• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Infrared thin layer drying of saffron(Crocus sativus L.)stigmas:Mass transfer parameters and quality assessment

    2017-05-28 08:50:09MehdiTorkiHarcheganiDavoudGhanbarianVidaMaghsoodiAhmadMoheb

    Mehdi Torki-Harchegani*,Davoud Ghanbarian ,Vida Maghsoodi,Ahmad Moheb

    1 Young Researchers and Elite Club,Shahrekord Branch,Islamic Azad University,Shahrekord,Iran

    2 Department of Mechanical Engineering of Biosystems,Shahrekord University,Shahrekord,Iran

    3 Department of Chemical and Petroleum Engineering,Sharif University of Technology,Tehran,P.O.Box 11155-9465,Iran

    4 Department of Chemical Engineering,Isfahan University of Technology,Isfahan 84156-83111,Iran

    1.Introduction

    Saffron is the commercial name of the dried stigmas of a flower scientifically identified asCrocus sativusL.It is widely used as a spice in foods[1].Iran is the most important saffron producer in the world with a share of 90%of the total production[2].After harvesting,a dehydration process is necessary to convertC.sativusL.stigmas into saffron spice.To maintain the product quality for a longer time,the moisture content should be reduced at least below 12%[3,4].Drying causes necessary changes in the physical,biochemical,and chemical properties and brings desired attributes of saffron.The main attributes that determine the market value and quality of saffron are color,aroma,and taste and the compounds responsible for these attributes are crocins,safranal and picrocrocin,respectively[5].The effect of different drying on these components has been studied by some researchers[1,2,5,6].

    Generally,the dehydration methods are classified as traditional and industrial drying.Open sun and shade drying are the traditional methods still widely used because of their simplicity and low investment costs[7].These drying methods are still used in Iran,India and Morocco for saffron stigmas drying.However,these methods pose some problems such as long drying time,and dust and microbial contamination of the dried materials[8].Artificial drying methods are carried out at higher temperatures and have been employed in saffron processing in some countries such as Spain,Greece,and Italy[5].In spite of some advantages for industrial dryers,including achievement of hygienic conditions,quality control and reduction of product loss and process duration,energy requirement in drying technology is one of the key problems that should be overcame.The drying process generally consumes large amounts of energy and releases carbon oxides to the environment.Therefore,it is crucial not only to assurance for good quality of the dried products but also high energy efficiency and low environmental impact[9].

    Infrared radiation(IR)is one of the increasingly popular methods for supplying heat for drying of moist materials.The IR is known as an artificial drying method increases the moist material temperature and evaporates its moisture by action of infrared wavelength radiation from a source that interacts with the internal structure of the product.The IR heating presents some advantages such as decreasing drying time,high-energy efficiency and lower environmental impact.The energy of radiated waves is transferred from the source to the sample product without heating surrounding air leading to higher temperature in the inner layers of the samples in compared to the surrounding and more heat transfer[10].

    To design new dryers or improve the existing ones,and control the drying systems,mathematical models are used to model and simulate the drying process[11].Theoretical,semi-theoretical and empirical models are the main proposed mathematical models used to describe the drying behavior of agricultural materials[12].Theoretical simulations are realistic and can give an explanation for phenomena occurring during drying process but,they are more difficult and require a substantial amount of computing time due to the complexity of diffusion equations governing the process[13].The empirical models derive a direct correlation between average moisture content and drying time and neglect the drying process fundamentals[12].The semitheoretical models offer a compromise between theory and ease of application and are generally derived from direct solution of Fick's second law by assuming some simplifications[14].

    Considerable studies have been carried out to drying and also to determine moisture diffusion and convective moisture transfer coefficient of agricultural products.Nonetheless,very rare researches have been reported about saffron drying kinetics[15,16]and,to the best of our knowledge,no information about mass transfer parameters of saffron stigmas is available in the literature.

    The main objectives of the present study were to investigate the infrared drying kinetics of saffron stigmas at different temperatures,determine the mass transfer parameters(effective moisture diffusivity and convective mass transfer coefficient)and assess the quality characteristics of saffron stigmas.

    2.Materials and Methods

    2.1.Dehydration experiments

    Full-bloomedC.sativusL. flowers were picked from farms in Torbathheydariye,Northeast Iran(35°16′N and 59°14′E),and stored in a refrigerator at 4°C until the experiments were started.The stigmas for the experiments were separated by hand from the flowers at 24°C indoors.The average initial moisture content of the stigmas was determined using oven drying at 103°C and atmospheric pressure,and approximately obtained to be 4.26 g water per gram dry matter.The drying experiments were carried out with infrared waves,using a Shimadzu Electronic Moisture Balancer Model LIBROR EB-340MOC at six different temperatures of 60,70,80,90,100 and 110°C.For each experiment,5 g of the fresh stigmas was distributed uniformly in the instrument pan in a thin layer with about 0.7 mm thickness.The moisture loss was recorded at 2 min intervals during drying process and the experiments were continued until the samples lot was dried to the final moisture content of about 0.1 g water per gram dry matter.At each drying temperature,the experiments were replicated three times and the average values were used[15].

    2.2.Determination of mass transfer parameters

    The main mechanism of moisture transfer during drying of most biological materials is liquid and/or vapor diffusion[17].Assuming isotropic behavior of the samples with regard to the water diffusivity,Fick's second law of unsteady state diffusion is used to describe the moisture movement in drying process as follows[16]:

    Many authors have used Crank's solution of the Fick's second law of diffusion for different shaped materials to determine the effective moisture diffusivity[10,18–20].In the present study,the Dincer and Dost model was performed to determine moisture transfer parameters of saffron stigmas undergoing infrared treatment.Dincer and Dost[21,22]presented a solution for one-dimensional transient equation for different geometric shaped moist objects by applying the following assumptions[21,22]:

    –Constant thermo-physical properties for the solid object and drying fluid,

    –Ignoring effect of heat transfer on mass transfer and,

    –Occurring of moisture diffusivity in the radial direction in the solid cylinder and sphere,and in the thickness direction in the slab.

    Applying these conditions,the equation and its initial and boundary conditions for a slab are written in the following form:

    whereDis the effective moisture diffusivity(m2·s?1),kis the convective mass transfer coefficient(m·s?1),tis drying time(s),yis the distance from the center(m),andLis half thickness of the sample(m).In addition,M,M0,MeandMsare the instantaneous,initial,equilibrium and surface moisture contents of the samples(g water per gram dry matter,g·g?1),respectively.

    The solution of Eq.(2)with the governing initial and boundary conditions yields dimensionless moisture ratio distribution as the following form:

    In Eqs.(8)and(9),μnis then-th root of the transcendental characteristic equation(dimensionless).Also,FoandBiare the Fourier and Biot number,respectively and for a slab with the thickness of 2Lare defined as:

    For negligible small values of Fourier number,Eq.(6)can be simpliifed to the first term only[17]:

    In Eq.(13),Grepresents lag factor(dimensionless)and is obtained by regressing the dimensionless values of moisture ratio and drying time in the exponential form of Eq.(15)using the least square curvefitting method[17]:

    whereSrepresents the drying coefficient(s?1).

    In Eq.(14),μ1is the first root of the transcendental characteristic equation and can be calculated with respect to Biot number(Bi)for in finite slab geometry by using Eq.(16)[24]:

    Both Eqs.(12)and(15)are in the same form and can be equated.Therefore,by havingA1=Gand replacing Eqs.(10)and(14),the effective diffusivity for slab products is given in the following form:

    To determine the mass transfer parameters based on the Dincer and Dost model,the following procedure was applied[25]:

    –Using the least square curve- fitting method,the moisture ratio values and drying time were regressed in the form of Eq.(15)and the lag factor(G)and drying coefficient(S)were determined.

    –The Biot number was calculated through Eq.(13).

    – The value of μ1was determined from Eq.(16).

    –The moisture diffusivity was calculated using Eq.(17).

    –The moisture transfer coefficient was obtained from Eq.(11).

    To validate the applicability of the Dincer and Dost model to describe the experimental drying curves,the dimensionless moisture ratio values were determined as follows:

    –Having the effective diffusivity,Fowas calculated by using Eq.(10).

    –TheB1was obtained from Eq.(14).

    –Finally,by havingA1=G,the moisture ratio was determined through Eq.(12).

    2.3.Activation energy(Ea)

    To determine activation energy,the effective moisture diffusivity values were related with drying temperature by using simple Arrhenius equation as follows[26]:

    whereDois the constant equivalent to the diffusivity at in finitely high temperature or Arrhenius constant(m2·s?1),Ris the universalgas constant(8.314 × 10?3kJ·mol?1·K?1),Tabsis the absolute temperature(K),andEais the activation energy(kJ·mol?1).

    The activation energy was determined by presenting natural logarithmic of ln(D)versus1/Tabs.

    2.4.Chemical analysis of the samples

    Saffron samples were powdered and passed through a 40 mesh sieve.The crocins,picrocrocin,and safranal contents of the samples were analyzed following the ISO 3632 standard.Measurements of E1%of an aqueous saffron extract at 442,330 and 257 nm were carried out with a 1 cm pathway cell on a Shimadzu UV–Visible 1100 spectrophotometer.Also,moisture content was also determined according to ISO 3632[27].

    2.5.Error analysis

    To evaluate fitting quality of the models to the experimental data,correlation coefficient(R2),and root mean square error(RMSE)were used.These parameters are defined as[28]:

    where MRexp,iis thei-th experimental moisture ratio,MRpre,iis thei-th predicted moisture ratio,MRis the average of all experimental moisture ratios,andNis the number of the observations.

    3.Results and Discussion

    3.1.Drying time and drying rate

    Table 1 shows the average drying duration and dehydration rate values for the saffron stigmas under infrared treatment at different temperatures.It is evident that drying temperature had significant effect on drying time where the required time to reach the final moisture content at the temperatures of 60 and 110°C was about 95 and 32 min,respectively.From the table,per each 10°C increment in the drying temperature in the range of 60 °C to 100 °C caused approximately 20%reduction in the drying time and as the temperature increased from100 °C to 110 °C,the drying time decreased about 14%.The maximum(0.129 g·g?1·min?1)and the minimum(0.043 g·g?1·min?1)drying rate values were obtained for drying temperatures of 110 °C and 60 °C,respectively.The same results about drying temperature effect on the process duration and dehydration rate for various biological materials dried by using different drying methods have been reported in literature such as hot air drying of rapeseed[19]and sweet potato[29],microwave drying of spinach[30]and mint leaves[31],and infrared drying of mint leaves[32]and watermelon seeds[33].Some factors such as inherent properties,initial and final moisture content of the product,drying method and drying conditions affect drying time of the agricultural materials.At higher temperatures,the heat transfer rate between thermal source and thematerial is more which leads to faster moisture evaporation and shorter drying duration.In spite of low drying time and consumed energy,due to damaging effects on physico-chemical properties of the dried materials,high temperatures are not recommended for drying food and agricultural products.

    Table 1Average drying time and drying rate for infrared drying of saffron pigments at different temperatures

    Variations of drying rate(g·g?1·min?1)as a function of moisture ratio at different drying temperatures are presented in Fig.1[15].The curves show that the drying process of the saffron stigmas occurred in a short accelerating rate period(warming-up)at the start followed by a falling rate period.This phenomenon has been reported for irradiated drying of high moisture content material[24,33,34].This accelerating rate period is usually negligible in the overall drying cycle,but in some cases it is significant.From Fig.1,it is clear that with an increment in drying temperature caused an increment in the warming-up period.However,this period is so limited and the main part of the drying process of the saffron stigmas took place in the falling rate period entirely.Zhenget al.[35]reported that drying of almost all biological products takes place in the falling rate period indicating that diffusion is the dominant mechanism for removing the moisture from them.In the falling-rate period,water migration from the product interior to the surface is mostly by molecular diffusion,i.e.the water flux is proportional to the moisture content gradient[35].This means that water moves from zones with higher moisture content to zones with lower values,a phenomenon explained by the second law of thermodynamics[23].

    Fig.1.Variation in drying rate with moisture content for saffron stigmas during infrared drying at various temperatures[15].

    3.2.Mass transfer parameters

    Table 2 indicates the lag factor(G)and drying coefficient(S)obtained by using least square method and regressing the experimental moisture ratio against drying time according to Eq.(15).In addition,the values of Biot number(Bi),effective moisture diffusivity(D)and connective mass transfer coefficient(k)are presented in Table 3.

    Table 2Drying coefficient(S)and lag factor(G),MR=G exp(?St),for infrared drying of saffron pigments at different temperatures

    Table 3Calculated values of mass transfer parameters by Dincer and Dost model during infrared drying of saffron pigments at different temperatures

    Drying coefficient shows the capability of a solid object drying per unit time and the drying process is directly related to this parameter.As the results show,the drying coefficient varies from 4.75× 10?4to 16.11× 10?4s?1.Kayaet al.[17]reported the drying coefficient for some regularly shape agricultural products such as slab carrot(0.20×10?4to 0.41 × 10?4s?1),slab pumpkin(0.16 × 10?4to 0.33 ×10?4s?1)and cylindrical carrot(0.19 × 10?4to 0.39 × 10?4s?1)dried in a convective hot air dryer at temperatures of 30,40,50 and 60 °C and constant air flow rate of 1 m·s?1[17].From the obtained results,the drying coefficient increased with increasing drying air temperature.This is due to the fact that an increment in drying temperature increases the heat and mass transfer between the heating media and solid object and consequently,leads to a higher drying capability of the object.Babaliset al.[36]reported the same results for convective hot air drying of figs in the temperature range of 55–85 °C and the air flow rate in the range of 0.5–3 m·s?1[36].

    The lag factor is an indicator of magnitude of both internal and external resistances of a solid object to the heat and/or moisture transfer during drying process as a function of the Biot number.There are three cases of the Biot number:Bi<0.1,0.1<Bi<100 andBi>100.The case ofBi<0.1 indicates that minor internal resistance and major surface resistance across the boundary layer(external resistance)to moisture transfer and moisture gradient inside the product are so small while,Bi>100 means that internal resistance is much more than external resistance.The case of 0.1<Bi<100 indicates the existence of both finite internal and surface resistances and is known as the mostcommon case for the drying applications[37].The calculated Biotnumber values were in the range of0.7373–0.8333,indicating the presence of the both internal and external resistances to moisture transfer,which is consistent with reported results on literature for eggplant slices[38]and broccoli[39].

    The results shown in Table 3 indicate that the moisture diffusivity values were in the range of 1.1103×10?10to 4.1397× 10?10m2·s?1which are comparable with reported values in literature for biological productse.g.,0.72 × 10?10to 3.78 × 10?10m2·s?1for watermelon seeds[33],0.62× 10?10to 3.55 × 10?10m2·s?1for orange slices[40]and 0.3982×10?10to 2.0732 × 10?10m2·s?1for mint leaves[31].In addition,the obtained moisture diffusivity values lie within the general range of 10?11–10?9m2·s?1for food materials[41].The effect of drying temperature on the moisture diffusivity can be discussed by using Fig.2.From this figure,any increment in the drying temperature leads to an increment in the diffusivity.In fact,an increase in temperature causes a decrease in water viscosity and increases the activity of water molecules.These phenomena facilitate diffusion of water molecules in object capillaries and consequently,increase the moisture diffusivity.The same results have been reported in literature by researchers for infrared drying of tomato slices[42],convective drying of sweet cherry[43]and infrared drying of wet olive husk[10].

    In addition,the effect of temperature on the effective diffusivity formulated by an exponential function with a good accuracy(R2>0.93):

    The convective mass transfer coefficient(CMTC)of the saffron stigmas was calculated on the basis of theD,BiandLvalues and by using Eq.(11).The CMTC values were obtained to be in the range of 2.6433× 10?7to 8.7203× 10?7m·s?1(Table 3).These values are comparable with the reported values for eggplant(6.478 × 10?7–2.190 × 10?6m·s?1)[38]and for whole lemons(1.660 × 10?8–1.497×10?7m·s?1)[23].In addition,the effect of drying temperature on the CMTC can be discussed by using Fig.3.The results show that the CMTC increased with drying temperature with the following function:

    Fig.2.Effect of drying temperature on effective diffusivity of saffron stigmas.

    Fig.3.Effect of drying temperature on convective mass transfer coefficient of saffron stigmas.

    Activation energy is defined as the measure of necessary energy needed to initiate the moisture diffusion from the internal regions of the material.The activation energy for infrared drying of saffron stigmas was determined from the simple Arrhenius equations.Fig.4 illustrates the graph of lnDagainst 1/Tabs.TheEavalue was determined to be 27.86 kJ·mol?1that is in consistent with the reported values for rapeseed(28.47 kJ·mol?1)[19],oyster mushroom(22.23 kJ·mol?1)[44]and sour variety pomegranates(23.83 kJ·mol?1)[45].

    3.3.Validation of the model

    To validate the applicability of the Dincer and Dost model to describe the drying curves of saffron stigmas,the dimensionless moisture ratio pro files for all drying temperatures were determined by using Eq.(12).The experimental and computed pro files of the moisture ratio variation of the samples during drying process are presented in Fig.5(a–b).From the figure,it is clear that the predicted values are in agreement with the experimental data with a reasonable accuracy for a wide range of experimental conditions.

    Fig.4.Arrhenius type relationship between effective moisture diffusivity and reciprocal of absolute temperature.

    3.4.Chemical composition

    Fig.5.Variation in experimental and predicted moisture ratios by the Dincer and Dost model with drying time for drying temperatures of 60,80 and 100°C(a),and 70,90 and 110°C(b).

    Fig.6 shows the average crocin,safranal and picrocrocin contents of the samples dried at different temperatures.The crocin content increased,when dehydration temperature of the samples increased up to 90 °C but in higher temperatures(100 °C and 110 °C)the amount of crocin decreased slightly.It is clear that,the mostincrement in crocin content(approximately 37%)occurred when the drying temperature increased from 60 °C to 70 °C.In addition,as the temperature increased from 70 °C to 80 °C,and 80 °C to 90 °C,the crocin content increased about5%and 0.62%,respectively.This is probably due to thermal degradation in high temperatures orbiode gradation in low temperatures.The loss of crocin occurring in the higher temperature treatments would be the result of nonenzymatic thermal degradation,but it would appear that by keeping the high temperature in relatively short time,this loss was minimized and no enzymatic degradation would have occurred and the enzymes were denatured.Saeidiradet al.[6]reported that the crocin amount decreased with increasing of drying temperature during drying of the saffron in a convective hot air dryer at temperatures of 50,60 and 70 °C and air velocity of 0.5 and 1 m·s?1.Acaret al.[2]dried the saffron by using freeze drying and sun drying methods,and reported that freeze dried samples contained almost 40%more crocin than the sun dried samples.They attributed the low crocin content of the samples dried naturally under the sun to longer drying time that causes increased enzymatic activity and consequently,resulting in more crocin degradation[2].Also,Acaret al.[2]reported that during the freeze drying,due to extremely low water activity values(because free water is frozen)and low drying temperatures,thermal and enzymatic degradation of the stigmas of the saffron were prevented[2].

    The safranal content increased with an increment in drying temperature in the range of 70–110 °C and decreased slightly when drying temperature increased from 60 °C to 70 °C.Significant increment in the safranal contents at high temperatures is most likely due to direct thermal conversion of picrocrocin at these high temperatures(100–110°C in IR drying)as opposed to the enzymatic pathway.These treatments also exhibited equal or significantly better retention of crocin pigment in comparison to the lower temperatures.This finding is in contrast with the previous work which is conducted by Carmonaet al.[5].They dried saffron by using hot air at temperatures of 70,90 and 110°C and reported that increasing drying temperature decreased safranal content of saffron.Similar results in terms of positive drying temperature effect on safranal content have been reported for hot air drying of saffron by Saeidiradet al.[6].

    From Fig.6,it can be seen that the amount of picrocrocin increased from 83.1 to 93.1 as the drying temperature increased from 60°C to 110°C.This observation is in contrast with the theory postulated by some authors that the drying temperature is responsible for safranal generation from picrocrocin where safranal and picrocrocin had relatively same trends according to drying temperature and both of them increased with increasing temperature[1,46,47].Also,contrary to the illustrated bibliography,Carmonaet al.[5]observed that an increment in drying temperature caused a decrement in both safranal and picrocrocin contents of dried saffron.They attributed this phenomenon to the hypothesis that isolated picrocrocin is transformed into safranal by chemical,thermal or enzymatic treatment[5].

    Fig.6.Effect of drying temperature on crocin,safranal and picrocrocin contents in the saffron dried under infrared treatment.

    4.Conclusions

    Drying kinetics,moisture transfer parameters and quality attributes of saffron stigmas during infrared treatment at different temperatures(60,70,…,110 °C)were studied.The main findings obtained from the study can be summarized as follows:

    1.The dehydration process of the samples occurred in a short accelerating rate period at the start followed by a falling rate period.

    2.The Biot number values indicated the existence of simultaneous finite internal and surface resistance to moisture transfer.

    3.Any increase in drying temperature increased the mass transfer parameters where the effective moisture diffusivity and convective moisture transfer coefficient varied from 1.1103 × 10?10m2·s?1to 4.1397 × 10?10m2·s?1and from 2.6433 × 10?7to 8.7203 ×10?7m·s?1,respectively.

    4.The maximum values of crocin and safranal were obtained in the samples treated at the highest temperature.

    5.The amount of picrocrocin increased from 83.1 to 93.3 as the drying temperature increased from 60 °C to 100 °C.

    [1]C.D.Kanakis,D.J.Daferera,P.A.Tarantilis,M.G.Polissiou,Qualitative determination of volatile compounds and quantitative evaluation of safranal and 4-hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde(HTCC)in Greek saffron,J.Agric.Food Chem.52(14)(2004)4515–4521.

    [2]B.Acar,H.Sadikoglu,M.Ozkaymak,Freeze drying of saffron(Crocus sativusL.),Dry.Technol.29(14)(2011)1627.

    [3]ISO 3632,Saffron(Crocus sativusL.),Part 1(Specification)and Part 2(Test Methods),International Organization for Standardization,Genève.Switzerland,1993.

    [4]G.L.Alonso,R.Varón,M.R.Salinas,F.Navarro,Auto-oxidation of crocin and icrocrocin in saffron under different storage conditions,Boll.Chim.Farm.132(4)(1993)116–120.

    [5]M.Carmona,A.Zalacain,J.E.Pardo,E.López,A.Alvarruiz,G.L.Alonso,In fluence of different drying and aging conditions on saffron constituents,J.Agric.Food Chem.53(10)(2005)3974–3979.

    [6]M.H.Saeidirad,P.Sharayei,S.Zarifneshat,Effect of drying temperature,air velocity and flower types on dried saffron flower quality,Agric.Eng.Int.16(4)(2014)251–254.

    [7]Y.Soysal,Microwave drying characteristics of parsley,Biosyst.Eng.89(2)(2004)167–173.

    [8]E.Demiray,Y.Tulek,Thin-layer drying of tomato(Lycopersicum esculentum Mill.cv.Rio Grande)slices in a convective hot air dryer,Heat Mass Transf.48(5)(2012)841–847.

    [9]M.Aghbashlo,H.Mobli,S.Ra fiee,A.Madadlou,A review on exergy analysis of drying processes and systems,Renew.Sustain.Energy Rev.22(2013)1–22.

    [10]A.R.Celma,S.Rojas,F.Lopez-Rodríguez,Mathematical modeling of thin-layer infrared drying of wet olive husk,Chem.Eng.Process.47(9&10)(2008)1810–1818.

    [11]S.Simal,A.Femenia,M.C.Garau,C.Rosselló,Use of the exponential,Page's and diffusional model to simulate the drying kinetics of kiwi fruit,J.Food Eng.66(3)(2005)323–328.

    [12]C.L.Hii,C.L.Law,M.Cloke,Modeling using a new thin layer drying model and product quality of cocoa,J.Food Eng.90(2)(2009)191–198.

    [13]P.N.Sarsavadia,R.L.Sawhney,D.R.Pangavhane,S.P.Singh,Drying behaviour of brined onion slices,J.Food Eng.40(3)(1999)219–226.

    [14]E.K.Akpinar,Determination of suitable thin layer drying curve model for some vegetables and fruits,J.Food Eng.73(1)(2006)75–84.

    [15]E.Akhondi,A.Kazemi,V.Maghsoodi,Determination of a suitable thin layer drying curve model for saffron(Crocus sativusL.)stigmas in an infrared dryer,Sci.Iran.18(6)(2011)1397–1401.

    [16]B.Acar,H.Sadikoglu,I.Doymaz,Freeze-drying kinetics and diffusion modeling of saffron(Crocus sativusL.),J.Food Process.Preserv.39(2)(2015)142–149.

    [17]A.Kaya,O.Aydin,I.Dincer,Comparison of experimental data with results of some drying models for regularly shaped products,Heat Mass Transf.46(5)(2010)555–562.

    [18]G.P.Sharma,R.C.Verma,P.B.Pathare,Thin-layer infrared radiation drying of onion slices,J.Food Eng.67(3)(2005)361–366.

    [19]L.A.Duc,J.W.Han,D.H.Keum,Thin layer drying characteristics of rapeseed(Brassica napusL.),J.Stored Prod.Res.47(1)(2011)32–38.

    [20]S.M.Tasirin,I.Puspasari,A.W.Lun,P.V.Chai,W.T.Lee,Drying of kaffir lime leaves in a fluidized bed dryer with inertparticles:Kinetics and quality determination,Ind.Crop.Prod.61(2014)193–201.

    [21]I.Dincer,S.Dost,An analytical model for moisture diffusion in solid objects during drying,Dry.Technol.13(1&2)(1995)425–435.

    [22]I.Dincer,S.Dost,A modelling study for moisture diffusivities and moisture transfer coefficients in drying of solid objects,Int.J.Energy Res.20(6)(1996)531–539.

    [23]M.Torki-Harchegani,D.Ghanbarian,M.Sadeghi,Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods,Heat Mass Transf.51(8)(2015)1121–1129.

    [24]M.Sadeghi,O.Mirzabeigi Kesbi,S.A.Mireei,Mass transfer characteristics during convective,microwave and combined microwave-convective drying of lemon slices,J.Sci.Food Agric.93(3)(2013)471–478.

    [25]M.Beigi,Influence of drying air parameters on mass transfer characteristics of apple slices,Heat Mass Transf.52(2016)2213–2221.

    [26]T.Y.Tunde-Akintunde,Effect of pretreatments on drying characteristics and energy requirements ofplantain(Musa aab),J.Food Process.Preserv.38(4)(2014)1849–1859.

    [27]V.Maghsoodi,A.Kazemi,E.Akhondi,Effect of different drying methods on saffron(Crocus sativusL.)quality,Iran.J.Chem.Chem.Eng.31(2)(2012)85–89.

    [28]M.Torki-Harchegani,M.Ghasemi-Varnamkhasti,D.Ghanbarian,M.Sadeghi,M.Tohidi,Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment,Heat Mass Transf.52(2)(2016)281–289.

    [29]N.J.Singh,R.K.Pandey,Convective air drying characteristics of sweet potato cube(Ipomoea batatasL.),Food Bioprod.Process.90(2)(2012)317–322.

    [30]I.A.Ozkan,B.Akbudak,N.Akbudak,Microwave drying characteristics of spinach,J.Food Eng.78(2)(2007)577–583.

    [31]B.?zbek,G.Dadali,Thin-layer drying characteristics and modeling of mint leaves undergoing microwave treatment,J.Food Eng.83(4)(2007)541–549.

    [32]C.Ertekin,N.Heybeli,Thin-layer infrared drying of mint leaves,J.Food Process.Preserv.38(4)(2014)1480–1490.

    [33]I.Doymaz,Experimental study and mathematical modeling of thin-layer infrared drying of watermelon seeds,J.Food Process.Preserv.38(3)(2014)1377–1384.

    [34]A.Esehaghbeygi,K.Pirnazari,M.Sadeghi,Quality assessment of electrohydrodynamic and microwave dehydrated banana slices,LWT Food Sci.Technol.55(2)(2014)565–571.

    [35]D.J.Zheng,Y.Q.Cheng,H.J.Liu,L.T.Li,Investigation of EHD-enhanced water evaporation and a novel empirical model,Int.J.Food Eng.7(2)(2011),http://dx.doi.org/10.2202/1556-3758.1796.

    [36]S.J.Babalis,V.G.Belessiotis,In fluence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs,J.Food Eng.65(3)(2004)449–458.

    [37]I.Dincer,Moisture transfer analysis during drying of slab woods,Heat Mass Transf.34(4)(1998)317–320.

    [38]X.Liu,H.Hou,J.Chen,Applicability of moisture transfer parameters estimated by correlation between Biot number and lag factor(Bi–G correlation)for convective drying of eggplant slices,Heat Mass Transf.49(11)(2013)1595–1601.

    [39]V.Mrkic,M.Ukrainczyk,B.Tripalo,Applicability of moisture transferBi–Dicorrelation for convective drying of broccoli,J.Food Eng.79(2)(2007)640–646.

    [40]S.Ra fiee,M.Shari fi,A.Keyhani,M.Omid,A.Jafari,S.S.Mohtasebi,H.Mobli,Modeling effective moisture diffusivity oforange slices(Thompson Cv.),Int.J.Food Prop.13(1)(2010)32–40.

    [41]A.Maskan,S.Kaya,M.Makan,Hot air and sun drying of grape leather(pestil),J.Food Eng.54(1)(2002)81–88.

    [42]R.Sadin,G.R.Chegini,H.Sadin,The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer,HeatMass Transf.50(4)(2014)501–507.

    [43]I.Doymaz,O.Isamil,Drying characteristics of sweet cherry,Food Bioprod.Process.89(1)(2011)31–38.

    [44]Y.Tulek,Drying kinetics of oyster mushroom(Pleurotus ostreatus)in a convective hot air dryer,J.Agric.Sci.Technol.13(5)(2011)655–664.

    [45]S.Minaei,A.Motevali,E.Ahmadi,M.H.Azizi,Mathematical models of drying pomegranate arils in vacuum and microwave dryers,J.Agric.Sci.Technol.14(2)(2012)311–325.

    [46]H.Himeno,K.Sano,Synthesis of crocin,picrocrocin and safranal by saffron stigmalike structures proliferated in vitro,Agric.Biol.Chem.51(9)(1987)2395–2400.

    [47]P.Winterhalter,R.M.Straubinger,Saffron.Renewed interest in an ancient spice,Food Rev.Int.16(1)(2000)39–59.

    国产精品.久久久| 亚洲成a人片在线一区二区| 国产亚洲欧美精品永久| 色综合婷婷激情| 建设人人有责人人尽责人人享有的| 国产精品香港三级国产av潘金莲| 51午夜福利影视在线观看| 黄色片一级片一级黄色片| 久久热在线av| 动漫黄色视频在线观看| 美女高潮喷水抽搐中文字幕| 汤姆久久久久久久影院中文字幕| 日本一区二区免费在线视频| 色播在线永久视频| 亚洲美女黄片视频| 狠狠婷婷综合久久久久久88av| 国产成人av教育| 高清av免费在线| 国产成+人综合+亚洲专区| 成人国产一区最新在线观看| 极品教师在线免费播放| 亚洲精品乱久久久久久| 女性被躁到高潮视频| 免费黄频网站在线观看国产| 亚洲国产精品一区二区三区在线| 国产亚洲午夜精品一区二区久久| 亚洲五月色婷婷综合| 一区二区日韩欧美中文字幕| 色精品久久人妻99蜜桃| 两个人看的免费小视频| 亚洲精品中文字幕在线视频| 女人久久www免费人成看片| 波多野结衣一区麻豆| 国产在线精品亚洲第一网站| 久久久久久久大尺度免费视频| 欧美老熟妇乱子伦牲交| 视频在线观看一区二区三区| 国产精品一区二区免费欧美| 久久久久久人人人人人| 午夜福利在线免费观看网站| bbb黄色大片| 国产精品电影一区二区三区 | 亚洲全国av大片| 99在线人妻在线中文字幕 | 国产成人av激情在线播放| 日韩一区二区三区影片| 亚洲成av片中文字幕在线观看| 亚洲人成电影观看| 最近最新中文字幕大全电影3 | 丝瓜视频免费看黄片| 国产午夜精品久久久久久| 免费观看a级毛片全部| 怎么达到女性高潮| 老熟女久久久| 亚洲精品中文字幕一二三四区 | 国产91精品成人一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 啦啦啦 在线观看视频| 午夜精品久久久久久毛片777| 50天的宝宝边吃奶边哭怎么回事| 日韩制服丝袜自拍偷拍| 久久中文字幕一级| 男女高潮啪啪啪动态图| 老汉色∧v一级毛片| 免费在线观看完整版高清| 国产成人影院久久av| 中文字幕最新亚洲高清| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久男人| 欧美黄色淫秽网站| 欧美日韩精品网址| 黄片小视频在线播放| 超色免费av| 丰满迷人的少妇在线观看| 建设人人有责人人尽责人人享有的| 国产精品免费一区二区三区在线 | 日本撒尿小便嘘嘘汇集6| 亚洲欧美一区二区三区久久| 在线观看一区二区三区激情| 99riav亚洲国产免费| 国产日韩一区二区三区精品不卡| 午夜视频精品福利| 国产精品自产拍在线观看55亚洲 | 超碰成人久久| 日韩精品免费视频一区二区三区| 两性夫妻黄色片| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 黑丝袜美女国产一区| 在线av久久热| 一边摸一边抽搐一进一出视频| 一区福利在线观看| 丝袜人妻中文字幕| 国精品久久久久久国模美| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 三级毛片av免费| 99久久99久久久精品蜜桃| 在线观看人妻少妇| 最新的欧美精品一区二区| 久久影院123| 国产精品久久久久久精品古装| 国产午夜精品久久久久久| 亚洲国产av新网站| 五月天丁香电影| 成年动漫av网址| 免费看十八禁软件| 国产成人免费无遮挡视频| 亚洲精品在线观看二区| 一级,二级,三级黄色视频| 久久影院123| 少妇粗大呻吟视频| 免费高清在线观看日韩| 亚洲第一欧美日韩一区二区三区 | 中文字幕人妻丝袜制服| av天堂久久9| 国产一区二区三区视频了| 女性生殖器流出的白浆| 女人精品久久久久毛片| 国产日韩欧美视频二区| 一个人免费在线观看的高清视频| 成人国语在线视频| 国产日韩欧美视频二区| 性高湖久久久久久久久免费观看| 色综合欧美亚洲国产小说| 亚洲欧美精品综合一区二区三区| 黄色视频不卡| 欧美日韩亚洲国产一区二区在线观看 | 波多野结衣一区麻豆| 成人精品一区二区免费| 国产真人三级小视频在线观看| 久久免费观看电影| 窝窝影院91人妻| 精品亚洲乱码少妇综合久久| 亚洲一区二区三区欧美精品| 久久久久久久久免费视频了| 国产男靠女视频免费网站| 狠狠精品人妻久久久久久综合| 精品亚洲成a人片在线观看| 嫩草影视91久久| 亚洲全国av大片| 99国产精品一区二区三区| 一区二区三区乱码不卡18| 水蜜桃什么品种好| 国产在线观看jvid| 久久精品aⅴ一区二区三区四区| 巨乳人妻的诱惑在线观看| 国产精品香港三级国产av潘金莲| 他把我摸到了高潮在线观看 | 麻豆国产av国片精品| 色婷婷av一区二区三区视频| 国产精品免费大片| 黄色怎么调成土黄色| a级毛片黄视频| 蜜桃国产av成人99| 国产男靠女视频免费网站| 日韩欧美一区视频在线观看| 啦啦啦 在线观看视频| 少妇裸体淫交视频免费看高清 | 久久ye,这里只有精品| 9191精品国产免费久久| 亚洲欧美激情在线| 精品人妻1区二区| 热99久久久久精品小说推荐| 国产一区二区三区在线臀色熟女 | 午夜免费成人在线视频| 亚洲成人国产一区在线观看| 大陆偷拍与自拍| 欧美乱妇无乱码| 高潮久久久久久久久久久不卡| 乱人伦中国视频| 国产成人精品久久二区二区91| 成人18禁高潮啪啪吃奶动态图| 亚洲专区中文字幕在线| 亚洲一码二码三码区别大吗| 久久国产亚洲av麻豆专区| 精品亚洲成国产av| 波多野结衣一区麻豆| 一本综合久久免费| 黄片小视频在线播放| 色婷婷av一区二区三区视频| 精品一区二区三区视频在线观看免费 | 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| av网站在线播放免费| 动漫黄色视频在线观看| 99精国产麻豆久久婷婷| 成人18禁高潮啪啪吃奶动态图| 午夜免费成人在线视频| 成人黄色视频免费在线看| 日韩免费高清中文字幕av| av视频免费观看在线观看| 在线观看免费午夜福利视频| 国产精品久久久久久精品电影小说| 国产欧美日韩精品亚洲av| 两人在一起打扑克的视频| 女同久久另类99精品国产91| 男女免费视频国产| 99久久99久久久精品蜜桃| 久久毛片免费看一区二区三区| 日本一区二区免费在线视频| 亚洲精品在线美女| 交换朋友夫妻互换小说| 午夜福利影视在线免费观看| 啦啦啦 在线观看视频| 高清av免费在线| 三上悠亚av全集在线观看| 交换朋友夫妻互换小说| 一区二区三区乱码不卡18| 久久中文看片网| 国产97色在线日韩免费| 免费在线观看影片大全网站| 午夜福利在线观看吧| 亚洲av片天天在线观看| kizo精华| 法律面前人人平等表现在哪些方面| 每晚都被弄得嗷嗷叫到高潮| 亚洲av第一区精品v没综合| 搡老乐熟女国产| 国产野战对白在线观看| 99精品久久久久人妻精品| 国产精品久久久久久精品电影小说| 国产在线免费精品| 黑人欧美特级aaaaaa片| 巨乳人妻的诱惑在线观看| 99精品久久久久人妻精品| 亚洲色图av天堂| 19禁男女啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 9热在线视频观看99| 黄色视频不卡| 青青草视频在线视频观看| 国产日韩欧美在线精品| 午夜精品久久久久久毛片777| 欧美日韩av久久| 性高湖久久久久久久久免费观看| 日本av手机在线免费观看| 国产真人三级小视频在线观看| 精品国产乱码久久久久久小说| 亚洲欧美精品综合一区二区三区| 99精国产麻豆久久婷婷| 亚洲欧美日韩高清在线视频 | 亚洲精品久久午夜乱码| 精品人妻在线不人妻| 性少妇av在线| 12—13女人毛片做爰片一| 日本a在线网址| 啦啦啦中文免费视频观看日本| avwww免费| 国产麻豆69| 黄网站色视频无遮挡免费观看| 亚洲性夜色夜夜综合| 国产精品一区二区免费欧美| 欧美午夜高清在线| 国产成人啪精品午夜网站| 十八禁高潮呻吟视频| 91国产中文字幕| 免费日韩欧美在线观看| 国产有黄有色有爽视频| 色播在线永久视频| 女性生殖器流出的白浆| 国产99久久九九免费精品| 午夜福利乱码中文字幕| 老司机午夜福利在线观看视频 | 91国产中文字幕| 美女国产高潮福利片在线看| 极品教师在线免费播放| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 国产高清国产精品国产三级| 亚洲国产成人一精品久久久| 亚洲av第一区精品v没综合| 日日摸夜夜添夜夜添小说| 久久精品国产综合久久久| 精品亚洲成国产av| 99久久精品国产亚洲精品| 亚洲精品中文字幕在线视频| 青草久久国产| 亚洲中文字幕日韩| a在线观看视频网站| 岛国在线观看网站| 露出奶头的视频| 成人18禁在线播放| 两个人免费观看高清视频| 在线av久久热| 亚洲成人免费av在线播放| 中文字幕人妻熟女乱码| 黄网站色视频无遮挡免费观看| 纵有疾风起免费观看全集完整版| 免费在线观看视频国产中文字幕亚洲| www.999成人在线观看| 一本色道久久久久久精品综合| 久久青草综合色| 男人操女人黄网站| 午夜久久久在线观看| 一本久久精品| 人人妻,人人澡人人爽秒播| 日本黄色日本黄色录像| 国产熟女午夜一区二区三区| 在线观看免费高清a一片| 久久久久久久大尺度免费视频| 色94色欧美一区二区| 波多野结衣一区麻豆| 亚洲成人手机| 精品亚洲成国产av| 亚洲精品中文字幕一二三四区 | 欧美日韩黄片免| 欧美黑人欧美精品刺激| bbb黄色大片| 欧美乱码精品一区二区三区| 97在线人人人人妻| 久久中文字幕一级| 色尼玛亚洲综合影院| 国产成人欧美| 如日韩欧美国产精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 久久人妻熟女aⅴ| 精品高清国产在线一区| 性高湖久久久久久久久免费观看| 成人精品一区二区免费| 91成年电影在线观看| 日日爽夜夜爽网站| 高清视频免费观看一区二区| 怎么达到女性高潮| 国产欧美亚洲国产| 日日摸夜夜添夜夜添小说| 十八禁网站网址无遮挡| 国精品久久久久久国模美| 亚洲久久久国产精品| 欧美精品av麻豆av| 国产不卡av网站在线观看| 午夜成年电影在线免费观看| 他把我摸到了高潮在线观看 | 黄色视频不卡| 99国产精品99久久久久| 国产免费现黄频在线看| 99九九在线精品视频| 91成年电影在线观看| 午夜福利视频精品| 成人亚洲精品一区在线观看| 久久精品国产综合久久久| 90打野战视频偷拍视频| 99九九在线精品视频| 亚洲av电影在线进入| 中文字幕av电影在线播放| 天堂动漫精品| 免费在线观看日本一区| 啦啦啦 在线观看视频| 脱女人内裤的视频| 欧美激情极品国产一区二区三区| 热re99久久国产66热| 日韩熟女老妇一区二区性免费视频| 啦啦啦视频在线资源免费观看| 十八禁网站免费在线| 国产成人av激情在线播放| 人妻一区二区av| 国产一区二区 视频在线| 欧美午夜高清在线| 精品一区二区三区av网在线观看 | 欧美国产精品一级二级三级| 国产不卡av网站在线观看| 欧美大码av| 亚洲视频免费观看视频| 两个人看的免费小视频| 国产一区二区三区综合在线观看| 亚洲精品av麻豆狂野| 欧美日本中文国产一区发布| 精品少妇内射三级| 欧美日韩亚洲综合一区二区三区_| 搡老熟女国产l中国老女人| 精品久久久久久久毛片微露脸| 99国产精品99久久久久| 丝袜美腿诱惑在线| 亚洲一区中文字幕在线| 亚洲av国产av综合av卡| 另类精品久久| bbb黄色大片| 黑人巨大精品欧美一区二区蜜桃| 久久久久久亚洲精品国产蜜桃av| 亚洲国产毛片av蜜桃av| 欧美一级毛片孕妇| 少妇被粗大的猛进出69影院| 欧美久久黑人一区二区| 成年人免费黄色播放视频| 黄色毛片三级朝国网站| 亚洲九九香蕉| 在线 av 中文字幕| 又大又爽又粗| 免费在线观看影片大全网站| 久久久精品国产亚洲av高清涩受| 日韩成人在线观看一区二区三区| 一级片'在线观看视频| 久久狼人影院| 伦理电影免费视频| 国产欧美日韩精品亚洲av| 日日爽夜夜爽网站| 久久中文字幕一级| 国产精品久久久久久精品电影小说| av超薄肉色丝袜交足视频| 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频| 热99re8久久精品国产| 亚洲av成人不卡在线观看播放网| 十分钟在线观看高清视频www| 在线观看一区二区三区激情| 男女高潮啪啪啪动态图| 一二三四社区在线视频社区8| 亚洲色图综合在线观看| 天天添夜夜摸| 久久久久网色| 免费人妻精品一区二区三区视频| 免费在线观看影片大全网站| 日本撒尿小便嘘嘘汇集6| 欧美av亚洲av综合av国产av| 国产精品 欧美亚洲| 久久天堂一区二区三区四区| 99精品在免费线老司机午夜| 精品国产一区二区三区久久久樱花| 美国免费a级毛片| 亚洲欧美一区二区三区黑人| 一二三四在线观看免费中文在| 汤姆久久久久久久影院中文字幕| 亚洲国产成人一精品久久久| 成人国产av品久久久| 最新在线观看一区二区三区| 精品国产一区二区三区四区第35| 一级毛片电影观看| 99re6热这里在线精品视频| 国产精品电影一区二区三区 | 色婷婷av一区二区三区视频| 自线自在国产av| 日本撒尿小便嘘嘘汇集6| 国产日韩欧美亚洲二区| 国产亚洲欧美精品永久| 久久av网站| 久久 成人 亚洲| 国产男女超爽视频在线观看| 757午夜福利合集在线观看| 最近最新免费中文字幕在线| 丝袜在线中文字幕| 十分钟在线观看高清视频www| 久久狼人影院| 天堂8中文在线网| 视频区欧美日本亚洲| 在线观看一区二区三区激情| 人妻久久中文字幕网| 国产不卡av网站在线观看| 免费在线观看日本一区| 日韩欧美免费精品| 精品少妇一区二区三区视频日本电影| 99精品久久久久人妻精品| 精品亚洲成a人片在线观看| 2018国产大陆天天弄谢| 人人妻人人爽人人添夜夜欢视频| 亚洲中文日韩欧美视频| 久久精品国产亚洲av高清一级| 少妇 在线观看| 日本av免费视频播放| 伊人久久大香线蕉亚洲五| 亚洲成国产人片在线观看| 一区福利在线观看| 久久青草综合色| 午夜福利在线免费观看网站| 欧美精品啪啪一区二区三区| 在线观看免费日韩欧美大片| 韩国精品一区二区三区| 午夜激情久久久久久久| 人妻一区二区av| 亚洲av片天天在线观看| 夜夜爽天天搞| 国产高清视频在线播放一区| 狂野欧美激情性xxxx| 欧美午夜高清在线| 丝袜美足系列| 国产精品 国内视频| 黄色 视频免费看| 首页视频小说图片口味搜索| 成年动漫av网址| 亚洲欧洲日产国产| 久热这里只有精品99| 大片电影免费在线观看免费| 97在线人人人人妻| 桃红色精品国产亚洲av| 久久精品亚洲熟妇少妇任你| 欧美激情极品国产一区二区三区| 欧美大码av| 精品乱码久久久久久99久播| 精品午夜福利视频在线观看一区 | 亚洲七黄色美女视频| 女人爽到高潮嗷嗷叫在线视频| 大香蕉久久网| 国产1区2区3区精品| 国产精品九九99| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| 看免费av毛片| 日本黄色日本黄色录像| 亚洲色图综合在线观看| 久久久水蜜桃国产精品网| 一级毛片女人18水好多| 欧美黑人欧美精品刺激| 久久久久久久久免费视频了| 亚洲成av片中文字幕在线观看| 国产成人av激情在线播放| 国产在线视频一区二区| 精品国产乱子伦一区二区三区| 亚洲专区中文字幕在线| 午夜福利一区二区在线看| 国产精品亚洲av一区麻豆| av线在线观看网站| 亚洲免费av在线视频| 波多野结衣av一区二区av| 熟女少妇亚洲综合色aaa.| 久久精品国产亚洲av香蕉五月 | bbb黄色大片| 欧美 日韩 精品 国产| 最黄视频免费看| 黄色 视频免费看| 国产成人av教育| 飞空精品影院首页| 99热国产这里只有精品6| 超碰97精品在线观看| 一区二区三区精品91| 日韩中文字幕欧美一区二区| 嫁个100分男人电影在线观看| 日韩中文字幕欧美一区二区| 青草久久国产| 老汉色∧v一级毛片| 别揉我奶头~嗯~啊~动态视频| 成人av一区二区三区在线看| 欧美人与性动交α欧美精品济南到| 飞空精品影院首页| 99久久国产精品久久久| av天堂在线播放| 少妇的丰满在线观看| 日韩精品免费视频一区二区三区| 午夜成年电影在线免费观看| 欧美午夜高清在线| 亚洲欧美日韩高清在线视频 | 国产精品电影一区二区三区 | 五月天丁香电影| 免费女性裸体啪啪无遮挡网站| 高清欧美精品videossex| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 久久中文字幕一级| 亚洲色图av天堂| 免费看十八禁软件| 国产高清视频在线播放一区| 欧美黄色淫秽网站| 精品国产一区二区三区四区第35| 黄色丝袜av网址大全| 啦啦啦 在线观看视频| 黑人操中国人逼视频| 国内毛片毛片毛片毛片毛片| 午夜91福利影院| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 亚洲av第一区精品v没综合| 免费日韩欧美在线观看| 一级片免费观看大全| 建设人人有责人人尽责人人享有的| 亚洲色图 男人天堂 中文字幕| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频| 亚洲国产毛片av蜜桃av| 欧美中文综合在线视频| 日韩欧美三级三区| 在线观看免费高清a一片| 中文字幕另类日韩欧美亚洲嫩草| 国产精品国产高清国产av | 黄片大片在线免费观看| 12—13女人毛片做爰片一| 欧美日韩一级在线毛片| 国产男靠女视频免费网站| 欧美成人免费av一区二区三区 | 黄色视频不卡| av免费在线观看网站| 性少妇av在线| 99re6热这里在线精品视频| 下体分泌物呈黄色| 日韩一卡2卡3卡4卡2021年| 久久av网站| 欧美激情久久久久久爽电影 | 久久精品国产亚洲av香蕉五月 | 国产精品久久久av美女十八| 国产精品电影一区二区三区 | 久久热在线av| 国产成人精品无人区| 91字幕亚洲| 最近最新中文字幕大全电影3 | 最黄视频免费看| 一进一出好大好爽视频| 高清欧美精品videossex| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区三| av不卡在线播放| 视频区图区小说| 国产伦理片在线播放av一区| 久久久久网色| 99热网站在线观看| 欧美日本中文国产一区发布| 在线观看66精品国产| 老司机午夜福利在线观看视频 | 亚洲欧美日韩高清在线视频 | 好男人电影高清在线观看| 国产日韩一区二区三区精品不卡| 国产成人精品无人区| 97在线人人人人妻| 脱女人内裤的视频| 又大又爽又粗| 日韩视频在线欧美| 黑人操中国人逼视频| 午夜精品久久久久久毛片777|