日韩一| 婷婷六月久久综合丁香| 99在线视频只有这里精品首页| 亚洲国产欧美网| 国产主播在线观看一区二区| 国产欧美日韩一区二区精品| 咕卡用的链子| 国产精品国产av在线观看| 18禁黄网站禁片午夜丰满| 久久 成人 亚洲| 巨乳人妻的诱惑在线观看| 欧美激情高清一区二区三区| 美女扒开内裤让男人捅视频| av免费在线观看网站| 成年人免费黄色播放视频| 人妻久久中文字幕网| 成人av一区二区三区在线看| 性色av乱码一区二区三区2| 午夜免费鲁丝| 在线观看一区二区三区激情| 国产av又大| 热99国产精品久久久久久7| 国产一区二区在线av高清观看| 大码成人一级视频| 精品一区二区三区视频在线观看免费 | 国产一区二区三区综合在线观看| 十分钟在线观看高清视频www| 色老头精品视频在线观看| a级片在线免费高清观看视频| 国产国语露脸激情在线看| 色婷婷久久久亚洲欧美| 亚洲精品美女久久久久99蜜臀| 久99久视频精品免费| 日韩国内少妇激情av| 亚洲激情在线av| 国产av又大| 亚洲专区字幕在线| 欧美黑人欧美精品刺激| 免费不卡黄色视频| 国产精品亚洲一级av第二区| 久久久久久大精品| 欧美中文综合在线视频| 97碰自拍视频| 免费搜索国产男女视频| 亚洲欧洲精品一区二区精品久久久| 国产成人欧美| 国产免费现黄频在线看| 日韩欧美在线二视频| 午夜两性在线视频| 国产亚洲精品久久久久5区| √禁漫天堂资源中文www| 乱人伦中国视频| 久久99一区二区三区| 岛国在线观看网站| 精品一区二区三区四区五区乱码| 亚洲av成人一区二区三| 久久国产乱子伦精品免费另类| 99久久99久久久精品蜜桃| 亚洲av五月六月丁香网| 国产一区二区三区视频了| 国产成人精品在线电影| 天天添夜夜摸| 女人精品久久久久毛片| 欧美成人午夜精品| 精品久久久久久久毛片微露脸| 在线播放国产精品三级| 伊人久久大香线蕉亚洲五| 神马国产精品三级电影在线观看 | 国内毛片毛片毛片毛片毛片| av国产精品久久久久影院| 欧美黄色淫秽网站| 热99国产精品久久久久久7| 日本精品一区二区三区蜜桃| 国产成人一区二区三区免费视频网站| 精品少妇一区二区三区视频日本电影| 国产成年人精品一区二区 | 日韩免费高清中文字幕av| 在线观看一区二区三区| 久久天堂一区二区三区四区| 天堂动漫精品| 国产亚洲欧美精品永久| 欧美成人午夜精品| 99精国产麻豆久久婷婷| 制服人妻中文乱码| 亚洲精品一区av在线观看| 午夜福利在线观看吧| av电影中文网址| 国产精品二区激情视频| 精品久久蜜臀av无| 久久精品91蜜桃| 日韩欧美免费精品| 亚洲在线自拍视频| 日韩视频一区二区在线观看| 欧美成人免费av一区二区三区| 亚洲精品中文字幕在线视频| 亚洲九九香蕉| 成人影院久久| 亚洲国产精品999在线| 99国产综合亚洲精品| 欧美色视频一区免费| 成人黄色视频免费在线看| 宅男免费午夜| 精品福利观看| 一级毛片女人18水好多| 色婷婷av一区二区三区视频| 老司机午夜福利在线观看视频| 日本三级黄在线观看| 日韩精品青青久久久久久| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 91字幕亚洲| 电影成人av| 黑人操中国人逼视频| 他把我摸到了高潮在线观看| 99久久精品国产亚洲精品| 国产亚洲精品久久久久久毛片| 欧美日韩乱码在线| 1024香蕉在线观看| 久久中文字幕人妻熟女| 黄片播放在线免费| 精品久久久久久,| 欧美精品一区二区免费开放| 亚洲专区字幕在线| 在线观看一区二区三区激情| 久久性视频一级片| 91在线观看av| 国产精品乱码一区二三区的特点 | 亚洲成人久久性| 大型av网站在线播放| 9191精品国产免费久久| 黄色视频不卡| 精品国产乱子伦一区二区三区| 国产av一区二区精品久久| 最新在线观看一区二区三区| 悠悠久久av| 亚洲国产欧美一区二区综合| 色播在线永久视频| 91麻豆精品激情在线观看国产 | 久久人人精品亚洲av| 久久久久九九精品影院| 日韩国内少妇激情av| 亚洲人成77777在线视频| 50天的宝宝边吃奶边哭怎么回事| 国产蜜桃级精品一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲三区欧美一区| 最近最新中文字幕大全免费视频| 一级毛片女人18水好多| 久久精品国产清高在天天线| 91麻豆av在线| 婷婷精品国产亚洲av在线| 黄片大片在线免费观看| 97人妻天天添夜夜摸| 黄色视频,在线免费观看| 精品国产乱子伦一区二区三区| 丁香欧美五月| 免费不卡黄色视频| 亚洲成人免费电影在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一级黄色大片毛片| 叶爱在线成人免费视频播放| 在线观看免费高清a一片| 人人妻人人爽人人添夜夜欢视频| 欧美精品一区二区免费开放| e午夜精品久久久久久久| 国产精品国产高清国产av| 深夜精品福利| 嫁个100分男人电影在线观看| 91在线观看av| 长腿黑丝高跟| 91麻豆精品激情在线观看国产 | 91九色精品人成在线观看| 1024香蕉在线观看| 高清av免费在线| 999精品在线视频| 免费人成视频x8x8入口观看| 99国产精品99久久久久| 在线永久观看黄色视频| 亚洲第一欧美日韩一区二区三区| 乱人伦中国视频| 欧美日韩福利视频一区二区| 在线观看www视频免费| 日韩av在线大香蕉| 国产熟女xx| 国产免费现黄频在线看| 人人妻人人添人人爽欧美一区卜| 一区福利在线观看| 亚洲国产中文字幕在线视频| 国产在线观看jvid| 国产麻豆69| 黑人巨大精品欧美一区二区蜜桃| 18美女黄网站色大片免费观看| 日韩国内少妇激情av| 成人亚洲精品一区在线观看| 人妻丰满熟妇av一区二区三区| 久久中文看片网| 制服人妻中文乱码| 两个人免费观看高清视频| e午夜精品久久久久久久| 免费在线观看影片大全网站| 亚洲五月婷婷丁香| 国产亚洲精品久久久久久毛片| 99国产精品99久久久久| 国产成人系列免费观看| 日本一区二区免费在线视频| 在线观看免费视频日本深夜| 精品福利永久在线观看| 国产精品久久久久成人av| 日韩欧美免费精品| 亚洲一区二区三区不卡视频| 一个人免费在线观看的高清视频| 一级毛片高清免费大全| 99国产精品免费福利视频| 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 欧美黄色淫秽网站| 日本五十路高清| 视频区图区小说| 午夜视频精品福利| 亚洲av熟女| 两个人看的免费小视频| 在线观看一区二区三区激情| 操美女的视频在线观看| 韩国精品一区二区三区| 视频区图区小说| 亚洲 国产 在线| 日韩有码中文字幕| 每晚都被弄得嗷嗷叫到高潮| 成人手机av| 久久久久久免费高清国产稀缺| 日韩人妻精品一区2区三区| 手机成人av网站| 最近最新中文字幕大全免费视频| 欧美日韩精品网址| 国产成人精品久久二区二区91| 岛国在线观看网站| 老鸭窝网址在线观看| 久久久久国产精品人妻aⅴ院| 淫秽高清视频在线观看| 国产aⅴ精品一区二区三区波| 国产精品久久久人人做人人爽| 狂野欧美激情性xxxx| 波多野结衣高清无吗| 18禁黄网站禁片午夜丰满| 亚洲av成人不卡在线观看播放网| 久久久精品国产亚洲av高清涩受| av免费在线观看网站| 欧美在线一区亚洲| 欧美日韩精品网址| 久久人妻熟女aⅴ| 午夜91福利影院| 精品国产乱码久久久久久男人| 精品久久久精品久久久| 亚洲狠狠婷婷综合久久图片| 99精品在免费线老司机午夜| av有码第一页| 国产人伦9x9x在线观看| 久久国产精品男人的天堂亚洲| 极品人妻少妇av视频| 国产男靠女视频免费网站| 在线av久久热| 久久久国产欧美日韩av| 久久久国产成人精品二区 | 男人操女人黄网站| 老司机靠b影院| 日本vs欧美在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品午夜福利视频在线观看一区| 国产高清激情床上av| 午夜免费鲁丝| 久久久水蜜桃国产精品网| 欧美最黄视频在线播放免费 | 首页视频小说图片口味搜索| 国产又色又爽无遮挡免费看| 最新美女视频免费是黄的| 成年人免费黄色播放视频| 美女福利国产在线| 中文字幕另类日韩欧美亚洲嫩草| 日韩国内少妇激情av| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 国产精品美女特级片免费视频播放器 | 99精品欧美一区二区三区四区| 亚洲欧美日韩高清在线视频| 视频区欧美日本亚洲| 亚洲专区字幕在线| 亚洲黑人精品在线| 亚洲 欧美 日韩 在线 免费| 美女 人体艺术 gogo| 国产成人系列免费观看| 欧美中文综合在线视频|