• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and properties of PPSU/GO mixed matrix membrane☆

    2017-05-28 08:50:05ShujuanXiaoShouwuYuLiYanYingLiuXiaoyaoTan

    Shujuan Xiao ,Shouwu Yu ,Li Yan ,Ying Liu ,Xiaoyao Tan *

    1 School of Material Science and Engineering,Tianjin Polytechnic University,Tianjin 300387,China

    2 Qing gong College,North China University of Science and Technology,Tangshan 063009,China

    3 College of Materials Science and Engineering,North China University of Science and Technology,Tangshan 063009,China

    4 College of Foreign Languages,North China University of Science and Technology,Tangshan 063009,China

    1.Introduction

    Membrane separation technology is widely used in seawater desalination and industrial wastewater purification[1],organic polymer is an important membrane material.Polyphenylene sulfone(PPSU)with the structure shown in Fig.1 is a novel material of great interest in the field of ultra filtration(UF)membranes[2,3].Due to the formation of conjugated structure connected by two benzene rings,the rigidity of material can be maintained.Moreover,the biphenyl structure gives good liquidity[4–6],and the existing ether bond makes the molecule tougher.PPSU also has the advantages of good chemical corrosion resistance and high mechanical strength.However,the hydrophobic of PPSU membrane due to the low surface energy causes poor anti-fouling ability,which restricts its wide applications.Due to membrane fouling,the permeate flux and membrane selectivity are decreased,leading to increasing operating costs[7,8].Membrane fouling can be divided into reversible fouling and irreversible fouling.Reversible fouling is induced by the weak interaction of foulants on the membrane surface,and thus can be eliminated by simple washing.Irreversible fouling is caused by the strongly plugged membrane pores and cannot be removed by simple cleaning,which shortens the service life and reduces the separation performance of the membrane.Hence,the PPSU membrane has to be modified to improve the hydrophilicity and anti-fouling ability for practical applications.In recent years,the preparation of mixed matrix membrane with an inorganic nano additive into the organic membrane material has become a research hotspot[9].The commonly used inorganic components include montmorillonite(MMT)[10],ZnO[11],Al2O3[12],SiO2[13],carbon nanotubes(CNTs)[14],HNTs-Dextran[15]etc.

    Graphene oxide(GO)is a graphene derivatives and has good hydrophilicity due to the contained hydroxyl and carboxyl groups[16,17].Besides,GO also has a high specific surface area,strong mechanical properties and good resistance to pollution.As such more and more researchers blend it into organic membrane for preparation of mixed matrix membrane[18–21].For example,Zinadiniet al.reported the PES/GO mixed matrix membrane,the results showed when the content of GO was 0.5 wt%,the membrane had the optimized mean pore radius and maximum water flux.The prepared GO nanocomposite membrane showed noteworthy reusability during filtration[22].Luet al.prepared GO-PA/PSF mixed matrix reverse RO membrane.It exhibited better separation performance and higher chlorine resistance than the common polyamide RO membrane.When the content of GO added in aqueous phase was 0.005 wt%,the flux of the membrane was maximized up to 63 L·m?2·h?1[23].

    To date,few studies are reported about the PPSU/GO ultra filtration membranes that enhance membrane performance and resistances to fouling.In this work,PPSU/GO mixed matrix ultra filtration membranes with different GO contents are prepared by immersion precipitation phase inversion technique.SEM and TGA are used to characterize the microstructure and thermal properties of membrane.The membrane hydrophilicity,the permeation behavior as well as the anti-fouling properties of the membrane are investigated.

    Fig.1.Structural of PPSU.

    2.Materials and Methods

    2.1.Synthesis of the PPSU/GO mixed matrix membrane

    Polyphenylene sulfone(PPSU,Basf Company);bovine serum albumin(BAS,Mn=68,000,Beijing Solarbio Technology Co.Ltd.);graphene oxide(GO)prepared in laboratory;N,N-dimethylacetamide(DMAC,AR),and polyethylene glycol(PEG-1000),are bought in Sinopharm Chemical Reagent Co.,Ltd.Deionized water was used as the coagulant.

    The mixed matrix membrane was prepared by the phase inversion technique(see Fig.2).To prepare the membrane casting solution,the concentration of 15%PPSU was firstly dissolved in DMAc solvent.6 wt%PEG-1000 was then added as the pore former into the solution,followed by stirring until it was completely dissolved.GO powder with the mass fraction of 0,0.5 wt%,1 wt%,1.5 wt%,and 2 wt%was respectively dispersed into the solution by intense magnetic stirring for 2 h,followed by curing for 24 h and then light static for 12–24 h at room temperature to avoid foaming.The casting solution was placed on the surface of a clean glass plate statically for 10 s,and then quickly put into the coagulating bath of distilled water.After immersion in distilled water for24 h to remove DMAC,the PPSU/GOmixed matrix membrane was finally obtained.

    Fig.2.Illustration of PPSU/GO membrane preparation process.

    2.2.Characterization of PPSU/GO membranes

    The membranes were characterized by SEM,TGA,FTIR spectroscopy and contactangle measurements.SEM(HitachiS-4800,Tokyo,Japan)images at low and high magnifications were captured from the membrane cross section and top surface.TGA was performed under the protection of nitrogen gas,in temperature range of 20–800 °C with the heating rate of 10 °C·min?1.The functional groups of the membrane were tested by FTIR using VERTEX70.Contact angles of the membranes were measured using JC2000C1 static contact angle measuring instrument.The membranes were cut into 1 cm×1 cm pieces for measurement.Take four different positions to measure and average the results[24].

    The membrane porosity was measured by the immersion method using distilled water as the medium[25].The porosity(ε)was calculated using Eq.(1).

    wherem1is the wet mass of the membrane(g);m2is the dry mass of the membrane(g);ρ is the density of water(g·cm?3);Ais the effective membrane area(cm3)andLis the membrane thickness(cm).

    The formula for calculating the average pore size(r)of the membrane is shown in Eq.(2).

    where η is the water viscosity(Pa·s),Jis the quantity of permeate per unit time(m3·m?2·h?1),ΔPis the operating pressure(Pa),Lis the membrane thickness(cm)and ε is the porosity of the membranes.

    2.3.PPSU/GO membranes separation performance tests

    The membrane separation performance was measured with a selfmade ultra filtration device.The first water preloading 20 min under 0.01 MPa,and then transferred to the test pressure 0.1 MPa,measured in a given period of time through the membrane water permeability.Three samples of each membrane were tested and the average data were taken as the membrane performance.Water flux(J)was calculated by

    whereQis the volume of the water permeate(m3);Ais the area of membrane(m2),andtis the permeation time(h).

    Membrane rejection is an important index to evaluate the membrane separation performance.Bovine serum albumin(BSA)solution instead of pure water was used for the permeation measurement.The permeation was conducted for 30 min under a trans-membrane pressure drop of 0.1 MPa.The BSA concentrations in the feed and the retentate were measured by UV spectrophotometer(UV-8000 s)under 280 nm wavelength.The rejection(R)was calculated by,

    whereC1andC2are the concentrations of BAS in the feed solution and the retentate(mg·L?1),respectively.

    The anti-fouling property of the membranes can be demonstrated using the flux recovery ratio(FRR)as it determines the volume of permeate flux that can be recovered after repeated filtration cycles.The pure water flux was measured under 0.1 MPa,the pure water fluxJw,1was recorded.Then the pure water was replaced by BAS solution,and the fluxJpof BSA solution was recorded with the change of time.After the BAS will be three times,the pollutant of membrane was cleaned with pure water,determination of pure water flux ofJw,2,membrane flux recovery rate calculation(FRR),the total pollution parameterRt,pollution parameterRr,irreversible fouling parameterRirwere calculated by Eqs.((5)–(8)),

    Fig.3.SEM images of graphene oxide.

    3.Results and Discussion

    3.1.Characterization of GO

    GO was prepared by the improved Hummers method[26].The morphology of the prepared GO is shown in Fig.3.The surface of GO shows small folded sheet,edge thin flaky.The FT-IR of GO is shown in Fig.4,the carbon network surface of GO introduces a large number of functional groups such as--OH,--C=O and--COOH,and so on.All these results via SEM and FTIR collectively con firmed the formation of GO.

    Fig.4.FTIR spectrum of graphene oxide.

    3.2.Effect of PPSU and PEG-1000 on membrane separation performance

    The concentration of PPSU is one of the most important factors to determine the membrane separation performance.Several casting solutions with the PPSU concentration of 10%,12%,15%,18%and 20%in DMAc were used to prepare PPSU membranes.

    As shown in Fig.5,with increasing the PPSU concentration,the resultant membrane exhibited decreased water flux but gradually increased BAS retention rate.This is because as the casting solution viscosity rises,the internal molecular chain winding degree between polymer becomes more serious,leading to difficulty in movement.As a result,the membrane becomes more and more dense,re flected in the decrease of pure water flux and the increase of retention rate.Considering such a trade-off between the flux and the retention,the concentration of PPSU was selected as 15%for membrane preparation.

    Fig.6 shows the effect of the PEG-1000 concentration on the membrane separation performance.As can be seen,the water flux of the membrane initially increases with increasing the PEG content,reaching the maximum 127.2 L·m?2·h?1at 6%,and then declines with further increasing the PEG-1000 content,while the retention rate remains 97%without obvious change as the PEG-1000 concentration increases.At lower concentrations,the increase in the PEG-1000 content is helpful for enlarging the polymer micelle aggregates size and the formation of micropores,leading to higher permeation flux.However,after the PEG-1000 concentration increases to a certain value,i.e.6%,further increase in the PEG-1000 content makes the casting solution viscous,leading to a decreased porosity and thickening of the cortex,and as a result,the water flux decreases.

    Fig.5.Effect of PPSU concentration on performance of membrane.

    Fig.6.Effect of PEG concentration on performance of membrane.

    3.3.Effect of GO content on the morphology of membranes

    The pure PPSU membrane and PPSU/GO membrane the surface and cross-section are compared in Fig.7.From the surface SEM of the membrane,pores are fewer in the pure PPSU membrane surface.More pores appeared in the surface of the mixed matrix membrane,and the membrane surface becomes more smooth with the addition of GO,which are beneficial to the improvement of membrane flux.

    Seen from the section structure of composite membrane,all the membranes demonstrate an asymmetric structure with an upper microporous layer supported on a bottom macroporous layer.With the increase of GO content,the overall thickness of the mixed matrix membrane changes very little,but the thickness of the upper microporous layer will be slightly reduced,under the microporous layer of the finger structure is more obvious.When GO content is higher than 1.5 wt%,the pore size of the membrane becomes uneven.So after the phase transition,the space occupied by water molecules formed the transverse holes which affect the mechanical properties of the membrane.The original vertical distribution of the channel will also have some damage,affecting the separation performance of the membrane[27].Comprehensively analyzed,when the mass content of GO is 1.5 wt%,the pore size of the membrane is more uniform.

    The pore size and porosity of the mixed matrix membrane are shown in Table 1.The pore size and porosity of the mixed matrix membrane are increased gradually with the increase of GO content,which is consistent with the SEM analysis.

    Fig.7.Top surface and cross section SEM of PPSU/GO membranes.(a:0 wt%GO,b:0.5 wt%GO,c:1 wt%GO,d:1.5 wt%GO,e:2 wt%GO).

    Table 1Pore structure parameters of PPSU/GO membranes

    3.4.Effect of GO content on the thermal stability for membranes

    As shown in Fig.8,mixed matrix membrane has a trace amount of mass loss before 400°C,which is due to the presence of incomplete dry water or organic solvent evaporation;when the temperature is about 450°C,the quality loss of all membranes becomes larger,the reason is that C=O open into C--O in GO,and on the other hand,polymer itself will decompose[28];when the temperature is about 600°C,mass loss rate slows.The thermal stability of mixed matrix membranes is improved after the addition GO.The reason is addition of GO reducing the proportion of the polymer,reducing the membrane and oxygen contact area;on the other hand,the addition of GO could inhibit the shift of molecular polymer chain,interaction between PPSU chains and GO nanoparticles made the fracture polymer chain need more energy,so to improve the thermal stability of the membrane[29].

    Fig.8.The curve of TGA analysis for the PPSU/GO membranes.

    3.5.FTIR analysis

    Infrared pure PPSU membrane and PPSU/GO mixed matrix membranes at 1.5 wt%spectra are shown in Fig.9.The PPSU membrane on the 1155 cm?1is seen with symmetric stretching characteristic absorption peak of O=S=group in PPSU,and on the 1286 cm?1is characteristic peak of infrared anti symmetric contraction of O=S=O group.There are obvious characteristic peaks at 1486 cm?1and 1585 cm?1,for the C=C stretching vibration of the benzene ring.Compared with the infrared spectra of pure PPSU membrane and composite membrane,it is shown that the absorption peak of PPSU/GO in the 3420 cm?1are stronger and the peak width is larger,which indicates that the hydrophilicity of the membrane is improved by the addition of GO.

    Fig.9.FTIR of PPSU and PPSU/GO membrane.

    3.6.Effect of GO content on the contact angle

    Fig.10 shows the relationship between the contact angle of the membrane and the GO content.The pure PPSU contact angle is 93.4°,hydrophobic.With the addition of GO,the contact angle of the PPSU/GO membranes decreases,because the hydrophilic groups with surface GO,the mixed matrix membrane enhanced affinity for water.When the GO content is greater than 1.5 wt%,the tendency of the contact angle increases to be gentle.It is considered that the GO content is too much to cause agglomeration phenomenon,weakening the tendency of the contact angle increases.

    Fig.10.Effect of concentration of GO on contact angle.

    3.7.Separation performance of membranes

    Fig.11 shows the pure water flux and retention rate of bovine serum protein of the PPSU/GO membranes with different GO content.The pure PPSU membrane has the lowest pure water flux and the highest rejection rate,which are 132.2 L·m?2·h?1and 96.8%respectively,and the water flux increases gradually with the increase of GO content.Because the hydrophilicity of GO makes it easy to absorb water molecules on the surface of the membrane,and water layer on the surface of the membrane is formed which can make water molecules immersion priority through membrane materials,effectively reducing the mass transfer resistance of membrane,and increasing the pure water flux of the membrane.At the same time,when the GO content is 2 wt%,the rejection rate decreases by 5.6%,which is a comparatively large decline.The decrease of retention rate is related to the surface morphology and pore size of the membrane.After the addition of GO,the pore size of the membrane becomes larger,which should be the reason for the decline of the BSA retention rate of the mixed matrix membrane.It is generally believed if the flux increases but the retention rate is minor changes,which requires a large number of holes on membrane surface and more uniformpore size[30].So the conclusion is drawn that the separation performance of the membrane is better when the amount of GO is 1.5 wt%.

    Fig.11.Effect of GO content on separation performance of membrane.

    3.8.Anti-fouling properties of mixed matrix membranes

    Fig.12.Time-dependent flux of PPSU and PPSU/GO the membranes.

    Fig.12 is the time flux change curve of PPSU/GO mixed matrix membrane after BAS solution contamination.When the pure water is replaced by BAS solution,the flux of the composite membrane is decreased,because of the adsorption of BAS solution on the membrane surface,resulting in membrane pore blockage.When the membrane is washed with water,the water flux recovered and the water flux is basically stable.

    In order to show the pollution resistance of the mixed matrix membrane with different GO contents,the flux recovery rate of the membrane is tested,as shown in Fig.13.The recovery rate of PPSU membrane in the BAS solution is only 50.1%,and the attenuation is more serious,but the flux recovery rate of mixed matrix membrane increases gradually.The flux recovery rate of PPSU/GO membrane reaches 86%when the content of GO reaches 1.5 wt%.When the content of GO is higher than 1.5%,the flux recovery rate decreased.Because of excessive addition of GO to the membrane,the membrane pore becomes uneven and increases roughness.BAS residues results in the obstruction of the pores,thus membrane flux recovery rate decreases.

    Fig.13.The anti-fouling indexes of the PPSU and PPSU/GO membranes.

    The pollution of membrane surface is divided into two parts:reversible and irreversible fouling.The fouling index of the membrane is expressed in Fig.13.The total fouling number of the pure PPSU membrane is 76.3%,and the irreversible fouling parameter is 50%,which shows that the PPSU membrane is the least resistant to contamination.When the added amount of GO is less than 1.5 wt%,the total number of membrane fouling and the irreversible fouling parameters decreased,which shows that the anti-fouling ability of the mixed matrix membrane is improved.When the amount of GO is 2 wt%,all the parameters of the membrane and the irreversible fouling parameters are increased.Too much GO into the membrane cannot be a good fusion of the polymer,so the membrane hole becomes rough,uneven,resulting in some of the pores easily blocked,and then the anti-fouling ability of the membrane decreased.

    4.Conclusions

    In this study,graphene oxide was used as a hydrophilic additive to blend with PPSU membrane.PPSU/GO mixed matrix membrane was prepared by phase inversion technique,and the following results were obtained.

    GO has good compatibility with PPSU.The addition of GO improves the inner pore structure of the membrane.The hydrophobicity of the membrane can be improved and the thermal stability is improved.When the content of GO was 1.5 wt%,the pure water flux of the mixed matrix membrane reaches 231.7 L·m?2·h?1,which increase by 83%compared with the pure PPSU membrane,while the rejection rate of the BAS solution was not very large.At the same time,the maximum flux recovery rate of PPSU/GO mixed matrix membrane was 86%,and the total number of membrane fouling and irreversible fouling parameters was decreased.With the addition of GO,the equivalent of adding hydrophilic groups in the membrane,water molecules would be preferentially combined with polar groups on the surface of the membrane,which obstructed the pollutant and improved the anti fouling ability of membrane.

    Appendix A

    A.1.Materials

    Graphite powder purchased from Sinopharm Chemical Reagent Co.,Ltd.(China);concentrated sulfuric acid(H2SO4)and potassium permanganate(KMnO4)and hydrogen peroxide(H2O2)purchased from Tianjin Yongda Reagent Co.,Ltd.(China).

    A.2.The preparation of graphite oxide

    (1)Pre oxidation of graphite Adding 12 ml concentrated sulfuric acid to the flask,and then added the 2.5 g P2O5and 2.5 g K2S2O8,the mixture was heated to 80°C,then adding 0.8 g graphite powder,stirring 4 h.The obtained black solid was dried at60°C to obtain the pre oxidized graphite.

    (2)Re-oxidation Adding 120 ml concentrated sulfuric acid and pre oxidized graphite into the flask,then slowly added 12 g KMnO4,evenly mixing,and the reaction continued in the thermostat water bath at 35°C for 2 h.Then 10 ml H2O2were dropped,stirring for 10 min,adding 5%HCl,stirring again 10 min,then standing 12 h.The solution was separated by centrifugation,and the graphene oxide was dried in 60°C vacuum drying oven 24 h.

    (3)Post treatment A certain amount of GO dispersed in 100 ml water,and the suspension of GO is obtained.The suspension was dispersed by ultrasonic treatment 2 h,and the stable GO solution was obtained.

    [1]J.J.Song,Y.Huang,S.W.Nam,M.Yu,J.Heo,Ultrathin graphene oxide membranes for the removal of humic acid,Sep.Purif.Technol.144(2015)162–167.

    [2]T.Arumugham,N.J.Kaleekkal,D.Rana,M.Doraiswamy,Separation of oil/water emulsions using nano MgO anchored hybrid ultra filtration membranes for environmental abatement,J.Appl.Polym.Sci.133(1)(2016).

    [3]R.Saranya,M.Kumar,R.Tamilarasan,Functionalised activated carbon modified polyphenylsulfone composite membranes for adsorption enhanced phenol filtration,J.Chem.Technol.Biotechnol.690(3)(2016)53–61.

    [4]B.D.Malhotra,R.A.Pethrick,Positronium annihilation studies of polycarbonate,polyethersulphone and polysulphone,Eur.Polym.J.19(6)(1983)457–459.

    [5]V.Percec,B.C.Auman,Functional polymers and sequential copolymers by phase transfer catalysis,2.Synthesis and characterization of aromatic poly(ether-sulfone)s containing vinylbenzyland ethynylbenzylchain ends(pages 1867–1880),Macromol.Chem.Phys.185(9)(1984)1867–1880.

    [6]S.Brenda,W.Heitz,A.Karback,Block copolymers of poly(ether-ether-sulfones)with liquid-crystalline/non-liquid-crystalline polyesters,Macromol.Chem.Phys.195(4)(1994)1327–1339.

    [7]Y.Yoon,G.Amy,J.Cho,N.Her,Effects of retained natural organic matter(NOM)on NOM rejection and membrane flux decline with nano filtration and ultra filtration,Desalination173(2005)209–221.

    [8]A.Zularisam,A.Ismail,R.Salim,Behaviors of natural organic matter in membrane filtration for surface water treatment—A review,Desalination194(2006)211–231.

    [9]N.Ghaemi,S.S.Madaeni,A.Alizadeh,Preparation,characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides,J.Membr.Sci.382(1–2)(2011)135–147.

    [10]S.Balta,A.Sotto,P.Luis,A new outlook on membrane enhancement with nanoparticles:The alternative of ZnO,J.Membr.Sci.389(2012)155–161.

    [11]A.Saxena,M.Kumar,B.P.Tripathi,Organic–inorganic hybrid charged membranes for proteins separation:Isoelectric separation of proteins under coupled driving forces,Sep.Purif.Technol.70(3)(2010)280–290.

    [12]F.Liu,M.R.Abed,K.Li,Preparation and characterization of poly(vinylidene fluoride)(PVDF)based ultra filtration membranes using nano γ-AlzOz,J.Membr.Sci.366(1–2)(2011)97–103.

    [13]L.Yu,Y.T.Zhang,Y.M.Wang,et al.,High flux,positively charged loose nano filtration membrane by blending with poly(ionic liquid)brushes grafted silica spheres,J.Hazard.Mater.287(2015)373–383.

    [14]Z.H.Wang,H.R.Yu,J.F.Xia,Novel GO-blended PVDF ultra filtration membranes,Desalination299(8)(2012)50–54.

    [15]H.Yu,Y.Zhang,X.Sun,J.Liu,H.Zhang,Improving the antifouling property of polyethersulfone ultra filtration membrane by incorporation of dextran grafted halloysite nanotubes,Chem.Eng.J.237(1)(2014)322–328.

    [16]D.R.Dreyer,A.D.Todd,C.W.Bielawski,Harnessing the chemistry of graphene oxide,Chem.Soc.Rev.43(15)(2009)5288–5301.

    [17]V.Georgakilas,M.Otyepka,A.B.Bourlinos,Functionalization of graphene:Covalent and non-covalent approaches,derivatives and applications,Chem.Rev.112(11)(2012)6156–6214.

    [18]K.Goh,L.Setiawan,L.Wei,R.Si,A.G.Fane,Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process,J.Membr.Sci.474(474)(2015)244–253.

    [19]Z.Xu,J.Zhang,M.Shan,Y.Li,B.Li,Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultra filtration membranes,J.Membr.Sci.458(10)(2014)1–13.

    [20]Q.Q.Zhao,J.W.Hou,J.N.Shen,J.Liu,et al.,Long-lasting antibacterial behavior of a novel mixed matrix water purification membrane,J.Mater.Chem.A3(36)(2015)18696–18705.

    [21]L.Yu,Y.T.Zhang,B.Zhang,et al.,Preparation and characterization of hpei-go/pes ultra filtration membrane with antifouling and antibacterial properties,J.Membr.Sci.447(22)(2013)452–462.

    [22]S.Zinadini,A.A.Zinatizadeh,M.Rahimi,V.Vatanpour,H.Zangeneh,Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates,J.Membr.Sci.453(3)(2014)292–301.

    [23]Y.Lu,H.Y.Zhao,L.Zhanng,L.A.Hou,Preparation and characterization of mixed matrix RO membrane of polyamide and GO,Eng.Sci.16(7)(2014)84–88.

    [24]P.Kanagaraj,A.Nagendran,D.Rana,Influence of N-phthaloyl chitosan on poly(ether imide)ultra filtration membranes and its application in biomolecules and toxic heavy metal ion separation and their antifouling properties,Appl.Surf.Sci.329(7)(2014)165–173.

    [25]A.Jayalakshmi,S.Rajesh,S.Senthilkumar,Epoxy functionalized poly(ether-sulfone)incorporated cellulose acetate ultra filtration membrane for the removal of chromium ions,Sep.Purif.Technol.90(18)(2012)120–132.

    [26]W.S.Hummers,R.E.Offeman,Preparation of graphitic oxide,J.Am.Chem.Soc.80(6)(1958)1339.

    [27]C.A.Smolders,A.J.Reuvers,R.M.Boom,Microstructures in phase-inversion membranes.Part 1.Formation of macrovoids,J.Membr.Sci.73(2–3)(1992)259–275.

    [28]S.Eigler,S.Grimm,A.Hirsch,Investigation of the thermal stability of the carbon framework of graphene oxide,Chem.Eur.J.20(4)(2014)984–989.

    [29]M.Ionita,E.Vasile,L.E.Crica,S.I.Voicu,A.M.Pandele,Synthesis,characterization and in vitro studies of polysulfone/graphene oxide composite membranes,Compos.Part B Eng.72(2015)108–115.

    [30]N.Pezeshk,D.Rana,R.M.Narbaitz,T.Matsuura,Novel modified PVDF ultra filtration flat-sheet membranes,Fuel Energy Abstr.389(2012)280–286.

    精品久久久久久久毛片微露脸| 丁香六月欧美| 欧美日韩福利视频一区二区| 国产精品爽爽va在线观看网站 | ponron亚洲| 热re99久久国产66热| 婷婷丁香在线五月| 亚洲熟女毛片儿| 丰满人妻熟妇乱又伦精品不卡| 麻豆成人午夜福利视频| 免费女性裸体啪啪无遮挡网站| 在线永久观看黄色视频| 999久久久精品免费观看国产| 亚洲av片天天在线观看| 伦理电影免费视频| 在线观看日韩欧美| 69av精品久久久久久| АⅤ资源中文在线天堂| 久久精品aⅴ一区二区三区四区| 激情在线观看视频在线高清| 欧美久久黑人一区二区| 国产单亲对白刺激| 久久午夜亚洲精品久久| 亚洲av日韩精品久久久久久密| 午夜a级毛片| 日韩欧美 国产精品| 中文字幕精品免费在线观看视频| 男女那种视频在线观看| 免费看日本二区| 黄片大片在线免费观看| 午夜福利在线观看吧| 两个人免费观看高清视频| 亚洲中文字幕日韩| 中文在线观看免费www的网站 | 男女床上黄色一级片免费看| 日韩中文字幕欧美一区二区| 成人18禁高潮啪啪吃奶动态图| 午夜精品在线福利| 亚洲精品色激情综合| 亚洲专区中文字幕在线| 91在线观看av| 一卡2卡三卡四卡精品乱码亚洲| 99riav亚洲国产免费| 长腿黑丝高跟| 神马国产精品三级电影在线观看 | 欧美一级毛片孕妇| 男女视频在线观看网站免费 | 天天躁夜夜躁狠狠躁躁| 少妇熟女aⅴ在线视频| 日本一本二区三区精品| 欧美中文综合在线视频| 给我免费播放毛片高清在线观看| 亚洲狠狠婷婷综合久久图片| 国产午夜精品久久久久久| 18禁国产床啪视频网站| 久久99热这里只有精品18| 国产又爽黄色视频| 日韩欧美国产一区二区入口| 麻豆久久精品国产亚洲av| 老司机在亚洲福利影院| 国产1区2区3区精品| 久久草成人影院| 国产麻豆成人av免费视频| 亚洲色图 男人天堂 中文字幕| 久久久久久久精品吃奶| 国产亚洲精品久久久久5区| 美女高潮到喷水免费观看| 波多野结衣高清作品| 黄片小视频在线播放| 一a级毛片在线观看| 美女免费视频网站| 色在线成人网| 精品人妻1区二区| 男人舔女人的私密视频| 少妇粗大呻吟视频| 国产精品免费视频内射| 久热爱精品视频在线9| 欧美乱色亚洲激情| 国产亚洲精品一区二区www| 亚洲中文日韩欧美视频| 伦理电影免费视频| 欧美日韩亚洲国产一区二区在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美乱妇无乱码| 免费看十八禁软件| 亚洲国产精品成人综合色| 日韩视频一区二区在线观看| 国产亚洲欧美在线一区二区| 一二三四社区在线视频社区8| 亚洲成人国产一区在线观看| 亚洲片人在线观看| 亚洲国产精品999在线| 韩国精品一区二区三区| ponron亚洲| 高清在线国产一区| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全免费视频| 香蕉丝袜av| av在线天堂中文字幕| 国产精品日韩av在线免费观看| 亚洲熟妇中文字幕五十中出| a级毛片a级免费在线| 在线观看一区二区三区| 老汉色∧v一级毛片| 激情在线观看视频在线高清| 国语自产精品视频在线第100页| 中文亚洲av片在线观看爽| 高清在线国产一区| 亚洲欧美激情综合另类| 免费看十八禁软件| 国产成人影院久久av| 免费人成视频x8x8入口观看| 精品久久久久久久末码| 夜夜爽天天搞| 欧美成狂野欧美在线观看| 老司机午夜十八禁免费视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲av一区麻豆| 午夜成年电影在线免费观看| 欧美久久黑人一区二区| 热re99久久国产66热| 国产精品国产高清国产av| 999久久久精品免费观看国产| 国产精品久久久久久亚洲av鲁大| 在线视频色国产色| 日韩欧美三级三区| 90打野战视频偷拍视频| 国产高清有码在线观看视频 | 日韩中文字幕欧美一区二区| 亚洲 欧美 日韩 在线 免费| 在线观看www视频免费| 成人av一区二区三区在线看| 亚洲全国av大片| 午夜福利高清视频| 男人舔女人的私密视频| 每晚都被弄得嗷嗷叫到高潮| 成人国产一区最新在线观看| 波多野结衣av一区二区av| 欧美在线黄色| 丰满的人妻完整版| 国产精品一区二区三区四区久久 | 久久中文字幕人妻熟女| 久久久久久久精品吃奶| 亚洲一码二码三码区别大吗| 国产高清有码在线观看视频 | 久久久久久九九精品二区国产 | 中文亚洲av片在线观看爽| 麻豆成人av在线观看| 亚洲人成网站在线播放欧美日韩| 欧美成人午夜精品| 熟女电影av网| 丝袜在线中文字幕| 大型黄色视频在线免费观看| 午夜福利在线在线| 色在线成人网| 国产真人三级小视频在线观看| 美女午夜性视频免费| 女人高潮潮喷娇喘18禁视频| 精华霜和精华液先用哪个| 国产三级在线视频| 搡老岳熟女国产| 亚洲片人在线观看| 亚洲第一青青草原| 国产私拍福利视频在线观看| 欧美黑人欧美精品刺激| 久久精品aⅴ一区二区三区四区| 久久人人精品亚洲av| 97碰自拍视频| 男人舔女人的私密视频| 成人av一区二区三区在线看| 亚洲中文字幕一区二区三区有码在线看 | www.精华液| 成人三级做爰电影| 国产又黄又爽又无遮挡在线| 国产精品电影一区二区三区| av电影中文网址| 久热爱精品视频在线9| 丝袜在线中文字幕| 精品久久久久久,| 久久亚洲精品不卡| 99热只有精品国产| 久久久水蜜桃国产精品网| 久久人妻福利社区极品人妻图片| cao死你这个sao货| 91国产中文字幕| 日本一区二区免费在线视频| 99久久精品国产亚洲精品| 欧美国产日韩亚洲一区| 可以在线观看毛片的网站| 婷婷精品国产亚洲av在线| 日韩精品青青久久久久久| 国产真人三级小视频在线观看| 国产精品一区二区三区四区久久 | 黄片大片在线免费观看| 日本撒尿小便嘘嘘汇集6| 国产高清videossex| 中文字幕高清在线视频| 激情在线观看视频在线高清| 国产视频一区二区在线看| 欧美+亚洲+日韩+国产| 午夜福利欧美成人| 老汉色av国产亚洲站长工具| 日韩av在线大香蕉| 三级毛片av免费| 黄片播放在线免费| 麻豆成人av在线观看| 精品国产一区二区三区四区第35| 国产91精品成人一区二区三区| 亚洲av第一区精品v没综合| 1024手机看黄色片| 性欧美人与动物交配| svipshipincom国产片| 成人一区二区视频在线观看| 搞女人的毛片| 亚洲 欧美 日韩 在线 免费| 亚洲精品一区av在线观看| 日韩欧美一区视频在线观看| 久久精品影院6| 亚洲精品中文字幕一二三四区| 18禁裸乳无遮挡免费网站照片 | 欧美大码av| 色综合婷婷激情| 变态另类成人亚洲欧美熟女| 日本免费一区二区三区高清不卡| 亚洲av美国av| 黄片大片在线免费观看| 两人在一起打扑克的视频| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久人妻蜜臀av| 女性被躁到高潮视频| 亚洲电影在线观看av| 亚洲精品在线观看二区| 国产不卡一卡二| 国产av不卡久久| 两个人视频免费观看高清| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成国产人片在线观看| 50天的宝宝边吃奶边哭怎么回事| 欧美绝顶高潮抽搐喷水| 国产一区二区三区视频了| 日韩成人在线观看一区二区三区| 老汉色av国产亚洲站长工具| 大香蕉久久成人网| 桃色一区二区三区在线观看| 久久热在线av| 欧美国产精品va在线观看不卡| 午夜两性在线视频| 久久国产乱子伦精品免费另类| 波多野结衣高清作品| 成人午夜高清在线视频 | 老熟妇乱子伦视频在线观看| 一区二区三区高清视频在线| 国产主播在线观看一区二区| 美女高潮到喷水免费观看| 久久精品91无色码中文字幕| 欧美色欧美亚洲另类二区| 男女那种视频在线观看| 超碰成人久久| 精品电影一区二区在线| 欧美午夜高清在线| 国产黄色小视频在线观看| 久久香蕉激情| 久久伊人香网站| 国产成+人综合+亚洲专区| 少妇粗大呻吟视频| 久久99热这里只有精品18| 欧美日韩亚洲综合一区二区三区_| 久久九九热精品免费| 成人亚洲精品av一区二区| 亚洲av片天天在线观看| 在线观看免费视频日本深夜| 亚洲国产精品999在线| 女生性感内裤真人,穿戴方法视频| 满18在线观看网站| 一本一本综合久久| 国产区一区二久久| 天堂影院成人在线观看| 真人做人爱边吃奶动态| 久久久久国产精品人妻aⅴ院| 黄网站色视频无遮挡免费观看| av中文乱码字幕在线| 免费av毛片视频| 国产一区二区三区在线臀色熟女| 日韩av在线大香蕉| 精品熟女少妇八av免费久了| 狂野欧美激情性xxxx| 久久热在线av| 熟妇人妻久久中文字幕3abv| 欧美三级亚洲精品| 亚洲国产精品999在线| 黄片小视频在线播放| 日本免费a在线| 好男人在线观看高清免费视频 | 精品一区二区三区视频在线观看免费| 99热只有精品国产| 一夜夜www| 国产精品 欧美亚洲| 国产精品98久久久久久宅男小说| 亚洲国产精品sss在线观看| 制服丝袜大香蕉在线| 亚洲欧美激情综合另类| 亚洲av美国av| 亚洲欧美一区二区三区黑人| 国产成人欧美在线观看| 99国产精品一区二区三区| 一级a爱片免费观看的视频| 少妇裸体淫交视频免费看高清 | 日韩精品免费视频一区二区三区| 黄频高清免费视频| 成年免费大片在线观看| 波多野结衣巨乳人妻| 18禁观看日本| 亚洲熟妇熟女久久| 1024手机看黄色片| 久久国产精品人妻蜜桃| 精品不卡国产一区二区三区| 欧美黑人精品巨大| 一个人观看的视频www高清免费观看 | 亚洲精华国产精华精| 亚洲av电影不卡..在线观看| 日本熟妇午夜| 巨乳人妻的诱惑在线观看| 少妇裸体淫交视频免费看高清 | 变态另类丝袜制服| 国产av又大| 中文字幕久久专区| 身体一侧抽搐| 亚洲成人国产一区在线观看| 十八禁人妻一区二区| 欧美国产日韩亚洲一区| 亚洲精品一卡2卡三卡4卡5卡| 在线观看一区二区三区| 啪啪无遮挡十八禁网站| √禁漫天堂资源中文www| ponron亚洲| 听说在线观看完整版免费高清| 亚洲avbb在线观看| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 精品久久久久久成人av| 久久香蕉精品热| 国产私拍福利视频在线观看| 三级毛片av免费| 热re99久久国产66热| ponron亚洲| 女性生殖器流出的白浆| 99久久国产精品久久久| 一级毛片精品| ponron亚洲| 欧美日韩中文字幕国产精品一区二区三区| 给我免费播放毛片高清在线观看| 黑人欧美特级aaaaaa片| 在线观看www视频免费| 亚洲成av片中文字幕在线观看| 在线观看免费日韩欧美大片| 亚洲人成网站高清观看| 国产午夜福利久久久久久| 波多野结衣高清作品| 麻豆成人午夜福利视频| 看片在线看免费视频| 午夜福利在线在线| 国产精品精品国产色婷婷| 久99久视频精品免费| 久久 成人 亚洲| 成人国产一区最新在线观看| 久久久国产精品麻豆| 国产日本99.免费观看| 无限看片的www在线观看| 亚洲成人精品中文字幕电影| 狠狠狠狠99中文字幕| 亚洲国产中文字幕在线视频| 亚洲色图av天堂| 久久精品国产清高在天天线| 给我免费播放毛片高清在线观看| 夜夜躁狠狠躁天天躁| 午夜福利高清视频| 精品久久久久久久毛片微露脸| 成年免费大片在线观看| 日本熟妇午夜| 婷婷六月久久综合丁香| 1024视频免费在线观看| svipshipincom国产片| 老熟妇乱子伦视频在线观看| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 一本精品99久久精品77| 身体一侧抽搐| 成人亚洲精品一区在线观看| 性欧美人与动物交配| 白带黄色成豆腐渣| 国产私拍福利视频在线观看| 国产av又大| 久久精品国产综合久久久| 精华霜和精华液先用哪个| av超薄肉色丝袜交足视频| 国产又黄又爽又无遮挡在线| 99久久久亚洲精品蜜臀av| 黑丝袜美女国产一区| 亚洲av电影不卡..在线观看| 久久香蕉精品热| 国产一区二区在线av高清观看| 精品无人区乱码1区二区| 欧美性长视频在线观看| 一区福利在线观看| 午夜福利视频1000在线观看| 看片在线看免费视频| 欧美av亚洲av综合av国产av| av超薄肉色丝袜交足视频| 国产精品一区二区免费欧美| 久久精品人妻少妇| 黄频高清免费视频| 国产片内射在线| 欧美三级亚洲精品| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区| 国产精品一区二区精品视频观看| 亚洲久久久国产精品| 精品无人区乱码1区二区| 国产精品国产高清国产av| 黄片小视频在线播放| 中文字幕精品亚洲无线码一区 | 国产男靠女视频免费网站| 成人免费观看视频高清| 在线看三级毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 久久人妻av系列| 12—13女人毛片做爰片一| 欧美性猛交黑人性爽| 欧美黄色淫秽网站| 国产精品久久视频播放| 99热这里只有精品一区 | 午夜影院日韩av| 满18在线观看网站| 日本在线视频免费播放| 久久久久久免费高清国产稀缺| 亚洲av成人av| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国内亚洲2022精品成人| 久久久久久九九精品二区国产 | 一个人免费在线观看的高清视频| 婷婷丁香在线五月| av天堂在线播放| 免费看十八禁软件| 免费在线观看视频国产中文字幕亚洲| 1024香蕉在线观看| 在线看三级毛片| 99精品在免费线老司机午夜| 国产一区二区三区视频了| 免费看美女性在线毛片视频| 最近最新中文字幕大全电影3 | 91麻豆精品激情在线观看国产| 女警被强在线播放| 欧美不卡视频在线免费观看 | 亚洲,欧美精品.| 99热6这里只有精品| 变态另类成人亚洲欧美熟女| 久久久国产精品麻豆| 日本在线视频免费播放| 好男人电影高清在线观看| 亚洲精华国产精华精| 欧美乱码精品一区二区三区| 香蕉av资源在线| 成年免费大片在线观看| 99久久久亚洲精品蜜臀av| 亚洲精品久久国产高清桃花| 天天一区二区日本电影三级| 深夜精品福利| 正在播放国产对白刺激| 一区福利在线观看| 最新在线观看一区二区三区| 日本免费一区二区三区高清不卡| 亚洲成av人片免费观看| 欧美日韩精品网址| 日本免费a在线| 亚洲av中文字字幕乱码综合 | 欧美日韩亚洲国产一区二区在线观看| 999精品在线视频| 在线观看午夜福利视频| www日本在线高清视频| 制服丝袜大香蕉在线| 在线观看舔阴道视频| 女性生殖器流出的白浆| 亚洲在线自拍视频| 亚洲精品久久成人aⅴ小说| 在线av久久热| 天天躁夜夜躁狠狠躁躁| 午夜福利在线观看吧| 欧美乱码精品一区二区三区| 国产精品二区激情视频| 亚洲av电影不卡..在线观看| 韩国精品一区二区三区| 黄片大片在线免费观看| 日本熟妇午夜| 视频区欧美日本亚洲| 成人18禁高潮啪啪吃奶动态图| 搡老岳熟女国产| 黄色片一级片一级黄色片| 午夜两性在线视频| 最近最新中文字幕大全免费视频| 久久 成人 亚洲| 午夜福利在线在线| 精品欧美国产一区二区三| 午夜激情av网站| 国产精品av久久久久免费| 精品国产乱子伦一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲免费av在线视频| 老熟妇仑乱视频hdxx| www.www免费av| 国产精品乱码一区二三区的特点| 久久久国产精品麻豆| 人人澡人人妻人| 日韩欧美一区视频在线观看| 欧美中文日本在线观看视频| 久久精品人妻少妇| 香蕉国产在线看| 一级黄色大片毛片| 免费女性裸体啪啪无遮挡网站| 国产激情偷乱视频一区二区| 精品乱码久久久久久99久播| 色综合欧美亚洲国产小说| 午夜免费成人在线视频| 亚洲人成电影免费在线| 久久精品91蜜桃| 麻豆av在线久日| 日韩精品中文字幕看吧| 欧美日韩亚洲综合一区二区三区_| 可以在线观看毛片的网站| 欧美黑人欧美精品刺激| 黄色丝袜av网址大全| 午夜福利欧美成人| 在线av久久热| 久久久久亚洲av毛片大全| 在线观看免费午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | 99久久精品国产亚洲精品| 一进一出抽搐gif免费好疼| 禁无遮挡网站| 欧美不卡视频在线免费观看 | 国内毛片毛片毛片毛片毛片| 成人精品一区二区免费| 黄色视频不卡| 怎么达到女性高潮| 岛国视频午夜一区免费看| 正在播放国产对白刺激| 国产高清激情床上av| 免费看日本二区| 2021天堂中文幕一二区在线观 | 欧美亚洲日本最大视频资源| 黄片大片在线免费观看| 精品少妇一区二区三区视频日本电影| 亚洲黑人精品在线| 欧美激情久久久久久爽电影| 日本a在线网址| 欧美绝顶高潮抽搐喷水| 免费看美女性在线毛片视频| 久久精品国产综合久久久| a级毛片a级免费在线| 一级毛片高清免费大全| 久久久久久国产a免费观看| 窝窝影院91人妻| 国产黄a三级三级三级人| 亚洲 欧美一区二区三区| 精品国产美女av久久久久小说| 色尼玛亚洲综合影院| 日本 av在线| 国产成人啪精品午夜网站| av在线播放免费不卡| 精品欧美一区二区三区在线| 国产成人系列免费观看| 免费看日本二区| 亚洲第一av免费看| 亚洲欧美精品综合久久99| 巨乳人妻的诱惑在线观看| 免费看日本二区| 精品国产一区二区三区四区第35| 人妻久久中文字幕网| 久久狼人影院| 欧美中文综合在线视频| 国产又爽黄色视频| 国产亚洲欧美精品永久| 日本 av在线| 级片在线观看| 88av欧美| 亚洲 欧美一区二区三区| 淫秽高清视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜两性在线视频| 在线观看午夜福利视频| 国产午夜福利久久久久久| 真人一进一出gif抽搐免费| 欧美一区二区精品小视频在线| 日本一区二区免费在线视频| 久久欧美精品欧美久久欧美| 成人国语在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 好男人在线观看高清免费视频 | 一本一本综合久久| 午夜视频精品福利| 无人区码免费观看不卡| 国产野战对白在线观看| 精品日产1卡2卡| 宅男免费午夜| 国产激情欧美一区二区| 久久中文字幕人妻熟女| 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 亚洲国产高清在线一区二区三 | 午夜免费鲁丝| 亚洲中文av在线| 久久精品国产综合久久久| 一夜夜www| 精品不卡国产一区二区三区| 好男人在线观看高清免费视频 |