• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The kinetic analysis of optimization and selective transportation of Cu(II)ions with TNOA as carrier by MDLM system☆

    2017-05-28 08:50:06DonatDurmazCetili

    R.Donat*,?.Durmaz ,H.Ceti?li

    1 Department of Chemistry,Faculty of Sciences Arts,Pamukkale University,20070 K?n?kl?,Denizli,Turkey

    2 Department of Chemistry,Faculty of Sciences Arts,Afyon Kocatepe University,03200 Afyon,Turkey

    1.Introduction

    The last ten years have witnessed a series of milestone contributions which inspired researchers to discover new research areas.Along with the developments in especially industry,the amount of wastes dropped into the environment has increased apparently.Among them,Cu(II)ion containing industrial wastes caused by mining,electroplating,printed circuit board manufacturing,metal processing,hydrometallurgical,and electric industries threatens the environment because of their toxicity[1,2].

    By forming complexes with proteins,copper is a fundamental element for biochemical reactions of proteins,enzymes and coenzymesviasubstituting metal ions in several catalytic or structural processes[3,4].Copper deficiency can lead to many diseases in humans,such as hematological deficiencies,anemia,neutropenia,thrombocytopenia,and skin depigmentation.On the other hand,high level of copper deposits or consumption can cause intestinal distress,kidney damage,and anemia.Additionally,ingestion of large amount of copper sulfate can result in even death[4].The most dangerous form of Cu(II)to living organisms and the most abundant copper species is cupric ion[5].

    Nowadays,due to some advantages of traditional separation and solid membrane techniques such as the lower capital and operating costs,low energy consumption,high concentration factors,high fluxes,etc.,for the extraction and recovery of heavy metals from aqueous solutions,liquid membrane systems are being used by researchers[5,6].

    There are different methods to extract and retrieve Cu(II)ions from aqueous solutions like chemical precipitation,reverse osmosis,ion exchange,solvent extraction,membrane filtration and adsorption[5].But these techniques have some problems such as less effectiveness,delicate running conditions,resulting secondary sludge,high fundamental and running costs,and additional high-cost ejection[5,7].

    In liquid membrane systems,kerosene,hexane,chloroformbased,benzene,dinitrile and chlorinated organic solvents are used as organic solvents[5,6,8–14].Different carriers have been conducted for the transportation of Cu(II)ionsvialiquid membrane systems such as DEHPA,erythromycin ethyl succinate,D2EHPA,CYANEX 272,LIX 984 N,pyridine-2-acetaldyde benzoylhydrazone(2-APBH),2,2′-bis(p-octyloxybenzyl)diethylenetriamine(bis-pODET),Acorga M5640(salicylaldoxime derivative),LIX 54,and TNOA[2,3,8,15–20].

    Selective extraction of Cu(II)ions has been carried out in different studies such as separation of Cu(II),Co(II),and Ni(II)ions with TOA and TlOA as carrier[21],simultaneous extraction of Cu(II),Zn(II),Fe(III),and Ni(II)ions with Cyanex 272 as carrier[22],selective transport of copper ions with 8-hydroxy quinoline as carrier[23],and the removal of Cd(II)and Cu(II)ions with Aliquat 336 as a carrier[24].

    In the previous work[25],transportation of Mo(VI)ions achieved successfullyviamulti-dropped liquid membrane(MDLM)system used tri-n-octylamine(TNOA)as the carrier with the help ofNa2CO3as acceptor phase.

    The intention of this article is not only to high light the transportation of Cu(II)ions attractively but also to universalize our newly designed MDLM system and expose pathways to be followed by scientists.Firstly,the batch transportation study was first performed to figure out the optimumcircumstances through the MDLM technique.Secondly,selective transportation of Cu(II)ions with alkaline,alkaline earth,and different heavy metal ions at optimum conditions of single Cu(II)extraction was conducted.MDLM system was handled to examine the particular parameters involving the transportation rate of copper by TNOA in kerosene.TNOA is selected as carrier since it is water insoluble and can form oil soluble salts of anionic species at low pH[8].

    2.Materials and Methods

    2.1.Chemicals and solutions

    Refined kerosene was provided by TUPRA? A.? (Turkish Petroleum Refineries Company),copper(II)chloride,ammonium molybdate,iron(III)nitrate,zinc nitrate,sodium chloride,potassium chloride,calcium chloride,bariumchloride,sulphuric acid,tri-n-octylamine(TNOA),thiosemicarbazide and all other chemicals were acquired by Merck.

    Stock solutions of 250 mg·L?1Cu(II),Fe(III),Mo(VI),and Zn(II)were prepared by CuCl2·2H2O,Fe(NO3)3·9H2O,(NH4)6Mo7O24·4H2O,and Zn(NO3)2·6H20,respectively and other concentrations of these solutions were made up by serial dilution of the stock solution.

    Stock solution of 100 mg·L?1Na+,K+,Ca2+,and Ba2+was prepared by NaCl,KCl,CaCl2and BaCl2,respectively.All solutions were prepared in double distilled water,and the solution pH was adjusted by adding either 0.10 mol·L-1HCl or NH4OH solution as required.

    2.2.Experimental setup

    Batch experiments were accomplished by MDLM technique.More detailed information about how MDLM system work can be found in the previous studies[20,25].During the analysis of Cu(II)ions,samples were drawn from the first(donor phase)and second reactor(acceptor phase)in 10 minute time interval and analyzed by UV vis spectrophotometer(thiosemicarbazide method λ=357 nm)[26].

    2.3.Analytical instruments

    All absorbance measurements of Cu(II)ions in solutions were performed by Shimazdu UV-1201 V Model spectrophotometer with 1.00 cm quartz cells.In the batch experiments;to fix the temperature,Circu-WCR-P8 Wise model creosote device;to fix upon the concentration of Cu(II)ions in the solution,Shimazdu UV-1201 V model spectrophotometer;in order to transport the organic phase from one reactor to the other and supply compressive force,BT30-2 J(YZ1515X titled)peristaltic pump device and finally;for the determination of pH changes of the solution,WTW model Microprocessor pH meter is applied[20].Flame spectrophotometer is applied for the determination of alkaline and alkaline earth metalions,and ICP-OES is used for the determination of Cu(II),Zn(II),Fe(II),and Mo(VI)ions in the selective extraction.

    2.4.Data analysis

    Determination of Cu(II)ion concentration in the donor,organic and acceptor phase is explained in details in the previous studies[20,25].Summary of some formulas used for the calculations are given below.

    whereRd,Rm,andRastand for the dimensionless reduced concentrations of Cu(II)in the donor,organic,and acceptor phases,respectively;k1andk2are pseudo- first-order apparent rate constants of the extraction and stripping,respectively;andJrepresents the flux rate.

    The kinetics of the transportation process through MDLM were described as a first-order reaction in metal ion concentration:

    whereCeis the metal ion concentration at a given time in the feed phase,Cois the initial concentration of metal ion in the feed phase,kis the rate constant(min?1),andtis the time(min).Thekvalues were determined by the plots of ln(Co/Ce)vs.time.

    The percentage of metal ions transported was determined according to Eq.(6):

    where Cu(II)strip(t)is the metal concentration in the stripping phase at elapsed time and Cu(II)(o)is the initial concentration of metal ions.

    3.Results and Discussions

    3.1.Single continuous extraction of Cu(II)ions

    3.1.1.Effect of pH of donor phase

    In this subsection,experiments were conducted to find the effect of pH of donor phase on the transportation of Cu(II)ions from donor phaseviaTNOA as organic carrier to acceptor phase in order to evaluate the performance of the MDLM system and obtain the best conditions for maximum extraction.Three sets of experiments were carried out in the pH range of donor phase from 8 to 10.pH of the donor phase is set by diluted ammonium solutions and the initial concentration of 100 ml of Cu(II)ions 250 mg·L?1as well as the temperature(298.15 K)and flow rates of both donor and acceptor phase were kept constant as 50 ml·min?1.100 ml 0.10 mol·L?1H2SO4is used as acceptor phase.The liquid membrane phase is composed of 100 ml 5.00 × 10?3mol·L?1TNOA as carrier in kerosene.

    Kinetic pro files of each phase(donor,membrane and acceptor)at different pH of the donor phase are presented in Fig.1.

    Cu(II)extraction and stripping processes obey consecutive first order reaction kinetics and reaction rate constants assume different values at different pH of donor phase.Hence,the plots of ln(Co/Ce)vs.time graph is given in Fig.2.

    Accordingly,when TNOA is used as carrier,in conjunction with Cu(II)ions in the membrane phase,more than 99%of Cu(II)ions transported from donor phase to acceptor phase.Transportation duration for pH of 8,9,and 10 is 140,120,130 min,respectively.

    Alagurajet al.removed Cu(II)ions from feed solution using emulsified liquid membrane,obtained best results at pH of feed solution range 8 to 10 H2SO4are used as acceptor phase and extraction of copper ions increased by decrease in the acidity of the feed solution[8].Sadeghiet al.transported Cu(II)ions selectively through the bulk liquid membrane with 93.50%transport efficiency mediated by erythromycin ethyl succinate(EES).Maximum extraction occurred by maintaining the pH of the feed solution at6.00 and the pH of the stripping phase that is L-histidine at 7.00[3].

    The molecular structure and the chemistry of organic carrier in the complexation and transport processes are one of the most important factors ruling the selectivity of the membrane.And also,the carrier molecular structures can be adjusted to manage as particular selectivity[27].

    Summary of the mechanism of Cu(II)extractionviaMDL Msystem is illustrated in Fig.3.The extraction rate of Cu(II)was assumed to be influenced by the rate of the chemical reactions(ion-exchange)occurring at the interface and by diffusion of the TNOA/Cu(II)species within the membrane).This is the extraction process of which the rate controlling step is the diffusion ofCu(II),NH4OH?and/or NR3molecules in donor and organic phases.Next,the(R3NH)2CuCl24?formed diffuses across the organic phase to the O/A interface.Mass transport within the membrane was the result of Fickian diffusion only.Fast mass transport occurred in the bulk of the aqueous phase as the aqueous solution was stirred so that the diffusion factor can be ignored.At the O/A interface,Cu(II)is released from(R3NH)2CuCl24?and diffuses into the bulk of acceptor phase in exchange of two moles of H+derived from H2SO4.During this process,one mole of NR3is regenerated and diffuse back to the bulk of organic phase due to their concentration gradient.This is the stripping process of which the rate-controlling step is the decomplexation reaction between(R3NH)2CuCl42?and H+at the O/A interface.The next separation cycle is started when two moles of NR3bind with Cu(II)that comes by to form another mole of(R3NH)2CuCl42?at the D/O interface.This is a facilitated counter-coupled transport mechanism since Cu(II)and H+travel in the opposite direction across the organic phase.

    Fig.1.Concentrations of Cu(II)ions versus time graphs for the single continuous extraction studies through the kerosene based MDLM of(a)donor,(b)organic,and(c)acceptor phase at different pH of donor phase(8–10).

    Fig.2.ln(C o/C e)versus time graphs for the single continuous extraction studies for the transportation of Cu(II)ions through the kerosene based MDLM at different pH of donor phase(8–10).

    In the result of investigation,the following mechanism of reactions with chloride complexes of Cu(II)and TNOA was proposed:

    Fig.3.Scheme of the single transportation of Cu(II)ions through MDLM system.

    3.1.2.Effect of temperature

    The experiments were performed using aqueous solutions of Cu(II)ions at pH value of 9 for donor phase,a membrane phase containing 5.00 × 10?3mol·L?1TNOA as carrier in kerosene,and 1.00 mol·L?1H2SO4as acceptor phase.The volume of donor,membrane,and acceptor phase is 100 ml.Temperature is one of the most important factors that determine the transport efficiency and mechanism of metal ions through MDLM system.Six sets of experiments were conducted and kinetic pro files of each phase(donor,organic,and acceptor)at different temperatures are presented in Fig.4.

    The change of ln(Co/Ce)vs.time graphs are plotted in Fig.5.All the data were fitted adequately(R2≥0.99),accuracy and precision of the fitted parameters were verified.As it is seen in Fig.5,extraction and stripping of Cu(II)processes obey consecutive first order reaction kinetics at different temperatures.

    Fig.4.Concentrations ofCu(II)ions versus time graphs forthe single continuous extraction studies through the kerosene based liquid membrane of(a)donor,(b)organic,and(c)acceptor phase at different temperatures(283.15–308.15 K).

    Fig.5.ln(C o/C e)versus time graphs for the single continuous extraction studies for the transportation of Cu(II)ions through the kerosene based liquid membrane at different temperatures(283.15–308.15 K).

    Transportation efficiency of Cu(II)ions at different temperatures(283.15–308.15 K)from donor phase to acceptor phase is 99.89%,99.98%,99.53%,99.90%,99.89%,and 99.48%respectively.Extraction time for different temperatures(283.15–308.15 K)is 170,150,130,120,130,and 150 min,respectively.

    Transportation efficiency is not enough to determine the optimum temperature for the extraction of Cu(II)ions.Hence,it is better to compare the results in Table 1.

    As shown in Table 1,in a continuous system with TNOA,reaction rate constants for the transportation from donor phase to membrane phase(k1)varying temperatures(283.15–308.15 K)are 2.91×10?2,2.75× 10?2,3.06× 10?2,3.42× 10?2,2.54× 10?2,and 2.65×10?2min?1,respectively,but those(k2)for the transportation from organic phase to acceptor phase are 1.79 × 10?2,2.39 × 10?2,3.10×10?2,3.66×10?2,2.65×10?2,and 2.77×10?2min?1,respectively.The smallest increment ink1than ink2justifies thatk1has minor andk2has a major effect on the transportation of Cu(II)ions with temperature changes.In low temperatures(283.15 K and 288.15 K)k1is greater thank2values and in higher temperatures(293.15 K and 298.15 K)k1is smaller thank2.These findings show that MDLM is governed by donor phase at the low temperatures and by acceptor phase at high temperatures.Additionally,Rmmaxandtmaxvalues decrease while flux rates(JdmaxandJamax)increase considerably with increasing temperature.Accordingly,the optimum temperature for Cu(II)extraction is 298.15 K since reducing the cost of the extraction and the best results obtained in this temperature.

    Gathered values by batch experiments show that temperature is an important parameter in order to determine the mechanism of the transportation of Cu(II)ions.Cu(II)ion's transportation is consecutive first order irreversible reaction and the calculation of the activation energy of the process with the help of the input and output transport rate constants can be difficult due to instability of the rate constants.As it is mentioned in the literature[20,28,29],activation energy can be calculated with the help of maximum input(Jdmax)and output rates((Jamax))by using the Eq.(4).Maximum output ratesversus1/Tgraph is shown in Fig.6.The activation energy is calculated by using the slope of the line of the graph as 5.22 kcal·mol?1(21.82 kJ·mol?1).

    Fig.6.Maximum output rates versus 1/T graph.

    Generally,any process is diffusion-controlled if its activation energy(Ea)value 20 kJ·mol?1,intermediated-controlled if it is between 20 and 50 kJ·mol?1,chemical reaction-controlled if it is more than 50 kJ·mol?1[28].In this study,since the activation energy is found as 21.77 kJ·mol?1,this process is intermediated-controlled process.According to these results,transportation of Cu(II)ions achieved successfully by using MDLM system.

    3.1.3.Effect of different concentration of acceptor phase

    The reaction at the membrane/acceptor interface plays an important role on the transportation of Cu(II)ions through MDLM system.As the reaction given in Section 3.1,if the metal complex is not completely stripped,Cu(II)ions accumulate in the membrane phase and that makes membrane phase saturated with the complex which will gradually lower the permeation rate.The influence of the acceptor phase concentration on the extraction of Cu(II)ions was covered by varying the H2SO4concentration from 0.250 to 1.50 mol·L?1.The other parameters kept constant.Fig.7 reveals the kinetic pro files of each phase(donor,organic and acceptor)at different acceptor phase concentrations.

    Fig.8 proves that extraction and stripping of Cu(II)at different acceptor phase concentration processes obey consecutive first order reaction kinetics.Because ln(Co/Ce)vs.time is directly proportional.All the data were fitted adequately(R2≥0.99),accuracy and precision of the fitted parameters were verified.

    Table 1Comparison of kinetic parameters for the transportation of Cu(II)ions through the kerosene-based MDLM at different temperature

    Transportation efficiency of Cu(II)ions at different acceptor phase concentration(0.25,0.50,0.75,1.00,1.25,and 1.50 mol·L?1)from donor phase to acceptor phase is 99.75%,99.97%,99.69%,99.90%,99.97%,and 99.97%,respectively.Extraction time for different acceptor phase concentration(0.25,0.50,0.75,1.00,1.25,and 1.50 mol·L?1)is 170,160,150,120,140,and 150 min,respectively.This data reveals that with the increase of H2SO4concentration from 0.25 to 1.00 mol·L?1in the acceptor phase,extraction of Cu(II)ions increases marginally with further increase in concentration.At a higher concentration(1.00 to 1.50 mol·L?1)ofH2SO4,more number of H+ions are added to acceptor phase and itmay cause a traffic on the interface of the membrane and acceptor phase.Additionally,extraction duration may shorten.Best results are obtained at 1.00 mol·L?1H2SO4in the acceptor phase.

    Alagurajet al.transported Cu(II)ions from feed solution using emulsified liquid membrane,best results obtained at pH of acceptor phase range 1.00 to 2.00 and H2SO4used as acceptor phase[8].

    Alguacilet al.removed 88%of Cu(II)ions from acidic waste waters using 2-hydroxy-5-nonylbenzaldehyde oxime as ionophore in pseudo-emulsion membrane with strip dispersion technology by using 180 g·L?1H2SO4as stripping phase[2].Changet al.investigated the simultaneous extraction and stripping of Cu(II)from aqueous solutions through a soybean oil-based bulk liquid membrane(BLM)viadi-2-ethylhexyl phosphoric(D2EHPA)acid as carrier by using sulphuric acid(H2SO4)at various concentrations and best results(86%stripped)obtained at 3.0 mol·L?1H2SO4[5].

    In another study of Changet al.extracted Cu(II)ions from aqueous solutions using di-2-ethylhexylphosphoric acid(D2EHPA)and tributylphosphate(TBP)diluted in soybean oil.In the stripping studies,transportation efficiency of Cu(II)attained by various dilute(<2.00 mol·L?1)mineral acids(H2SO4,HCl,HNO3)increased with their concentrations.The order of decreasing transportation yields for various types of acids was found to be H2SO4>HCl>HNO3and highest yield obtained at 1.50 mol·L?1H2SO4[30].

    Fig.7.Concentrations of Cu(II)ions versus time graphs for the continuous extraction studies through the kerosene based MDLMof(a)donor,(b)organic,and(c)acceptorphase at different acceptor phase concentrations(0.25,0.50,0.75,1.00,1.25,and 1.50 mol·L?1).

    Fig.8.ln(C o/C e)versus time graphs for the single continuous extraction studies for the transportation of Cu(II)ions through the kerosene based liquid membrane at different acceptor phase concentrations(0.25,0.50,0.75,1.00,1.25,and 1.50 mol·L?1).

    3.1.4.Effect of different extractant concentration on the transportation efficiency

    The concentration of extractant in the organic phase has an important effect on the transportation of Cu(II)ions through liquid membrane systems especially on the transportation duration and flux rates.The effect of concentration of TNOA on the transportation of Cu(II)ions was studied by varying it in the range of 0.001–0.0075 mol·L?1.The results by means of the kinetic pro files of each phase(donor,membrane,and acceptor phases)at different organic phase concentrations are presented in Fig.9.

    According to Fig.10,extraction and stripping of Cu(II)at different acceptor phase concentration processes obey consecutive first order reaction kinetics.Because ln(Co/Ce)vs.time is directly proportional.

    Transportation efficiency of Cu(II)ions at different extractant concentration(0.0010,0.0025,0.0050,and 0.0075 mol·L?1)from donor phase to acceptor phase is 99.95%,99.97%,99.90%,and 99.84%,respectively.Extraction time for different organic phase concentration(0.0010,0.0025,0.0050,and 0.0075 mol·L?1)is 170,160,110,and 110 min,respectively.Transportation rate of Cu(II)ions rises with increasing carrier concentration.Further increase in carrier concentration decline the trend of transportation.Strong binding of Cu(II)ions to the extractant may obstruct delivering Cu(II)ions to the acceptor phase or increasing the concentration may raise the viscosity of the membrane phase.This can slow down the flux rate of the solution from donor phase to acceptor phase[3].Thus,0.005 mol·L?1TNOA was selected for the next steps as optimum carrier concentration.

    Fig.10.ln(C o/C e)versus time graphs for the continuous extraction studies for the single transportation of Cu(II)ions through the kerosene based liquid membrane at different carrier concentrations(0.0010,0.0025,0.0050,and 0.0075 mol·L?1).

    Fig.9.Concentrations of Cu(II)ions versus time graphs for the single continuous extraction studies through the kerosene based MDLM of(a)donor,(b)organic,and(c)acceptor phase at different carrier concentrations(0.0010,0.0025,0.0050,and 0.0075 mol·L?1).

    Sadeghiet al.transported Cu(II)ions through bulk liquid membrane with 93.5%transportation efficiency by 5.0 × 10?3mol·L?1erythromycin ethylsuccinate[3].Alagurajet al.transported Cu(II)ionsthrough the emulsion liquid membrane system with 4%TNOA by using 5%SPAN80 as surfactant for stable emulsion formation[8].Lazarovaet al.extracted Cu(II)ions through a Hollow- fiber membrane from aqueous nitrate media by LIX reagents and best results obtained with 2 wt%LIX?860 N–I and 5 wt%LIX?984 N[31].

    3.1.5.Effect offlux rate

    The effect of flux rate on the transportation of Cu(II)ions was studied varying the flux rate by peristaltic pump in the range of 25 ml·min?1to 75 ml·min?1.The results by means of the kinetic profiles of each phase(donor,membrane,and acceptor phases)at different flux rates are presented in Fig.11.

    According to Fig.12,extraction and stripping of Cu(II)at different acceptor phase concentration processes obey consecutive first order reaction kinetics.Because ln(Co/Ce)vs.time is directly proportional.

    Transportation efficiency of Cu(II)ions at different flux rates(25,50,and 75 ml·min?1)from donor phase to acceptor phase is 99.96%,99.90%,and 99.92%,respectively.Extraction time for different organic phase concentration(25,50,and 75 ml·min?1)is,170,120,and 100 min,respectively.Transportation rate of Cu(II)ions rises with increasing flux rates.During the kinetic studies,the flux rates shouldn't be so fast,especially for the MDLM system since it causes foaming in the reactors.Thus,50 ml·min?1was selected as optimum flux rate.

    Fig.12.ln(C o/C e)versus time graphs for the single continuous extraction studies for the transportation of Cu(II)ions through the kerosene based liquid membrane at different flux rates(25,50,and 75 ml·min?1).

    Fig.11.Concentrations ofCu(II)ions versus time graphs for the single continuous extraction studies through the kerosene based MDLM of(a)donor,(b)organic,and(c)acceptor phase at different flux rates(25,50,and 75 ml·min?1).

    3.2.Selective transportation of Cu(II)ions

    3.2.1.Selective transportation of Cu(II)ions with alkaline and alkaline earth metals

    The competitive transport of Cu(II),alkali and alkaline earth metal ions through MDLM with TNOA as the carrier has been investigated by using 100 mg·L?1Cu(II)and 40 mg·L?1NaCl,KCl,CaCl2,BaCl2,simultaneously.The comparative kinetics of transportation is given in Fig.13.Batch experiments are held at optimum conditions of transportation of Cu(II)ions(volume of donor,organic and acceptor phase 100 ml,pH of donor phase 9.00,temperature 298.15 K,concentration of H2SO4in acceptor phase 1.00 mol·L?1,concentration of TNOA in organic phase 5.00 × 10?3mol·L?1and rate of peristaltic pump 50 ml·min?1).ln(Co/Ce)versustime plots for the continuous extraction studies for the transportation of Cu(II)ions without/with alkaline and alkaline earth metal ions through the kerosene-based MDLM is also illustrated in Fig.14.

    The effect of alkaline and alkaline earth metal ions on the simultaneous competitive transportation of Cu(II)ions is available in Table 2.According to the results,Na+,K+,and Ba2+ions are not detected in the acceptor phase,but 12.00%of Ca2+ions is transported from donor phase to acceptor phase with Cu(II)ions.

    It is found that the extraction percentage of Cu(II)with/without alkaline and alkaline earth metal ions does not show great diversity(99.90%,99.31%),whereas in competitive transportation,extraction duration increases from 120 to 140 min.Besides,k1of selective transportation decreases from 0.0342 to 0.0213 min?1,butk2for that arises from 0.0366 to 0.0447 min?1.In addition, flux rates of donor and acceptor phases fall to 0.0108 from 0.0130 min.Hence,selective transportation of Cu(II)ions with alkaline and alkaline earth metal ions has been conducted successfully through the kerosene-based MDLM.

    3.2.2.Selective transportation of Cu(II)ions with heavy metal ions

    Simultaneous batch experiments have been carried out by using 50 mg·L?1Fe(III),50 mg·L?1Zn(II),and 50 mg·L?1Mo(VI)with 100 mg·L?1Cu(II)ions in the donor phase by MDLM system at optimum conditions given above(see Section 3.2.1).Kinetic pro files of transportation of Cu(II)ions with/without heavy metals are presented in Fig.15.ln(Co/Ce)versustime plots for the continuous extraction studies for the transportation of Cu(II)ions without/with heavy metal ions through the kerosene-based MDLM is also shown in Fig.16.

    Fig.13.Kinetics of Cu(II)transportation(a)without alkali and alkaline earth metal ions and(b)with alkali and alkaline earth metal ions.

    Fig.14.ln(C o/C e)versus time graphs for the continuous extraction studies for the transportation of Cu(II)ions(a)without alkaline and alkaline earth metal ions and(b)with alkaline and alkaline earth metal ions through the kerosene-based MDLM.

    When the effect of Mo(VI),Fe(III),and Zn(II)metal ions on the extraction ofCu(II)transportation using TNOA as carrier through kerosene based MDLM technique is investigated,interesting results have been obtained.Extraction yield has not changed a lot(99.90%and 99.53%),whereas extraction time rises to 150 min from 120 min.The effect of Mo(VI),Fe(III),and Zn(II)metal ions on the selective transportation of Cu(II)ions is given in Table 3.

    Under the selective experimental condition,k1andk2values are dropped to 0.0308 and 0.0208 min?1from 0.0342 and 0.0366 min?1,respectively.As well as flux rates of Cu(II)ions of donor and acceptor phase decreases from 0.0130 to 0.0092 min.

    Bariet al.studied the simultaneous extraction and separation of Cu(II),Zn(II),Fe(III),and Ni(II)by polystyrene microcapsules coated with Cyanex 272.Almost 100%of Cu(II),Zn(II),Fe(III),and Ni(II)ions from the loaded MC-Xs has been stripped by 0.10 and 0.50 mol·L?1H2SO4solution for Cu(II),0.10 mol·L?1H2SO4solution for Zn(II),and 0.50 mol·L?1of H2SO4solution for Fe(III)[22].

    Pospiechet al.separated Cu(II),Co(II),and Ni(II)from chloride solution by polymer inclusion membranes containing cellulose triacetate(CTA)as the support.Cu(II)and Co(II)ions were extracted by TOA and TlOA as the ionic carriers to 0.10 mol·L?1NaOH solution as the receiving phase.But Ni(II)ions weren't detected in the acceptor phase[21].

    Table 2Comparison of kinetic parameters for the selective transportation of Cu(II)ions with/without alkaline and alkaline earth metal ions through the kerosene-based MDLM

    Fig.15.Kinetics of Cu(II)transportation(a)without heavy metal ions and(b)with heavy metal ions.

    Fig.16.ln(C o/C e)versus time graphs for the extraction studies for the transportation of Cu(II)ions(a)without heavy metalions and(b)with alkaline and alkaline earth metalions through the kerosene-based MDLM.

    Table 3Comparison of kinetic parameters for the transportation of Cu(II)ions with/without heavy metal ions through the kerosene-based MDLM

    The percentage extraction of heavy metal ions is given in Table 4.

    Table 4The percentage extraction of Zn(II),Fe(III),and Mo(VI)ions from donor phase to acceptor phase

    At the end of the simultaneous extraction of Zn(II),Fe(III),and Mo(VI)with Cu(II)ions,2.20%of Mo(VI),0.80%of Fe(III),and 3.60%of Zn is detected in the acceptor phase.So,simultaneous batch extraction of Cu(II),Zn(II),Fe(III),and Mo(VI)shows the possible separation of these metal ions.

    4.Conclusions

    MDLM syste musing TNOA dissolving in kerosene as the extractantis applied successfully for the transportation of Cu(II)ions from donor phase to acceptor phase.The possible mechanism of transport was discussed.The simplicity,low cost,high efficiency and selectivity and a relatively short time period for Cu(II)ion transport obtained by the MDLM system demonstrate its potential applicability to selective removal,concentration or purification of copper from its mixtures.

    Cu(II)ion transportation is consecutive first order irreversible reaction.Activation energy is found as 5.22 kcal·mol?1(21.82 kJ·mol?1),this process is called as diffusion controlled system.These observations suggest that the TNOA can be successfully employed as carriers for the removal of toxic Cu(II)ions in suitable wastewater treatment systems.

    [1]S.H.Chang,T.T.Teng,N.Ismail,A.F.M.Alkarkhi,Selection of design parameters and optimization of operating parameters of soybean oil-based bulk liquid membrane for Cu(II)removal and recovery from aqueous solutions,J.Hazard.Mater.190(1–3)(2011)197–204.

    [2]F.J.Alguacil,F.A.Lopez,I.Garcia-Diaz,Copper removal from acidic wastewaters using 2-hydroxy-5-nonbenzaldehyde oxime as ionophore in pseudo-emulsion membrane with strip dispersion(PEMSD)technology,J.Ind.Eng.Chem.18(1)(2012)255–259.

    [3]S.Sadeghi,M.Jahani,E.Ghiamati,Selective transport of Cu2+ions through bulk liquid membrane mediated by erythromycin ethyl succinate,Sep.Sci.Technol.46(2)(2011)215–223.

    [4]D.de Agreda,I.Garcia-Diaz,F.A.López,F.J.Alguacil,Supported liquid membranes technologies in metals removal from liquid effluents,Rev.Metal.47(2)(2011)146–168.

    [5]S.H.Chang,T.T.Teng,N.Ismail,Soybean oil-based bulk liquid membrane for simultaneous extraction and stripping of Cu(II)from aqueous solutions,Int.J.Environ.Sci.Dev.2(2011)389–393.

    [6]Z.Ren,W.Zhang,Y.Liu,Y.Dai,C.Cui,New liquid membrane technology for simultaneous extraction and stripping of copper(II)from wastewater,Chem.Eng.Sci.62(22)(2007)6090–6101.

    [7]S.S.Ahluwalia,D.Goyal,Removal of heavy metals by waste tea leaves from aqueous solution,Eng.Life Sci.5(2005)158–162.

    [8]M.Alaguraj,K.Palanivelu,M.Velan,Removal of Cu(II)using emulsion liquid membrane,Int.J.Chem.Technol.Res.1(3)(2009)722–726.

    [9]A.Mellah,D.Benachour,The solvent extraction of zinc and cadmium from phosphoric acid solution by di-2-ethylhexylphosphoric acid in kerosene diluent,Chem.Eng.Process.Process Intensif.45(8)(2006)684–690.

    [10]M.Atanassova,I.L.Dukov,Solvent extraction and separation of lanthanoids with mixtures of chelating extractant and 1-(2-pyridylazo)-2-naphthol,Sep.Purif.Technol.49(1)(2006)101–105.

    [11]N.Alizadeh,K.Ashtari,Coalescence extraction of silver(I)using the temperature induced phase separation(TPIS)process,Sep.Purif.Technol.44(1)(2005)79–84.

    [12]M.Ak,D.Taban,H.Delig?z,Transition metal cations extraction by ester and ketone derivatives of chromogenic azocalix[4]arenes,J.Hazard.Mater.154(1–3)(2008)51–54.

    [13]G.Muthuraman,T.T.Teng,C.P.Leh,I.Norli,Use of bulk liquid membrane for the extraction of chromium(VI)from aqueous acidic solution with tri-n-butyl phosphate as a carrier,Desalination249(2)(2009)884–890.

    [14]N.Singh,D.O.Jang,Selective and efficient tripodal receptors for competitive solvent extraction and bulk liquid membrane transport of Hg2+,J.Hazard.Mater.168(2–3)(2009)727–731.

    [15]C.Mendiguchia,C.Moreno,M.Garcia-Vargas,Determination of copper in seawater based on a liquid membrane preconcentration system,Anal.Chim.Acta460(1)(2002)35–40.

    [16]G.León,M.A.Guzmán,Faciliated transport of copper through bulk membranes containing different carriers:Compared kinetic studies,Desalination223(1)(2008)330–336.

    [17]M.D.Granado-Castro,M.D.Galindo-Ria?o,F.C.Domínguez-Lledó,C.Díaz-López,M.García-Vargas,Study of the kinetics of the transport of Cu(II),Cd(II)and Ni(II)ions through a liquid membrane,Anal.Bioanal.Chem.391(3)(2008)779–788.

    [18]N.Spreti,L.Brinchi,R.Germani,M.V.Mancini,G.Savelli,A new carried for for selective removal of heavy metal ions from aqueous solutions through bulk liquid membranes,Eur.J.Org.Chem.2004(18)(2004)3865–3871.

    [19]Y.T.Mohamed,A.H.Ibrahim,Extraction of copper from waste solution using liquid emulsion membrane,J.Environ.Prot.3(2012)129–134.

    [20]R.Donat,?.Durmaz,H.Ceti?li,Transportation and kinetic analysis of Mo(VI)ions through a MDLM system containing TNOA as carrier,J.Hazard.Mater.294(2015)17–26.

    [21]B.Po?piech,W.Walkowiak,Separation of copper(II),cobalt(II)and nickel(II)from chloride solutions by polymer inclusion membranes,Sep.Purif.Technol.57(3)(2007)461–465.

    [22]M.F.Bari,M.S.Hossain,I.M.Mujtaba,S.B.Jamaluddin,K.Hussin,Simultaneous extraction and separation of Cu(II),Zn(II),Fe(III)and Ni(II)by polystyrene microcapsules coated with Cyanex 272,Hydrometallurgy95(3–4)(2009)308–315.

    [23]T.R.Reddy,J.Ramkumar,S.Chandramouleeswaran,A.V.R.Reddy,Selective transport of copper across a bulk liquid membrane using 8-hydroxy quinoline as carrier,J.Membr.Sci.351(1–2)(2010)11–15.

    [24]L.Wang,R.Paimin,R.W.Cattrall,W.Shen,S.D.Kolev,The extraction of cadmium(II)and copper(II)from hydrochloric acid solutions using an Aliquat 336/PVC membrane,J.Membr.Sci.176(1)(2000)105–111.

    [25]K.E.Erden,R.Donat,?.Aytas,Simultaneous extraction and stripping of uranium ions via multi-dropped liquid membrane system,Russ.J.Appl.Chem.88(11)(2015)1902–1912.

    [26]H.Arslan,E.Hasdemir,Direct determination of copper with thiosemicarbazide by UV–Vis spectrophotometric method and effect of presence some other cations,G.U.J.Sci.17(1)(2004)49–58.

    [27]L.D.Nghiem,P.Mornane,I.D.Potter,J.M.Perera,R.W.Cattrall,S.D.Kolev,Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes(PIMs),J.Membr.Sci.281(1–2)(2006)7–41.

    [28]M.Kobya,N.Top?u,N.Demircio?lu,Kinetic analysis of coupled transport of thiocyanate ions through liquid membranes at different temperatures,J.Membr.Sci.130(1‐2)(1997)7–15.

    [29]Z.Lazarova,L.Boyadzhiev,Kinetic aspects of copper(II)transport across liquid membrane containing LIX-860 as a carrier,J.Membr.Sci.78(3)(1993)239–245.

    [30]S.H.Chang,T.T.Teng,I.Norli,Efficiency,stoichiometry and structural studies of Cu(II)removal from aqueous solutions using di–2-ethylhexylphosphoric acid and tributylphosphate diluted in soybean oil,Chem.Eng.J.16(2011)249–255.

    [31]Z.Lazarova,M.Lazarova,Hollow- fiber membrane extraction of copper from aqueous nitrate media by LIX reagents:comparison of extraction efficiency and fractional resistances,Solvent Extr.Ion Exc.29(1)(2011)128–145.

    а√天堂www在线а√下载| 亚洲久久久国产精品| 在线观看免费视频日本深夜| 中文字幕av电影在线播放| 嫁个100分男人电影在线观看| 精品国产一区二区三区四区第35| 色哟哟哟哟哟哟| 亚洲五月色婷婷综合| svipshipincom国产片| 这个男人来自地球电影免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲少妇的诱惑av| 国产精品一区二区精品视频观看| 三级毛片av免费| 一个人免费在线观看的高清视频| 亚洲成av片中文字幕在线观看| 涩涩av久久男人的天堂| 夜夜躁狠狠躁天天躁| 欧美人与性动交α欧美精品济南到| 琪琪午夜伦伦电影理论片6080| 国产主播在线观看一区二区| 老司机靠b影院| 757午夜福利合集在线观看| 成人精品一区二区免费| 欧美成人一区二区免费高清观看 | 亚洲色图综合在线观看| 天堂影院成人在线观看| 国产高清videossex| 成人国语在线视频| 一级片免费观看大全| 99国产综合亚洲精品| 一区福利在线观看| 动漫黄色视频在线观看| 黑人巨大精品欧美一区二区mp4| 91九色精品人成在线观看| av超薄肉色丝袜交足视频| 国产亚洲欧美在线一区二区| 国产免费av片在线观看野外av| 一a级毛片在线观看| 美女国产高潮福利片在线看| 久久午夜综合久久蜜桃| 日本vs欧美在线观看视频| 日韩av在线大香蕉| АⅤ资源中文在线天堂| 亚洲国产看品久久| 一进一出抽搐gif免费好疼| 国产熟女xx| 在线播放国产精品三级| 如日韩欧美国产精品一区二区三区| av在线天堂中文字幕| 国产私拍福利视频在线观看| 久久欧美精品欧美久久欧美| 黄网站色视频无遮挡免费观看| 国内精品久久久久精免费| 法律面前人人平等表现在哪些方面| 成人亚洲精品av一区二区| 免费在线观看亚洲国产| 欧美成人性av电影在线观看| www.999成人在线观看| 久久中文看片网| 天堂√8在线中文| 久久香蕉国产精品| 97人妻精品一区二区三区麻豆 | 久久热在线av| 成熟少妇高潮喷水视频| 男人操女人黄网站| 嫩草影院精品99| 色综合亚洲欧美另类图片| 精品一品国产午夜福利视频| 精品国产一区二区三区四区第35| 午夜福利18| 无限看片的www在线观看| 黄色丝袜av网址大全| 久久久国产成人精品二区| 一区二区三区精品91| 久久九九热精品免费| 国产av又大| 日本a在线网址| 90打野战视频偷拍视频| 国产午夜精品久久久久久| 黄色女人牲交| 成人三级黄色视频| 男人舔女人下体高潮全视频| 久久精品aⅴ一区二区三区四区| 国产亚洲精品久久久久久毛片| 人妻丰满熟妇av一区二区三区| 午夜久久久在线观看| svipshipincom国产片| 波多野结衣一区麻豆| 丝袜美腿诱惑在线| 欧美日韩中文字幕国产精品一区二区三区 | 一级毛片高清免费大全| aaaaa片日本免费| 97超级碰碰碰精品色视频在线观看| 久久久精品欧美日韩精品| 一区二区日韩欧美中文字幕| 国产三级在线视频| 非洲黑人性xxxx精品又粗又长| 午夜亚洲福利在线播放| 亚洲精品国产精品久久久不卡| 91麻豆精品激情在线观看国产| 黄色女人牲交| 涩涩av久久男人的天堂| 免费少妇av软件| 精品一品国产午夜福利视频| 国产欧美日韩精品亚洲av| 男女床上黄色一级片免费看| 欧美黑人欧美精品刺激| 亚洲成人免费电影在线观看| 亚洲最大成人中文| 看黄色毛片网站| 亚洲专区字幕在线| 岛国在线观看网站| 夜夜看夜夜爽夜夜摸| 免费在线观看视频国产中文字幕亚洲| 色综合婷婷激情| 日韩国内少妇激情av| 精品不卡国产一区二区三区| 国产视频一区二区在线看| 一级毛片高清免费大全| 人人澡人人妻人| 久久久久久久久免费视频了| 美女扒开内裤让男人捅视频| 成人欧美大片| 韩国av一区二区三区四区| 亚洲精品av麻豆狂野| 性少妇av在线| 99香蕉大伊视频| tocl精华| 老鸭窝网址在线观看| 香蕉国产在线看| 18禁黄网站禁片午夜丰满| 国产欧美日韩综合在线一区二区| 久久性视频一级片| 久久性视频一级片| 国产成人精品无人区| av视频在线观看入口| 亚洲一码二码三码区别大吗| 桃红色精品国产亚洲av| 满18在线观看网站| 亚洲激情在线av| 欧美午夜高清在线| 少妇被粗大的猛进出69影院| 99精品欧美一区二区三区四区| 18禁美女被吸乳视频| 亚洲,欧美精品.| 在线观看免费视频网站a站| 亚洲片人在线观看| 国产欧美日韩一区二区三| 精品乱码久久久久久99久播| 亚洲男人天堂网一区| www.999成人在线观看| 长腿黑丝高跟| 一区二区日韩欧美中文字幕| 99精品欧美一区二区三区四区| 精品国产一区二区三区四区第35| 精品久久久久久,| 色在线成人网| 亚洲成人精品中文字幕电影| 在线视频色国产色| 亚洲精品久久成人aⅴ小说| 人人妻,人人澡人人爽秒播| 一进一出抽搐gif免费好疼| 欧美av亚洲av综合av国产av| 国产精品一区二区三区四区久久 | 女人精品久久久久毛片| 一级作爱视频免费观看| 女人精品久久久久毛片| xxx96com| 黄片播放在线免费| 国产高清videossex| 男男h啪啪无遮挡| 亚洲专区国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 久久精品亚洲熟妇少妇任你| 人人澡人人妻人| 日本三级黄在线观看| 精品欧美一区二区三区在线| 高潮久久久久久久久久久不卡| 搞女人的毛片| 久久午夜综合久久蜜桃| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩高清在线视频| 又黄又爽又免费观看的视频| 不卡av一区二区三区| 欧美日韩精品网址| 欧美+亚洲+日韩+国产| 国产私拍福利视频在线观看| 欧美黑人精品巨大| 亚洲第一av免费看| 亚洲片人在线观看| 男人舔女人下体高潮全视频| 亚洲精品在线观看二区| 国产男靠女视频免费网站| 免费av毛片视频| 麻豆国产av国片精品| 久久香蕉国产精品| 久久香蕉国产精品| 久久人妻熟女aⅴ| 一级作爱视频免费观看| www.熟女人妻精品国产| 热99re8久久精品国产| 久久久久国产一级毛片高清牌| 欧美中文综合在线视频| 亚洲午夜理论影院| 又黄又爽又免费观看的视频| 一进一出抽搐gif免费好疼| 男女午夜视频在线观看| 精品一品国产午夜福利视频| 十八禁网站免费在线| 国产亚洲精品久久久久5区| 男女下面插进去视频免费观看| 国产精品av久久久久免费| 男人的好看免费观看在线视频 | 午夜久久久在线观看| 久久久久久久久免费视频了| 久久 成人 亚洲| 免费在线观看视频国产中文字幕亚洲| 777久久人妻少妇嫩草av网站| 亚洲国产高清在线一区二区三 | 高潮久久久久久久久久久不卡| 男男h啪啪无遮挡| 中文字幕精品免费在线观看视频| 午夜两性在线视频| 12—13女人毛片做爰片一| 国产精品久久久久久精品电影 | 欧美日本亚洲视频在线播放| 精品人妻1区二区| 色在线成人网| 99精品欧美一区二区三区四区| 极品教师在线免费播放| 后天国语完整版免费观看| 香蕉国产在线看| 美女 人体艺术 gogo| √禁漫天堂资源中文www| 欧美乱色亚洲激情| 国产精品久久久久久亚洲av鲁大| 国产欧美日韩一区二区三区在线| 身体一侧抽搐| 日韩成人在线观看一区二区三区| 女人被躁到高潮嗷嗷叫费观| 精品国产一区二区三区四区第35| 国内毛片毛片毛片毛片毛片| av福利片在线| 女人被狂操c到高潮| √禁漫天堂资源中文www| 中文字幕高清在线视频| 欧美性长视频在线观看| 此物有八面人人有两片| 午夜福利欧美成人| 日韩视频一区二区在线观看| 女警被强在线播放| 亚洲在线自拍视频| 国产成人免费无遮挡视频| 搞女人的毛片| 亚洲三区欧美一区| 丝袜在线中文字幕| 亚洲国产精品sss在线观看| 十八禁网站免费在线| 欧美成人性av电影在线观看| 可以在线观看的亚洲视频| 午夜免费激情av| 久99久视频精品免费| www.熟女人妻精品国产| 欧美绝顶高潮抽搐喷水| 精品人妻1区二区| 午夜福利18| 国产欧美日韩一区二区三| 露出奶头的视频| 久久精品91无色码中文字幕| 桃色一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| 欧美日韩精品网址| 女人高潮潮喷娇喘18禁视频| 日本精品一区二区三区蜜桃| 黄频高清免费视频| 久久九九热精品免费| 老司机午夜福利在线观看视频| 国产精品乱码一区二三区的特点 | 亚洲欧美日韩无卡精品| 深夜精品福利| cao死你这个sao货| 18禁黄网站禁片午夜丰满| 国产av一区在线观看免费| 女人爽到高潮嗷嗷叫在线视频| 女人被躁到高潮嗷嗷叫费观| 国产av一区二区精品久久| 俄罗斯特黄特色一大片| 91国产中文字幕| 精品久久蜜臀av无| 久久国产亚洲av麻豆专区| 久热爱精品视频在线9| 亚洲成人精品中文字幕电影| 亚洲熟妇熟女久久| www.999成人在线观看| 免费看美女性在线毛片视频| 69精品国产乱码久久久| 亚洲色图综合在线观看| 成人国产综合亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩乱码在线| 亚洲欧美激情综合另类| 黑人操中国人逼视频| 无遮挡黄片免费观看| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 18禁黄网站禁片午夜丰满| 婷婷丁香在线五月| 亚洲精品av麻豆狂野| 精品不卡国产一区二区三区| 亚洲国产看品久久| 人成视频在线观看免费观看| 成人18禁在线播放| 国产视频一区二区在线看| 免费在线观看完整版高清| 亚洲中文av在线| 这个男人来自地球电影免费观看| √禁漫天堂资源中文www| 成人国产综合亚洲| 一进一出好大好爽视频| 人成视频在线观看免费观看| 人人妻人人澡人人看| 欧洲精品卡2卡3卡4卡5卡区| 咕卡用的链子| 成人特级黄色片久久久久久久| 男人舔女人下体高潮全视频| 免费人成视频x8x8入口观看| 国产成人啪精品午夜网站| 777久久人妻少妇嫩草av网站| av天堂在线播放| 亚洲第一青青草原| 亚洲精品中文字幕一二三四区| 久久久国产成人精品二区| 黄色成人免费大全| 亚洲国产欧美日韩在线播放| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 午夜免费鲁丝| 国产高清视频在线播放一区| 国产主播在线观看一区二区| 国产伦人伦偷精品视频| 亚洲第一欧美日韩一区二区三区| 热re99久久国产66热| 精品不卡国产一区二区三区| 色综合亚洲欧美另类图片| 一区二区三区精品91| 日日夜夜操网爽| 91成人精品电影| 亚洲av成人av| 狠狠狠狠99中文字幕| 在线观看免费日韩欧美大片| 欧美国产日韩亚洲一区| 国产99白浆流出| 久久久水蜜桃国产精品网| 国产欧美日韩一区二区精品| 久久国产精品人妻蜜桃| 欧美不卡视频在线免费观看 | 亚洲国产欧美一区二区综合| 免费久久久久久久精品成人欧美视频| 久久久久国产精品人妻aⅴ院| 久久久久亚洲av毛片大全| 国产亚洲欧美在线一区二区| 成人国语在线视频| 国产精品一区二区在线不卡| 国产视频一区二区在线看| 精品国产美女av久久久久小说| 亚洲五月天丁香| 日本在线视频免费播放| 一级a爱视频在线免费观看| avwww免费| 亚洲五月天丁香| 亚洲精品国产色婷婷电影| 在线观看66精品国产| 免费av毛片视频| 搡老妇女老女人老熟妇| 精品日产1卡2卡| 美女国产高潮福利片在线看| 一区福利在线观看| 1024视频免费在线观看| 十分钟在线观看高清视频www| 精品久久久久久久人妻蜜臀av | 欧美午夜高清在线| 国产精品美女特级片免费视频播放器 | 美女午夜性视频免费| 男女之事视频高清在线观看| 中文字幕最新亚洲高清| 韩国精品一区二区三区| 国产成人精品无人区| 亚洲国产中文字幕在线视频| 欧美不卡视频在线免费观看 | 午夜久久久在线观看| 九色亚洲精品在线播放| 国产一卡二卡三卡精品| 黄色视频,在线免费观看| 热99re8久久精品国产| 国内精品久久久久精免费| 女人被躁到高潮嗷嗷叫费观| 亚洲九九香蕉| www.精华液| 国产成+人综合+亚洲专区| 亚洲熟女毛片儿| 亚洲伊人色综图| videosex国产| www国产在线视频色| 欧美日韩精品网址| 亚洲久久久国产精品| 午夜精品久久久久久毛片777| av电影中文网址| 亚洲第一青青草原| 亚洲成a人片在线一区二区| 国产精品98久久久久久宅男小说| 午夜免费观看网址| 亚洲五月婷婷丁香| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区视频在线观看| 老司机福利观看| 午夜福利影视在线免费观看| 国产蜜桃级精品一区二区三区| 免费在线观看黄色视频的| 曰老女人黄片| 欧美激情极品国产一区二区三区| 亚洲一区高清亚洲精品| 亚洲色图av天堂| 两个人免费观看高清视频| 99riav亚洲国产免费| 国产成人精品久久二区二区免费| 日韩欧美一区视频在线观看| 波多野结衣一区麻豆| 国产精品电影一区二区三区| 男女午夜视频在线观看| 一级,二级,三级黄色视频| 国产成人精品久久二区二区免费| 国产真人三级小视频在线观看| 午夜亚洲福利在线播放| 国产精品永久免费网站| 国产欧美日韩一区二区三区在线| 性色av乱码一区二区三区2| 中文字幕最新亚洲高清| 嫩草影视91久久| 一级片免费观看大全| 国产激情欧美一区二区| 久久国产精品男人的天堂亚洲| 91国产中文字幕| 好看av亚洲va欧美ⅴa在| 中文字幕人成人乱码亚洲影| 午夜福利视频1000在线观看 | 中文字幕人成人乱码亚洲影| 欧美在线一区亚洲| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品中文字幕在线视频| 自线自在国产av| 99国产综合亚洲精品| 国产精品久久电影中文字幕| 久久久久久免费高清国产稀缺| 国产亚洲欧美在线一区二区| 久久久久国产一级毛片高清牌| 欧美成人午夜精品| 国产精品爽爽va在线观看网站 | 国产一区二区激情短视频| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品久久久久久毛片| 国产精品日韩av在线免费观看 | 91字幕亚洲| 国产精品久久久久久人妻精品电影| 亚洲色图综合在线观看| 亚洲精品久久成人aⅴ小说| 欧美日韩一级在线毛片| 国产乱人伦免费视频| 黄色视频,在线免费观看| 黄色a级毛片大全视频| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 久久人妻av系列| 久久久国产欧美日韩av| 国产亚洲av嫩草精品影院| 成人国产综合亚洲| 国产精品日韩av在线免费观看 | 久久久国产欧美日韩av| 欧美人与性动交α欧美精品济南到| 国产乱人伦免费视频| 视频区欧美日本亚洲| 久久午夜综合久久蜜桃| 人人妻人人澡欧美一区二区 | 老司机深夜福利视频在线观看| 精品人妻在线不人妻| 91av网站免费观看| 国内精品久久久久精免费| 国产一区在线观看成人免费| 操出白浆在线播放| 国产精品1区2区在线观看.| 成人亚洲精品一区在线观看| 国产精品永久免费网站| 成人三级黄色视频| 久久这里只有精品19| 欧美亚洲日本最大视频资源| 久久久久久久久久久久大奶| 韩国av一区二区三区四区| www.999成人在线观看| 法律面前人人平等表现在哪些方面| 国产精品影院久久| 制服诱惑二区| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品欧美日韩精品| 国产成人精品久久二区二区免费| 99热只有精品国产| 一卡2卡三卡四卡精品乱码亚洲| 日韩中文字幕欧美一区二区| 亚洲一码二码三码区别大吗| 精品久久久精品久久久| 久久精品人人爽人人爽视色| 黑人欧美特级aaaaaa片| 国产在线观看jvid| 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| 母亲3免费完整高清在线观看| 天天一区二区日本电影三级 | 色综合欧美亚洲国产小说| 久久欧美精品欧美久久欧美| 久久香蕉激情| 亚洲一区二区三区色噜噜| 免费人成视频x8x8入口观看| 成人永久免费在线观看视频| 成人亚洲精品一区在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久人人做人人爽| 中出人妻视频一区二区| 波多野结衣高清无吗| 最近最新中文字幕大全免费视频| 国产精品野战在线观看| 精品人妻在线不人妻| av片东京热男人的天堂| 波多野结衣高清无吗| 亚洲五月婷婷丁香| 欧美日韩精品网址| 亚洲欧美一区二区三区黑人| 久久久久久久久中文| 亚洲成av片中文字幕在线观看| 法律面前人人平等表现在哪些方面| 黑人巨大精品欧美一区二区蜜桃| 久久九九热精品免费| 一二三四在线观看免费中文在| 男女之事视频高清在线观看| 在线国产一区二区在线| 天堂√8在线中文| 亚洲第一电影网av| 久久国产精品男人的天堂亚洲| 国产成人一区二区三区免费视频网站| 一区二区三区激情视频| 人成视频在线观看免费观看| 波多野结衣巨乳人妻| 变态另类丝袜制服| 精品国内亚洲2022精品成人| 老汉色av国产亚洲站长工具| xxx96com| 亚洲男人天堂网一区| 性色av乱码一区二区三区2| 亚洲第一电影网av| 免费少妇av软件| www国产在线视频色| 乱人伦中国视频| 在线观看日韩欧美| 亚洲成人久久性| 久久香蕉激情| 国产精品综合久久久久久久免费 | 欧美中文综合在线视频| 日韩精品免费视频一区二区三区| 狂野欧美激情性xxxx| 午夜福利18| e午夜精品久久久久久久| av中文乱码字幕在线| 亚洲成a人片在线一区二区| 一级a爱片免费观看的视频| 中文字幕色久视频| 婷婷六月久久综合丁香| 国产aⅴ精品一区二区三区波| 亚洲,欧美精品.| 亚洲情色 制服丝袜| 美女高潮喷水抽搐中文字幕| 久久人人爽av亚洲精品天堂| 岛国视频午夜一区免费看| 9色porny在线观看| 国产精品,欧美在线| 亚洲精品国产色婷婷电影| 日韩欧美一区视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久,| 女人被狂操c到高潮| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 国产真人三级小视频在线观看| 精品午夜福利视频在线观看一区| 一区福利在线观看| 国产av一区在线观看免费| 国产欧美日韩一区二区三| 天堂影院成人在线观看| 免费在线观看完整版高清| 国产成人av激情在线播放| АⅤ资源中文在线天堂| 九色国产91popny在线| 十八禁网站免费在线| 亚洲 欧美一区二区三区| 亚洲无线在线观看| 日日夜夜操网爽| 久久久久久大精品| 美国免费a级毛片| 欧美成人性av电影在线观看| 欧美不卡视频在线免费观看 | 欧美乱色亚洲激情| 亚洲七黄色美女视频| 亚洲午夜精品一区,二区,三区| 一个人观看的视频www高清免费观看 | 91麻豆精品激情在线观看国产| 国产精品一区二区免费欧美| 在线天堂中文资源库| 可以在线观看毛片的网站|