• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of surface property on mass flux in a variable-section microchannel☆

    2017-05-28 08:50:03WeichengXuYumeiYongJunboXuChaoYang
    關(guān)鍵詞:清液法測(cè)定預(yù)處理

    Weicheng Xu ,Yumei Yong *,Junbo Xu Chao Yang ,**

    1 Key Laboratory of Green Process and Engineering,State Key Laboratory of Biochemical Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    Recently,the Micro-Electro-Mechanical-Systems(MEMS)have been widely used in chemistry,biology and medicine[1].It is found that the size of micro fluidic device is so small that it produces many different flow phenomena from the macro systems.For example,there is an abnormal increase of the mass flux of the liquid in the hydrophobic microchannel over the hydrophilic ones,which cannot be explained by the law of macro fluid dynamics[2].This specific phenomenon can reduce the permeation driving pressure[3],as well as enhance mixing and diffusion-osmotic flows[4],and it has wide applications[5].However,the factors of such phenomenon are still in controversy[2],therefore a systematic study about this phenomenon is desired[6].

    A generally accepted explanation on this phenomenon is that the liquids still slip on the liquid–solid interface like gases because of the repulsive force between the wall and fluids,which increases mass flux dramatically in the microchannel[7].Up to now,there have been many studies on this abnormal phenomenon of mass flux in the hydrophobic microchannel[8].Josephet al.[9]used the particle image velocimetry(PIV)technology to investigate the velocity pro files in a thin microchannel and measured the slip length directly.Kopliket al.[10]used the molecular dynamics(MD)technique to study the fluid behavior in the microscopic scale,and found that the boundary slip could be observed in a low density fluid system,and the slip length was related to the flow state.Chenet al.[11]used the lattice Boltzmann method(LBM)to investigate the factors on the boundary slip in a Couette flow,and found that the factors that could induce a low density region near the wall would affect the slip length.Chenget al.[12]measured the mass flux of different liquids in a straight microchannel with different characteristic sizes.The experimental results indicated that when the wall could not be wetted by liquid,the measured mass flux for the microchannel would be bigger than theoretical expectation,and with the increase of system size,the effect of hydrophobic wall on mass flux decreased.It is clear that most of the studies are based on a simple straight microchannel with consistent surface property.However,the practical micro fluidic systems are more complex than straight microchannels and the surface wettability is not always consistent.In order to improve our understanding of the liquid flow in micro scales,more practical situations should be considered.

    Among various micro fluidic systems,a microchannel with complex shapes or complex surface wettability can often be found[13,14].Fanet al.[15]applied a MD method to simulate a nano-channel which included a contraction and diverging geometry,and the numerical results had been compared to the prediction results of Navier–Stokes equations.They found that the macro hydromechanics theory was unable to describe the micro flow correctly.Hanasakiet al.[16]simulated water flowing through a carbon nanotube nozzle which had a converging transition section,then they discovered an increase in fluid velocity and a decrease in pressure drop when water flowed through the nozzle.While Guoet al.[17]simulated fluid flowing on a curved surface,and found a dramatic influence of the curvature on the slip length.Some other articles focused on the micro/nano-channel with mixed surface wettability[18,19].However,these works did not mention how the shape and surface wetting property affected jointly on the mass flux.Thus,in this paper we are going to study the relationship between hydrophobic surface and mass flux in variable-section microchannels to get the optimized channel size and surface wettability properties,which is important for the optimal design and operation of micro devices[20].

    There are two main methods to study the flow of liquid in the microchannel:experiment and numerical simulation.In experiment,it is difficult for us to measure the mass flux accurately due to the small system size[21].Accordingly,numerical simulation is developed,by which we can examine more physical variables with low cost and short time while control them easily.MD[22]and LBM are commonly used to simulate micro fluidic systems.A detailed comparison between these two methods can be seen in the literature[23,24].LBM computationally costs less than MD,and can simulate on experimentally accessible length and time scales[25].Zhuet al.[26]simulated a 3D hydrophobic microchannel by LBM and the results were consistent with PIV experimental data.Zhanget al.[27]used LBM to study the relationship between solid–liquid contactangle and slip length.Kunertet al.[28]applied LBMto simulate a hydrophobic microchannel with rough surface,and found a non-linear relation between roughness and slip length.In all these works,LBM has been successfully applied in studying the micro fluidic problems,therefore we also simulate the flow in the complex hydrophobic microchannel system by LBM.

    This article is arranged into three parts.First of all,a mathematical model based on LBM will be built and validated by Poiseuille flow driven by pressure in a microchannel.Secondly we are about to simulate the flow in the microchannels with hydrophobic property surfaces and variable-section.According to the results,we will analyze the influence of hydrophobic wall on the streamline and flow pattern and get a specific rule in microchannel design.In the end we aim to design different combinations of hydrophilic and hydrophobic surfaces so that the influence of dual surface wettability on the mass flux will be investigated both in a straight and variable-section microchannel.

    2.Mathematical Models

    2.1.Lattice Boltzmann method

    Lattice Boltzmann method has been used in studying complex fluid flow in the past decades.In essence,LBM is a special method for solving Navier–Stokes equation.In LBM the process of fluid flow is divided into two parts:collision and propagation.And the rule of collision process follows the collision kinetic theory proposed by Bhatnagar,Gross and Krook(BGK)[29].The consequence of collision is to drive the distribution function of fluid gradually to the Maxwell equilibrium distribution.Then the evolution equation ofLBMwith a single relax time is written as follows:

    Herefi(x,t)means the particle distribution at location x and timetin each cidirection,fieqis the equilibrium distribution function,andτis the relaxation time.The left side of Eq.(1)indicates the propagation of particles,and the right term indicates the collision of particles.

    The equilibrium distribution functionfieqis related to the velocity and space discrete model.Qianet al.[30]proposed a discrete velocity model called DnQb model(nindicates the number of space dimensionality,andbindicates the number of discrete velocities).Then the equilibrium distribution function can be calculated by the following form:

    In whichcsis the sound speed,and ωiis the weight coefficients,and both of them are decided by the selection of discrete velocity models.In this work,the D2Q9 model has been employed,which is the most widely used in 2-D space simulation.For D2Q9 model,

    wherec=Δx/Δtis the lattice velocity,Δxis the lattice distance,and Δtis the evolution time step.And the macro variables,such as fluid density ρ,velocity u and the viscosity ν can be obtained from the following equations:

    2.2.Shan–Chen model

    In order to consider the interaction between fluid and the hydrophobic wall,a pseudo potential model,the Shan–Chen model is used,which can describe the short-range force interaction between different particles[31].It has been successfully used in simulating multiphase or multicomponent systems,a critical review can be referred to[32].

    In a binary components system,the interaction force between components is.

    where Fσw(Fσw)andGσw(Gσw)denote the interaction force and the force coupling constant between solid wall and σ(σ)component.s(x+ciΔt,t)is an indicator function that is equal tos(x,t)=1?e?ρror 0 for a solid or a fluid domain node,respectively.ρris the density of solid wall.

    Then according to Yang's equation,the contact angles of binary components system θ is a certain value which relates to θ(Gσσ,Gσw,Gσw,ρσ,ρσ).Thus,we can modify the magnitudes ofGσσ,GσwandGσwto simulate the flow systems with different wettability boundaries[34,35].

    In this work,we apply Shan-Chen model in a single component system,in which the interaction force determines whether the surface will behave hydrophobic or hydrophilic for the liquid phase[36,37].The interaction force in single component system can be written as below:where Fl(Fw)andGl(Gw)denote the interaction forces and the force coupling constant between liquid–liquid(liquid-wall).As previously mentioned,φ(x,t)=1?e?ρ(x,t)ands(x,t)=1?e?ρrare for solid nodes,s(x,t)=0 for liquid nodes.In this paper,if there is no special explanation,ρralways equals 3ρ,which is in the range of the density ratios between some common solid materials and liquids.

    These inter-particle forces cause an extra momentum change to the particles in each site.In the Shan–Chen model,a modified equilibrium state velocity in Eq.(2)is used to incorporate this momentum change in the dynamics of distribution functions[38]:

    Which contains an ideal-gas contributioncs2ρ,and the second term in the rightside is the additional pressure caused by the particle interactions at each site.

    The real macro velocity of fluid urealis defined as the average value of the local velocity before and after collision:

    2.3.Boundary condition

    In this work,a half-way bounce back boundary[39]is used to deal with the solid wall.The half-way bounce back boundary is a heuristic interpretation of no-slip boundary,which has a definite physical meaning:the fluid particles collide on the wall,then they propagate to the solid surface in the time of Δt/2,and in the following Δt/2,these particles are bounced back by the solid wall in the opposite direction.Thus,this process can be described as:

    where ci+=?ci(ciis the direction towards the solid surface),xfindicates the node near the boundary,fi′(xf,t)is the distribution function after collision,andfi+(xf,t+Δt)is the distribution function after propagation(including the process of interacting with solid surface).

    The non-equilibrium extrapolation scheme is used to deal with the pressure inlet and outlet.This boundary condition is proposed by Guoet al.[40],which divides the unknown distribution function on the boundary into two parts:equilibrium and non-equilibrium:

    Here xbdenotes the boundary node.Then in the equilibrium term,for the pressure boundary condition,the densities on the boundary nodes are known,and the velocities are replaced by the fluid nodes near the boundary sites:

    In addition,this method can ensure a fully developed inlet velocity if the simulation time is long enough.

    3.Validation of Mathematical Model

    In order to validate the built mathematical model and codes,a 2-D pressure-driven Poiseuille flow in the microchannel was simulated,and the results were compared to other reports.Here are some simulation parameters:the distance between two planes 2his 81 sites(ydirection),and the length of the flow regionLis 800 sites(xdirection).The value of driven pressure gradient on thexdirection is 0.0107.By changing the magnitude ofGlandGw,different hydrophobicity walls can be structured.It is worth noting that,all the geometry variables and fluid quantities are given in the lattice unit within certain ranges(e.g.,‖u‖<0.07,ρ~1,0≤Gw≤1.5),unless stated otherwise.Especially,in order to consider the influence of the hydrophobic wall only,the interaction parameter between liquid–liquidGlin our simulations was set to be a constant value,Gl=?0.1.

    Typical velocity pro files of the simulation results in a hydrophobic microchannel(Gw=1.25)are displayed in Fig.1.The simulation results consist with the analytical results.At the same time,an evident boundary slip can be observed in it,which indicates the capability of this method to describe the boundary slip phenomenon.The density pro file is shown in Fig.2.We can find that due to the repulsion of solid surface,a low density layer appears near the wall.As with the enhancement of the hydrophobic property of the wall,the liquid density in the vicinity of the wall becomes smaller.It's worth noting that this low density layer emerges naturally from the simulation iteration,which may suggest the existence of‘nano-bubbles’[11].The bulk liquid slips in this low density region without direct contact with the solid wall,which may be the original reason for the boundary slip[6].

    Fig.1.Axial velocity pro file(G w=1.25).X-coordinate is the dimensionless height,and y-coordinate is the dimensionless latitude velocity.u c is the latitude velocity of center.The dots(u_sim)are the simulation results in a hydrophobic microchannel(x=400).The line represents(u_ana)the analytical results.An obvious boundary slip can be observed.

    Fig.2.Density pro files in the y direction(ρ0 represents the density of outlet boundary,x=400).

    The slip length in this microchannel is calculated by Naiver's slip boundary definition[41],based on the conception that the velocity in flow direction in Poiseuille flow is in the form of:

    Then we can obtain the value of slip length from our calculation velocity pro files by a least square fit with Eq.(22).After that,the influence of the bulk density,the wetting property of wall and the microchannel diameter on the slip length are systematically investigated.The slip length decreases with the increase of the bulk pressure,and increases with the increase ofGw.In addition,although the diameter of the pipe has an impact on the slip length,compared to the other two parameters,its influence is much smaller.Remarkably,although the slip length is almost unchanged while the diameter of microchannel increases,from Eq.(23)we can know that the effect of boundary slip on the mass flux is gradually reduced.That means if the pipe is large enough,the influence of boundary slip can be ignored.All these results are in agreement with other reports[11,24],which verifies the correctness of our mathematical model and codes.

    2.3.2 HPLC法測(cè)定PTX含量 色譜條件同“2.2.2(2)”項(xiàng)下。取PTX配制成2、5、10、15、20 μg/mL的溶液,進(jìn)樣,計(jì)算在此范圍內(nèi)質(zhì)量濃度和峰面積。線性方程為Y=1 987.3 X+4.515 1,r2=1.000 0。表明PTX在2~20 μg/mL線性關(guān)系良好。樣品預(yù)處理:12 000 r/min轉(zhuǎn)速離心5 min,取上清液進(jìn)樣。

    4.Results and Discussion

    4.1.Variable-section microchannel simulation

    Our verified codes are extended to simulate a hydrophobic microchannel with specific shape as shown in Fig.3.This microchannel includes three parts:the entrance sectionL1,the transition sectionL2and the exit sectionL3.The height of entrance is 2R1and the height of exit is 2R2.As in the Poiseuille flow,the fluid in the nozzle is driven by the pressure drop ΔPbetween inlet and outlet.Different hydrophobic properties of solid surface are constructed by changingGw.In this part,we will simulate a series of microchannels with different transition lengths and surface properties,so as to investigate the influence of boundary slip on the mass flux.

    Some detailed simulation parameters are listed in Table 1.The simulation results are showed in Fig.4.In hydrophilic microchannel(Gw=0),there is an increase in the mass flux when the length of the transition section is increased.However,under the hydrophobic condition(Gw>0),as the length of the transition section increases,the mass flux in the microchannel first decreases but then increases.

    Fig.3.Simulation domination.

    Table 1Simulation parameters(all these geometry parameters are in the dimensionless form based on R1)

    Fig.4.The relationship between mass flux and length of transition section(simulation results of Table 1).

    In order to explain the variation of mass flux in Fig.4,detailed streamlines are displayed in Fig.5,from which we can observe that,the flow state is always kept in a laminar flow pattern in the hydrophilic microchannel.Therefore,with the increase ofL2,the average channel width increases,which will cause the increase of mass flux in the microchannel.Then in the hydrophobic condition,in Fig.5(a)there are two eddies formed in the transition section,which can significantly decrease the mass flux.That is the reason why the increase ofL2makesQdecrease first.In Fig.5(b)and(c),the flow pattern turns into laminar flow,then a longer transition section is beneficial for mass flux.And we discover that,while α=45°,the vortexes disappear,the mass flux is approximately equal to the orthogonal transition condition.Thus,a qualitative conclusion can be made:for the purpose of obtaining a larger mass flux in hydrophilic microchannel,a longer transition section is needed;but in hydrophobic microchannel,an orthogonal(α=90°)or sufficiently long transition section(α ≥ 45°)is better.

    It is noteworthy that although the Reynolds number in Fig.5(a)is quite small(about 3.4),there are still two vortexes formed in the flow.This abnormal phenomenon was also mentioned in the MD simulation[15].In addition,Fig.5(c)indicates that the streamlines in the hydrophobic microchannel are quite different from those in the hydrophilic one,especially in the transition section,the streamlines in the bulk liquid have also been influenced.In fact,under the repulsive force of the tilted wall,a higher pressure area is formed in the center of the transition section,leading the streams bend to the wall.

    To describe the slip phenomenon in this microchannel,an average slip length is defined,which is calculated by taking the average of the slip length in the mid of inlet and outlet sections.Since in this situation the slip length is mainly influenced by the wetting property of wall and the density of the bulk liquid,the slip length in the upstream and downstream was kept nearly the same in our simulation situation.In fact,we calculated them in each working condition,and the results verified our statement.

    The slip length in the downstream is a bit larger than in the upstream,but the difference between them is no more than 4%.Then the relationships between mass flux and slip length in this variablesection microchannel are shown in Fig.6.As Fig.6 implies,the boundary slip is helpful to linearly increase the mass flux in this complex-shaped microchannel,similar to that in the straight channel.

    Fig.5.Streamlines in the transition zone.

    Fig.6.The relationship between mass flux Q and average slip length b.

    4.2.Simulation of complex surface wettability of microchannel

    A novel microchannel design that uses different hydrophobic properties of wall surface at different stages of the channel will be simulated in this section.Firstly,we will simulate a straight channel,and the influence of the length of hydrophobic segment on the mass flux is to be studied.The height of this straight microchannel is 2h=81,the total length isL=800,including hydrophilic(Lw)and hydrophobic(Ln)parts.

    The velocity pro files(in thexdirection)and streamlines are shown in Fig.7.The simulation results are qualitatively similar to the MD simulation results[18].It is clear that the maximum velocity in the hydrophilic section is larger than that in the hydrophobic section.The reason is that the mass flux at each section is equal,but in the non wetting section,the boundary slip will lead to an increase of the liquid velocity near the wall,causing a decrease of the velocity of liquid at the center.

    The relationships between length of hydrophobic surface and mass flux are shown in Fig.8.The simulation data indicates that the mass flux depends linearly on the length of hydrophobic surface.Then the mass flux in such a surface property mixed channel can be derived from Eq.(23)easily:

    On the other hand,the frequency of surface wettability switching has been investigated.For simplicity,we consider the situation asLn=Lw.And the simulation setting and results are shown in Fig.9,from which we can conclude that a high frequency will cause a marginal reduction in the mass flux.

    We also extend this mixed design into variable-section microchannel by separating the micro channel with complex geometry in Fig.3 into three sections and changing the hydrophobicity of each channel respectively.To explain the simulation conditions more visually,we use a parameterato describe the wettability of the surface:when the wall is hydrophobica=1,anda=0 in the condition of hydrophilic wall.So the wettability nature of the channel could be described by a combination of three parameters ofa.For example,101 means a microchannel with hydrophobic import and export section,but a hydrophilic transition section.There are eight kinds of combinations here in our simulation:000,001,010,011,100,101,110,and 111.All these combinations have been simulated,and the definite parameters are listed in Table 2.

    Fig.7.Velocity pro files comparison between LBM(a)and MD(b)simulations[18].(In the right picture,a darker color represents a larger velocity than the average speed at the center point of the system).

    Fig.8.The relationship between the length of hydrophobic surface and the mass flux in a straight microchannel.(The dots are the simulation results and the dash lines are the calculation results of Eq.(24)).

    Table 2Simulation parameters of complex-shaped microchannel while considering the effect of different surface wettability combinations.(The geometry parameters are all in the dimensionless form based on R1)

    As shown in Fig.10,the wetting property of upstream section has little influence on the mass flux,the wetting property of downstream section has significant influence on the mass flux,and the effect of transition section is in between.On the whole,through the analysis of the overall trend,more sections with hydrophobic surface are beneficial to the mass flux.

    5.Conclusions

    We built up a pseudo potential LBM to describe the wettability of microchannel surface and simulated the flow process in microchannels with variable-section and surface property.Some conclusions are as follows:

    Fig.9.Different surface wettability alternative frequency setting(left)and the simulation results(right).

    (1)The hydrophobic surface mainly has two effects on the liquid flow in a variable-section microchannel.On the one hand,the boundary slip caused by the repulsive force of wall increases the mass flux linearly.On the other,the hydrophobic surface influences the flow pattern.

    (2)In a straight microchannel with different wetting property surfaces,a linearly relationship can be found between hydrophobic surface length and mass flux,and the surface wettability alternative frequency has little effect on the mass flux.In addition,more hydrophobic sections also have benefit for the mass flux in the variable-section microchannel.

    Fig.10.The mass flux in different combination microchannels with complex-shapes.

    Acknowledgements

    Jiangsu National Synergetic Innovation Center for Advanced Materials is gratefully acknowledged.

    [1]G.M.Whitesides,The origins and the future of micro fluidics,Nature442(7101)(2006)368–373.

    [2]C.Neto,D.R.Evans,E.Bonaccurso,H.-J.Butt,V.S.Craig,Boundary slip in Newtonian liquids:A review of experimental studies,Rep.Prog.Phys.68(12)(2005)2859.

    [3]K.Watanabe,Y.Udagawa,H.Udagawa,Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall,J.Fluid Mech.381(1999)225–238.

    [4]J.P.Rothstein,Slip on superhydrophobic surfaces,Annu.Rev.Fluid Mech.42(2010)89–109.

    [5]D.R.Reyes,D.Iossifidis,P.-A.Auroux,A.Manz,Micro total analysis systems.1.Introduction,theory,and technology,Anal.Chem.74(12)(2002)2623–2636.

    [6]R.Benzi,L.Biferale,M.Sbragaglia,S.Succi,F.Toschi,Mesoscopic two-phase model for describing apparent slip in micro-channel flows,EPL(Europhys.Lett.)74(4)(2006)651.

    [7]D.C.Tretheway,C.D.Meinhart,Apparent fluid slip at hydrophobic microchannel walls,Phys.Fluids14(3)(2002)L9–L12.

    [8]M.Asfer,P.K.Panigrahi,Boundary Slip of Liquids,in Encyclopedia of Micro fluidics and Nano fluidics,Springer,2014 1–12.

    [9]P.Joseph,P.Tabeling,Direct measurement of the apparent slip length,Phys.Rev.E71(3)(2005)035303.

    [10]J.Koplik,J.R.Banavar,J.F.Willemsen,Molecular dynamics of fluid flow at solid surfaces,Phys.Fluids A Fluid Dyn.1(5)(1989)781–794.

    [11]Y.-Y.Chen,H.-H.Yi,H.-B.Li,Boundary slip and surface interaction:A lattice Boltzmann simulation,Chin.Phys.Lett.25(1)(2008)184.

    [12]J.-T.Cheng,N.Giordano,Fluid flow through nanometer-scale channels,Phys.Rev.E65(3)(2002)031206.

    [13]J.S.Lee,G.H.Gu,H.Kim,K.S.Jeong,J.Bae,J.S.Suh,Growth of carbon nanotubes on anodic aluminum oxide templates:Fabrication of a tube-in-tube and linearly joined tube,Chem.Mater.13(7)(2001)2387–2391.

    [14]H.-C.Wu,W.-S.Hwang,H.-J.Lin,Development of a three-dimensional simulation system for micro-inkjet and its experimental verification,Mater.Sci.Eng.A373(1)(2004)268–278.

    [15]X.-J.Fan,N.Phan-Thien,N.T.Yong,X.Diao,Molecular dynamics simulation of a liquid in a complex nano channel flow,Phys.Fluids14(3)(2002)1146–1153.

    [16]I.Hanasaki,A.Nakatani,Water flow through carbon nanotube junctions as molecular convergent nozzles,Nanotechnology17(11)(2006)2794.

    [17]L.Guo,S.Chen,M.O.Robbins,Slip boundary conditions over curved surfaces,Phys.Rev.E93(1)(2016)013105.

    [18]M.Cieplak,J.Koplik,J.R.Banavar,Nanoscale fluid flows in the vicinity of patterned surfaces,Phys.Rev.Lett.96(11)(2006)114502.

    [19]D.Byun,V.dat Nyugen,J.Kim,H.S.Ko,Free surface transition and momentum augmentation of liquid flow in micro/nano-scale channels with hydrophobic and hydrophilic surfaces,J.Mech.Sci.Technol.22(12)(2008)2554–2562.

    [20]Y.Gogotsi,J.A.Libera,A.Güven?-Yazicioglu,C.M.Megaridis,In situ multiphase fluid experiments in hydrothermal carbon nanotubes,Appl.Phys.Lett.79(7)(2001)1021–1023.

    [21]R.W.Johnson,Handbook of Fluid Dynamics,CRC Press,USA,1998.

    [22]B.-Y.Cao,J.Sun,M.Chen,Z.-Y.Guo,Molecular momentum transport at fluid–solid interfaces in MEMS/NEMS:A review,Int.J.Mol.Sci.10(11)(2009)4638–4706.

    [23]J.Horbach,S.Succi,Lattice Boltzmann versus molecular dynamics simulation of nanoscale hydrodynamic flows,Phys.Rev.Lett.96(22)(2006)224503.

    [24]J.Harting,C.Kunert,H.J.Herrmann,Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels,EPL(Europhys.Lett.)75(2)(2006)328.

    [25]C.Kunert,J.Harting,On the effect of surfactant adsorption and viscosity change on apparent slip in hydrophobic microchannels,Prog.Comput.Fluid Dyn.Int.J.8(1–4)(2008)197–205.

    [26]L.Zhu,D.Tretheway,L.Petzold,C.Meinhart,Simulation of fluid slip at3Dhydrophobic microchannel walls by the lattice Boltzmann method,J.Comput.Phys.202(1)(2005)181–195.

    [27]R.-L.Zhang,Q.-F.Di,X.-L.Wang,W.-P.Ding,G.Wei,Numerical study of the relationship between apparent slip length and contact angle by lattice Boltzmann method,J.Hydrodyn.B24(4)(2012)535–540.

    [28]C.Kunert,J.Harting,Simulation of fluid flow in hydrophobic rough microchannels,Int.J.Comput.Fluid Dyn.22(7)(2008)475–480.

    [29]X.He,S.Chen,G.D.Doolen,A novel thermal model for the lattice Boltzmann method in incompressible limit,J.Comput.Phys.146(1)(1998)282–300.

    [30]Y.Qian,D.d'Humières,P.Lallemand,Lattice BGK models for Navier–Stokes equation,EPL(Europhys.Lett.)17(6)(1992)479.

    [31]D.T.Thorne,Lattice Boltzmann Modeling:An Introduction for Geoscientists and Engineers,Springer,2006.

    [32]L.Chen,Q.Kang,Y.Mu,Y.-L.He,W.-Q.Tao,A critical review of the pseudopotential multiphase lattice Boltzmann model:Methods and applications,Int.J.Heat Mass Transf.76(2014)210–236.

    [33]X.Shan,Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models,Phys.Rev.E73(4)(2006)047701.

    [34]R.Benzi,L.Biferale,M.Sbragaglia,S.Succi,F.Toschi,Mesoscopic modeling of a two-phase flow in the presence of boundaries:The contact angle,Phys.Rev.E74(2)(2006)021508.

    [35]H.Huang,D.T.Thorne,M.G.Schaap,M.C.Sukop,Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models,Phys.Rev.E76(6)(2007)066701.

    [36]J.Harting,C.Kunert,J.Hyvaluoma,Lattice Boltzmann simulations in micro fluidics:Probing the no-slip boundary condition in hydrophobic,rough,and surface nanobubble laden microchannels,Microfluid.Nanofluid.8(1)(2010)1–10.

    [37]S.Schmieschek,Computer simulation of boundary effects and multiphase flows on the mesoscopic scale,Technische Universiteit,Eindhoven,2015.

    [38]X.Shan,G.Doolen,Multicomponent lattice-Boltzmann model with inter particle interaction,J.Stat.Phys.81(1–2)(1995)379–393.

    [39]D.P.Ziegler,Boundary conditions for lattice Boltzmann simulations,J.Stat.Phys.71(5–6)(1993)1171–1177.

    [40]Z.-L.Guo,C.-G.Zheng,B.-C.Shi,Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method,Chin.Phys.11(4)(2002)366.

    [41]C.Navier,Memoirs de l'Academie Royale Des Sciences de l'Institut de France,vol.1,Royale des Sciences de l'Institut de France,1823.

    猜你喜歡
    清液法測(cè)定預(yù)處理
    清液回配對(duì)酒精發(fā)酵的影響研究
    釀酒科技(2023年10期)2023-11-23 11:09:42
    ICP-OES法測(cè)定鋼和鐵中微量元素
    昆鋼科技(2020年6期)2020-03-29 06:39:40
    豆清液不同超濾組分體外抗氧化活性研究
    建筑施工廢棄泥漿環(huán)保型分離技術(shù)的研究與探討
    名城繪(2019年4期)2019-10-21 05:09:13
    HPLC法測(cè)定桂皮中的cinnamtannin D-1和cinnamtannin B-1
    中成藥(2017年9期)2017-12-19 13:34:56
    基于預(yù)處理MUSIC算法的分布式陣列DOA估計(jì)
    UPLC法測(cè)定萹蓄中3種成分
    中成藥(2017年5期)2017-06-13 13:01:12
    HPLC法測(cè)定炎熱清片中4種成分
    中成藥(2016年8期)2016-05-17 06:08:41
    淺談PLC在預(yù)處理生產(chǎn)線自動(dòng)化改造中的應(yīng)用
    絡(luò)合萃取法預(yù)處理H酸廢水
    窝窝影院91人妻| 亚洲av中文av极速乱 | 国产综合懂色| 人妻制服诱惑在线中文字幕| 午夜福利在线在线| 男女边吃奶边做爰视频| 国产人妻一区二区三区在| 色视频www国产| 免费在线观看日本一区| 午夜福利在线观看免费完整高清在 | 国产亚洲av嫩草精品影院| 两人在一起打扑克的视频| 亚洲第一电影网av| 又紧又爽又黄一区二区| 国产精品av视频在线免费观看| 国国产精品蜜臀av免费| 无人区码免费观看不卡| 欧美最黄视频在线播放免费| 亚洲国产精品合色在线| avwww免费| 少妇裸体淫交视频免费看高清| 麻豆成人午夜福利视频| 成人综合一区亚洲| 亚洲一区二区三区色噜噜| 久久久成人免费电影| 亚洲七黄色美女视频| aaaaa片日本免费| 欧美最黄视频在线播放免费| 日韩人妻高清精品专区| 亚洲18禁久久av| videossex国产| 91精品国产九色| 看黄色毛片网站| 我的老师免费观看完整版| 亚洲av.av天堂| 久久亚洲真实| 色av中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久久亚洲 | 黄色日韩在线| 91麻豆精品激情在线观看国产| 啪啪无遮挡十八禁网站| 在线播放国产精品三级| 亚洲中文字幕日韩| 欧美精品国产亚洲| 亚洲人与动物交配视频| netflix在线观看网站| 午夜福利高清视频| 91久久精品国产一区二区三区| 国产欧美日韩一区二区精品| 级片在线观看| 国产极品精品免费视频能看的| 国产精品久久久久久精品电影| 91久久精品国产一区二区成人| 国产单亲对白刺激| 亚洲经典国产精华液单| 国产成年人精品一区二区| www.www免费av| 国产精品永久免费网站| 女同久久另类99精品国产91| 美女高潮喷水抽搐中文字幕| 男人的好看免费观看在线视频| 久久久久精品国产欧美久久久| 欧美不卡视频在线免费观看| 久久婷婷人人爽人人干人人爱| 成人午夜高清在线视频| 一本精品99久久精品77| 亚洲第一区二区三区不卡| 亚洲综合色惰| 亚洲四区av| 久久国产精品人妻蜜桃| 国产午夜福利久久久久久| 国产私拍福利视频在线观看| 国产亚洲精品久久久com| 国产综合懂色| 亚洲最大成人av| 俺也久久电影网| 国产在视频线在精品| 亚洲国产精品合色在线| 免费av毛片视频| 亚洲精华国产精华精| 免费黄网站久久成人精品| 搞女人的毛片| 一级a爱片免费观看的视频| 我要看日韩黄色一级片| 久久草成人影院| 国产精品99久久久久久久久| 久久精品国产自在天天线| 日本免费a在线| 日本黄色片子视频| 黄色一级大片看看| 国内揄拍国产精品人妻在线| 久久午夜福利片| 久久精品国产亚洲av天美| 亚洲精品一卡2卡三卡4卡5卡| 男人舔女人下体高潮全视频| 春色校园在线视频观看| 国产 一区 欧美 日韩| 99视频精品全部免费 在线| 亚洲成人中文字幕在线播放| 久久久久久伊人网av| 88av欧美| 欧美激情在线99| 97热精品久久久久久| 欧美色视频一区免费| 成人鲁丝片一二三区免费| 中文字幕人妻熟人妻熟丝袜美| 日日夜夜操网爽| 日韩精品中文字幕看吧| 99久久久亚洲精品蜜臀av| 精华霜和精华液先用哪个| 五月玫瑰六月丁香| 观看美女的网站| 俺也久久电影网| 日本黄色片子视频| 日本一本二区三区精品| 伊人久久精品亚洲午夜| 国产主播在线观看一区二区| 男插女下体视频免费在线播放| 最近最新中文字幕大全电影3| 全区人妻精品视频| 亚洲无线在线观看| 精品99又大又爽又粗少妇毛片 | 国产亚洲av嫩草精品影院| 欧美一级a爱片免费观看看| 麻豆久久精品国产亚洲av| 欧美一区二区国产精品久久精品| 国产精品无大码| 淫秽高清视频在线观看| 别揉我奶头 嗯啊视频| 在线观看免费视频日本深夜| 亚洲av免费在线观看| 久久九九热精品免费| 成熟少妇高潮喷水视频| 中文字幕高清在线视频| 国产精品1区2区在线观看.| 日日啪夜夜撸| 午夜a级毛片| 欧美性猛交黑人性爽| 欧美黑人巨大hd| 非洲黑人性xxxx精品又粗又长| 在线播放国产精品三级| 亚洲,欧美,日韩| 亚洲一区二区三区色噜噜| 日韩精品有码人妻一区| 亚洲av日韩精品久久久久久密| 久久久久国内视频| 国产单亲对白刺激| 精品久久久久久久人妻蜜臀av| 国产高清不卡午夜福利| 国产精品,欧美在线| 毛片女人毛片| 亚洲精华国产精华液的使用体验 | 国产一区二区三区视频了| 久久精品综合一区二区三区| 在线看三级毛片| 日本熟妇午夜| 国产欧美日韩精品亚洲av| 午夜激情欧美在线| 一个人看的www免费观看视频| 亚州av有码| 国产成人av教育| 成人永久免费在线观看视频| 国产91精品成人一区二区三区| 麻豆成人午夜福利视频| 亚洲性久久影院| 亚洲美女视频黄频| 51国产日韩欧美| 搞女人的毛片| 国产欧美日韩精品亚洲av| 在线看三级毛片| 又黄又爽又免费观看的视频| 国产亚洲91精品色在线| 国产v大片淫在线免费观看| 在线a可以看的网站| 变态另类丝袜制服| 成熟少妇高潮喷水视频| 动漫黄色视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美高清性xxxxhd video| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 日本在线视频免费播放| 久久热精品热| 啪啪无遮挡十八禁网站| 成人精品一区二区免费| 九九久久精品国产亚洲av麻豆| 给我免费播放毛片高清在线观看| 中文资源天堂在线| 国产精品免费一区二区三区在线| 乱系列少妇在线播放| 中文资源天堂在线| 日韩精品有码人妻一区| 91在线精品国自产拍蜜月| 国产人妻一区二区三区在| 国产v大片淫在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人妻熟人妻熟丝袜美| 看片在线看免费视频| 日本熟妇午夜| 日本-黄色视频高清免费观看| 男女下面进入的视频免费午夜| 欧美一区二区国产精品久久精品| 亚洲狠狠婷婷综合久久图片| 真人一进一出gif抽搐免费| 成人鲁丝片一二三区免费| 亚洲美女黄片视频| 欧美又色又爽又黄视频| 国产精品爽爽va在线观看网站| 99精品久久久久人妻精品| 国产综合懂色| 色综合色国产| 国产午夜精品久久久久久一区二区三区 | 午夜福利成人在线免费观看| 特级一级黄色大片| 国产高潮美女av| 国产精品国产三级国产av玫瑰| 久久天躁狠狠躁夜夜2o2o| 校园春色视频在线观看| 欧美精品啪啪一区二区三区| 欧美日韩精品成人综合77777| 嫩草影院新地址| 女人被狂操c到高潮| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻视频免费看| av视频在线观看入口| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩| 国产亚洲欧美98| 成人特级黄色片久久久久久久| 亚洲性夜色夜夜综合| 又爽又黄a免费视频| 此物有八面人人有两片| 国产亚洲精品久久久com| 欧美绝顶高潮抽搐喷水| 99在线人妻在线中文字幕| 欧美另类亚洲清纯唯美| 一进一出好大好爽视频| 夜夜爽天天搞| 日日摸夜夜添夜夜添av毛片 | 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 最新在线观看一区二区三区| 午夜福利在线观看免费完整高清在 | 极品教师在线视频| 国产探花极品一区二区| 97超视频在线观看视频| 夜夜夜夜夜久久久久| 女同久久另类99精品国产91| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 色综合色国产| 俄罗斯特黄特色一大片| 男女那种视频在线观看| 九九久久精品国产亚洲av麻豆| 国产视频内射| 22中文网久久字幕| 亚洲欧美清纯卡通| 日韩精品中文字幕看吧| 亚洲av一区综合| 精品国内亚洲2022精品成人| 久久精品夜夜夜夜夜久久蜜豆| 国产成人aa在线观看| 免费无遮挡裸体视频| 日韩强制内射视频| av在线老鸭窝| 在线观看免费视频日本深夜| 69人妻影院| 91麻豆av在线| 中文资源天堂在线| av中文乱码字幕在线| 在线观看美女被高潮喷水网站| 中文在线观看免费www的网站| 亚洲精品一区av在线观看| 久久午夜亚洲精品久久| 日本成人三级电影网站| 制服丝袜大香蕉在线| 成人综合一区亚洲| 91久久精品电影网| 欧美性感艳星| 午夜精品一区二区三区免费看| 亚洲自拍偷在线| 97热精品久久久久久| 欧美高清成人免费视频www| 在线免费观看的www视频| aaaaa片日本免费| 在线a可以看的网站| 狂野欧美激情性xxxx在线观看| 亚洲第一电影网av| 午夜福利18| 一区二区三区免费毛片| 在线播放无遮挡| 99在线人妻在线中文字幕| 欧美极品一区二区三区四区| 动漫黄色视频在线观看| 亚洲一级一片aⅴ在线观看| a在线观看视频网站| 成人欧美大片| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| x7x7x7水蜜桃| 很黄的视频免费| 亚洲男人的天堂狠狠| 成人高潮视频无遮挡免费网站| eeuss影院久久| 成人午夜高清在线视频| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看 | 高清毛片免费观看视频网站| 国产精品电影一区二区三区| 中文字幕av成人在线电影| 91久久精品国产一区二区三区| 国产视频内射| 免费看光身美女| 成年女人看的毛片在线观看| 精品久久久久久久久亚洲 | 精品99又大又爽又粗少妇毛片 | 国产黄a三级三级三级人| 日韩 亚洲 欧美在线| 午夜视频国产福利| 自拍偷自拍亚洲精品老妇| 久久6这里有精品| 午夜激情欧美在线| 亚洲avbb在线观看| 特级一级黄色大片| 亚洲专区中文字幕在线| 欧美日韩综合久久久久久 | 老熟妇仑乱视频hdxx| 亚洲av美国av| 最近最新免费中文字幕在线| 亚洲av电影不卡..在线观看| 一个人看视频在线观看www免费| 亚洲 国产 在线| 欧美一区二区国产精品久久精品| 欧美xxxx性猛交bbbb| 日韩欧美国产在线观看| 国产毛片a区久久久久| 午夜影院日韩av| 嫩草影院精品99| 国产精品一区www在线观看 | 又粗又爽又猛毛片免费看| 国产精品一及| 久久久久国内视频| 老司机午夜福利在线观看视频| 欧美日韩国产亚洲二区| 亚洲乱码一区二区免费版| 琪琪午夜伦伦电影理论片6080| 亚洲欧美清纯卡通| 国产精品人妻久久久久久| 日本五十路高清| 天美传媒精品一区二区| 在线看三级毛片| 国产黄片美女视频| 99久久精品热视频| 免费观看的影片在线观看| 淫妇啪啪啪对白视频| 欧美+亚洲+日韩+国产| 极品教师在线免费播放| 色尼玛亚洲综合影院| 在线观看66精品国产| 午夜福利欧美成人| 丰满人妻一区二区三区视频av| 成人无遮挡网站| 久久人妻av系列| 国产熟女欧美一区二区| 99热只有精品国产| 亚洲av免费高清在线观看| 日日夜夜操网爽| 日本免费一区二区三区高清不卡| 国产精品国产三级国产av玫瑰| 国产精华一区二区三区| 亚洲在线自拍视频| 91久久精品电影网| 欧美一区二区亚洲| 久久草成人影院| 婷婷精品国产亚洲av| 亚洲国产精品sss在线观看| 国产精品精品国产色婷婷| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看| 草草在线视频免费看| 午夜福利视频1000在线观看| 国产av麻豆久久久久久久| 在线a可以看的网站| 国产精品,欧美在线| 春色校园在线视频观看| 亚洲成av人片在线播放无| av在线观看视频网站免费| 夜夜爽天天搞| 国产大屁股一区二区在线视频| 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区 | 国产男人的电影天堂91| 在现免费观看毛片| 欧美绝顶高潮抽搐喷水| 婷婷六月久久综合丁香| 亚洲国产色片| 特级一级黄色大片| 国产成年人精品一区二区| 很黄的视频免费| 成人av一区二区三区在线看| 十八禁网站免费在线| 久久草成人影院| 少妇熟女aⅴ在线视频| 色吧在线观看| 男人的好看免费观看在线视频| 人人妻人人看人人澡| 亚洲精品亚洲一区二区| 搡老妇女老女人老熟妇| 狂野欧美白嫩少妇大欣赏| 伦精品一区二区三区| 日韩欧美三级三区| 亚洲精品乱码久久久v下载方式| avwww免费| 性欧美人与动物交配| 嫩草影视91久久| 亚洲最大成人手机在线| 免费在线观看影片大全网站| 麻豆国产av国片精品| 国产极品精品免费视频能看的| 日韩亚洲欧美综合| 日本-黄色视频高清免费观看| 精品久久久久久久末码| 中文亚洲av片在线观看爽| 毛片一级片免费看久久久久 | 午夜免费成人在线视频| 最近最新免费中文字幕在线| 在线观看66精品国产| 琪琪午夜伦伦电影理论片6080| 九色国产91popny在线| 久久99热这里只有精品18| 欧美国产日韩亚洲一区| 免费av毛片视频| 欧美极品一区二区三区四区| 亚洲欧美日韩无卡精品| 亚洲av不卡在线观看| 午夜影院日韩av| 麻豆精品久久久久久蜜桃| 久久国产乱子免费精品| 日本黄色片子视频| 国产男靠女视频免费网站| 成熟少妇高潮喷水视频| 男女下面进入的视频免费午夜| 老司机午夜福利在线观看视频| 男女做爰动态图高潮gif福利片| 欧洲精品卡2卡3卡4卡5卡区| 91久久精品电影网| 最新在线观看一区二区三区| 免费看a级黄色片| 久久99热6这里只有精品| 少妇丰满av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区二区三区色噜噜| 18禁黄网站禁片午夜丰满| 午夜福利高清视频| 亚洲专区中文字幕在线| 久久香蕉精品热| 99riav亚洲国产免费| 老熟妇乱子伦视频在线观看| 午夜免费激情av| 国产高清不卡午夜福利| 99riav亚洲国产免费| 日本免费一区二区三区高清不卡| 热99re8久久精品国产| 亚洲av中文av极速乱 | 国产真实伦视频高清在线观看 | 日本精品一区二区三区蜜桃| 麻豆一二三区av精品| a级毛片a级免费在线| 男女那种视频在线观看| 色哟哟·www| 看黄色毛片网站| 亚洲av.av天堂| 国产激情偷乱视频一区二区| 欧美日韩中文字幕国产精品一区二区三区| 国产精品野战在线观看| 嫩草影院新地址| 人妻制服诱惑在线中文字幕| 久久久久久久精品吃奶| 日本黄大片高清| 久久九九热精品免费| 亚洲电影在线观看av| 精品人妻熟女av久视频| 国产男靠女视频免费网站| 毛片女人毛片| 人人妻人人澡欧美一区二区| 成年女人毛片免费观看观看9| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 免费在线观看影片大全网站| 1024手机看黄色片| 日本与韩国留学比较| 成年免费大片在线观看| 18禁黄网站禁片免费观看直播| 亚洲男人的天堂狠狠| 九九久久精品国产亚洲av麻豆| 精品久久久久久久人妻蜜臀av| 亚洲电影在线观看av| 我要看日韩黄色一级片| 欧美极品一区二区三区四区| 亚洲专区中文字幕在线| 亚洲第一电影网av| 欧美三级亚洲精品| 国产精品免费一区二区三区在线| 可以在线观看的亚洲视频| 女同久久另类99精品国产91| 长腿黑丝高跟| 久久精品国产鲁丝片午夜精品 | 91久久精品国产一区二区三区| 真实男女啪啪啪动态图| 久久久午夜欧美精品| 亚洲av熟女| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 亚洲avbb在线观看| 日本精品一区二区三区蜜桃| 99热这里只有是精品50| 五月玫瑰六月丁香| 亚洲,欧美,日韩| 亚洲av一区综合| 黄色配什么色好看| 啪啪无遮挡十八禁网站| 国产视频一区二区在线看| 国内精品久久久久久久电影| 国产精品久久久久久久电影| 高清毛片免费观看视频网站| 久久人人精品亚洲av| 性欧美人与动物交配| 精品人妻视频免费看| 国产成人a区在线观看| 亚洲18禁久久av| 免费观看精品视频网站| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 久久6这里有精品| 国产高清不卡午夜福利| 亚洲欧美激情综合另类| 国产三级在线视频| 亚洲精品456在线播放app | 两个人视频免费观看高清| 免费av不卡在线播放| 长腿黑丝高跟| 国产精品不卡视频一区二区| 亚洲av成人av| 日韩欧美国产在线观看| 亚洲美女黄片视频| 桃色一区二区三区在线观看| 国产三级在线视频| 亚洲av电影不卡..在线观看| 久久国产乱子免费精品| 国产精品永久免费网站| 久久精品夜夜夜夜夜久久蜜豆| a级一级毛片免费在线观看| 亚洲av日韩精品久久久久久密| 大又大粗又爽又黄少妇毛片口| 国产精品爽爽va在线观看网站| 又爽又黄a免费视频| 午夜福利欧美成人| а√天堂www在线а√下载| 免费av不卡在线播放| 嫩草影院精品99| 国产毛片a区久久久久| 一进一出抽搐动态| av天堂在线播放| 成人性生交大片免费视频hd| 久久精品久久久久久噜噜老黄 | 国产精品久久久久久精品电影| 国产色婷婷99| 亚洲无线在线观看| 亚洲国产精品合色在线| 久久九九热精品免费| 午夜福利在线在线| 精品久久久久久成人av| 国产精品,欧美在线| 啦啦啦韩国在线观看视频| 免费大片18禁| 三级男女做爰猛烈吃奶摸视频| 禁无遮挡网站| 全区人妻精品视频| 亚洲人成伊人成综合网2020| avwww免费| 欧美最黄视频在线播放免费| 少妇裸体淫交视频免费看高清| 日韩在线高清观看一区二区三区 | 欧美日韩乱码在线| 亚洲成人免费电影在线观看| 午夜激情欧美在线| 97超视频在线观看视频| 免费一级毛片在线播放高清视频| 九九热线精品视视频播放| 黄色一级大片看看| 免费搜索国产男女视频| 亚洲真实伦在线观看| 99久国产av精品| 精品人妻1区二区| 精品久久久久久成人av| 中文字幕熟女人妻在线| 日本熟妇午夜| 在线免费观看不下载黄p国产 | 中国美女看黄片| 无遮挡黄片免费观看| 亚洲av电影不卡..在线观看| 99久久精品热视频| x7x7x7水蜜桃| 日韩欧美精品v在线| 亚洲不卡免费看| 国产女主播在线喷水免费视频网站 | 色综合站精品国产| 久久99热6这里只有精品| 一a级毛片在线观看| 99久久精品一区二区三区| 91av网一区二区| 亚洲在线自拍视频| 亚洲性夜色夜夜综合| 国产高潮美女av|