• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polymorphism of D-mannitol:Crystal structure and the crystal growth mechanism☆

    2017-05-28 07:29:14WeiyiSuNaJiaHongshiLiHongxunHaoChunliLi
    關(guān)鍵詞:冷藏顯示器倉庫

    Weiyi Su ,Na Jia ,Hongshi Li,Hongxun Hao ,Chunli Li,*

    1 School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130,China

    2 School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    1.Introduction

    Polymorphism,defined as the ability of a material to crystallize in different crystal structures,has gained more and more attention especially in the field of pharmaceuticals[1].It has been reported that 80%of the marketed pharmaceuticals exhibit polymorphs under experimentally accessible conditions[2],and some of them even showed different functionalities and bioavailabilities from the previously launched products.D-mannitol(mannitol)is a natural hexahydric alditol which has been widely used in pharmaceutical industry as a nephropathy treatment medicine and also an excipient in the formulation of various tablets and granulated powders[3].In addition to those,mannitol is a commonly used sugar replacer in food industry.The molecular structure of D-mannitol is shown in Fig.1.

    It has been reported that mannitol has three anhydrous polymorphs[4–6]and a hemihydrate[7].However the nomenclature of mannitol polymorphs is often diverse in different literatures[8,9]in despite of some similar unit cell parameters based on X-ray powder diffraction(XRPD).Therefore a review of mannitol polymorphism is initially presented along with the preparation procedures of different forms.

    Crystallization kinetics is more complicated when polymorphism is involved since on one hand,all polymorphs compete to nucleate at certain supersaturation[10,11],and on the other hand,a metastable form has thermodynamic tendency to transform to the stable one[12],which could somehow affect the crystal growth process[13–15].Therefore it is difficult to investigate the crystal growth kinetics especially for a metastable polymorph[16–18].For example,in the research of Schollet al.[19]a traditional desupersaturation was used to determine the growth kinetics of metastable α-glutamic acid,but it only worked at low temperature when the solvent-mediated polymorphic transformation(SMPT)could be ignored.Thus the research to the crystal growth of mannitol polymorphs was reviewed in this work for a clear perspective.Furthermore a method reported by Kuldipkumar[20]was extended to show the growth mechanism of metastable δ mannitol based on our previously collected data.

    2.Polymorphism of D-mannitol

    It has been con firmed that there are only three pure anhydrous polymorphs of mannitol even though numerous names have been given[6,8].Hereby,for clarity and to avoid any confusion,the unite cell parameters of these mannitol polymorphs are summarized in Table 1.It is clear in Table 1 that the first six β references have a similar structure,which is named β in our work.While focusing on the polymorphs from the 7th to 9th in Table 1,the parameters were nearly the same disregarding what they were called in the original literature.So this form is referred to as α mannitol here.Finally,the last three items are significantly distinct from the others,and they are referred to as the δ form of mannitol in this paper.

    The polymorphism of D-mannitol was firstly reported in Groth's work[27]in 1910.Then as X-ray technology started to be introduced into the analysis of crystal structures,Marwick[21]examined the X-ray pattern of the stable β form in 1931 as shown in Table 1.The results were consistent with those in a subsequent paper[22]in 1952.Then in 1968,the single crystal data of the β form crystallized from an aqueous ethanol solution were con firmed by X-ray diffraction(XRD)with CuKαradiation by Bermanet al.[23]Following,a new XRD instrument(with MoKαradiation)was used by Kaminsky[24]to determine and refine the same polymorph in 1997,and the similar crystal lattice parameters and an improvedR-value were obtained.Thus based on the consistent crystal unit cell parameters and mostly used names in the literatures shown in Table 1,it is reasonable to name these structures β form.

    The α form of mannitol was also mentioned by Groth[27]in 1910,but the unit cell parameters were first given by Walter-Levy[4]in 1968 as shown in Table 1.In the same year,a slow evaporation of mannitol and boric acid solution in methanol was applied to get the α form(namedKin the original literature)by Kimet al.[25]In addition to the similar unit cell parameters in Table 1,a thermoanalytical study performed by Pitkanenet al.[28]also con firmed that the α form in Walter-Levy's work is the same with theKform in Kim's work.Moreover,the unit cell data are also found consistent with those collected by Fronczeket al.[5]in 2003.It is worth noting that Reyet al.[22]obtained a mannitol polymorph named α in 1952,while Bermanet al.[23]prepared one named α′in 1968.The two substances have similar structure according to Bermanet al.[23],but they should not be the α form of mannitol defined in our work since Grindleyet al.[29]have testified by C-MNR that those two forms have different structures with the classical α form in Walter-Levy's work.Grindleyet al.also mentioned that those two forms might be the δ form produced by Walter-Levy,but we think it is not appropriate due to the different crystal symmetry between these two(monoclinic)and the δ form(orthorhombic).Therefore it is reasonable to believe that these two forms might be mixtures.Based on Table 1,it is clear that the β and α forms of mannitol belong to the same crystal system(orthorhombic)and the same P212121space group with only a little difference on the length of the unit cell edges.Thus the two forms should have the same molecular conformation but different orientations of the hydrogen in the hydroxyl groups and hydrogen bonds[28].

    The δ form of mannitol is difficult to isolate compared to the other two.It was firstly obtained by Walter-Levy[4]by gradual evaporation of a mannitol aqueous solution in a watch glass in 1968,where the calculated crystal lattice parameters from the XRPD data showed that it belongs to P21space group as illustrated in Table 1.However this procedure was found difficult to follow as other researchers[30]could only obtain a mixture of the δ and α forms instead of pure δ mannitol with the same method.Pitkanenet al.[28]then prepared δ mannitol by slow cooling a pure melt in 1993,still different polymorphs or mixtures were obtained while the cooling rate fluctuated.Then a freeze-dryer was finally applied to get the δ form with high reproducibility[26,31].After that,a handy anti-solvent crystallization[6]was reported to produce the δ form(named form III in the original literature),during which the solid had to befiltered and dried immediately in order to prevent any polymorphic transformation.Recently,Sullivanet al.[32]successfully produced δ mannitol by cooling a saturated solution rapidly in dilute aqueous ethanol to below 0°C.In all the work mentioned above,the unit cell parameters or XRPD patterns of δ form are consistent to those shown in Table 1.It is also clear in Table 1 that the δ form displayed significant difference in the hydrogen bond situation from the previously known α and β forms.In 2003,the XRD patterns of the three forms were again determined by Fronczeket al.[5]at 100 K.The results indicate that the parameters in Table 1 are accurate for each of the mannitol polymorph.

    Even though different nomenclatures have been used in various literatures for mannitol polymorphs or their mixtures,such asCandDin Giron's work[33]or γ in Rye's work[22](all should be mixtures),the summarization based on the crystal structural parameters in this paper should provide a clear perspective for the polymorphism of mannitol.

    3.Crystal Growth Kinetics of Mannitol Polymorphs

    The crystal growth process is difficult to follow for polymorphic material due to the potential transformation tendency as mentioned before.As in mannitol polymorphs,limited researches have been reported on the growth kinetics in different crystallization processes.

    Nakagawaet al.[34]studied the crystal behavior of mannitol polymorphs in a freezing solution,and found that the amount of each polymorph was correlated to the ice crystal nucleation temperature and the cooling rate.To elucidate the results,they did a qualitative estimation to the crystal growth at the liquid–solid interface.Even though it was reasonable to believe that the cooling rate could influence both the polymorphic transition and crystal growth and then cause the amount difference of various polymorphs along the freezing-dried cake,it didn't provide detailed growth kinetics to each polymorphs.In another freeze drying process,Liaoet al.[35]found that annealing could facilitate both mannitol nucleation and crystal growth even when a crystallization inhibitor,an active pharmaceutical ingredient,was present.Similarly,Dixonet al.[36]investigated the influence of protein on the polymorphism of mannitol during lyophilization,and the results illustrated that more δ and less β mannitol were produced when the protein concentration increased from 1 to 5 mg·ml?1.But as the protein concentration was above 10 mg·ml?1,the nucleation and growth of all mannitol forms were inhibited.

    Fig.1.Molecular structure of D-mannitol.

    Table 1The review of unit cell parameters and nomenclature of D-mannitol anhydrous polymorphs in literatures

    In addition to freezing experiments,the crystallization mechanism of mannitol in a microdroplet evaporation was discussed by Poornacharyet al.[37],where the growth rate along the needle axis was firstly identified as(1.5 ± 0.2)μm·s?1and(0.3 ± 0.1)μm·s?1for the δ and β forms,respectively.Typically the faster growth rate was considered the reason to cause the appearance of the δ mannitol in the solution–substrate contact line where the local supersaturation was usually high due to the Marangni-driven convection.Moreover,while focusing on the nano-cystalline cluster of mannitol,Hammondet al.[38]found that the conformational variability was higher for the stable β form in the early stages of crystal growth compared to the metastable δ form.

    In bulk aqueous solution,the solvent-mediated polymorphic transformation is quite obvious for mannitol metastable forms[39,40]especially when the temperature is not low,which makes it even more difficult to clarify the growth mechanism.Crispet al.[41]reported that the growth of mannitol polymorphs could be affected by the preferred orientation effects,thus the amount of δ form increased with the content of the antisolvent(e.g.acetone)during crystallization.In another study,Cornelet al.[8]used the growth rates of these mannitol polymorphs for a transformation model,but the parameters were only selected qualitatively to satisfy the nucleation experiments without any precise calculation.Additionally,O′Sullivanet al.[40]detected the growth of the metastable δ form clearly by focused beam reflectance measurement(FBRM)in a polymorphic transformation process,but unfortunately the kinetics were not con firmed.According to the literatures,it is obvious that the growth kinetics of mannitol,especially of the metastable forms,haven't been investigated clearly even though bulk crystallization is quite common in industry to produce mannitol polymorphs.Thus in order to enlarge the acquaintance to the growth of δ mannitol,the induction time measured in our previous work[42]was reanalyzed here to provide the growth mechanism following a reported method by Kuldiplumaret al.[20].

    4.Crystal Growth Mechanism of δ Mannitol by Induction Time Measurement

    4.1.Theory

    Generally the induction time can be considered as being made up of several parts,such as[43]the times for the system to achieve a quasi-steady state distribution of molecular clusters,for the formation of a stable nucleus,and for the nucleus to grow to a detectable size.Thus it is related to the rates of both nucleation and growth of crystals:

    whereJis the rate of nucleation,Vis the volume of the system,α is the volume fraction of the new formed phase,Gis the rate of crystal growth,anis a factor related to the crystal shape withn=mν+1(mindicates the dimensionality of growth while ν equals 0.5 or 1 depending on the crystal growth is controlled by volume diffusion or surface reaction,respectively).Generally the first term is usually negligible compared to the second especially when the supersaturation is not too low as in our case,which leaves Eq.(1)to the following:

    In this scenario,the steady state nucleation rate is usually described as below:

    wheresis the supersaturation,KJis the nucleation rate constant,andBis a constant composed of the shaper factors(fs,the surface shape factor,andfv,the volume shape factor),molecular volume(v),and the interfacial free energy(γ).

    whereKGis the growth rate constant andf(s)is a function of supersaturation depending on specific growth mechanism.Combining Eqs.(2),(3)and(4),it can be obtained:

    It is clear that the induction time(tind)and supersaturation(s)can be related to Eq.(5)once the crystal growth mechanism is fixed.Generally there are four kinds of growth mechanismsf(s)in the literature[20]as listed in Table 2.

    Since the δ form of mannitol is thin rod like[39],the dimensionality of growth is set tom=1.In the normal growth mechanism,the spiral growth mechanism,and the 2D nucleation-mediated mechanism,the growth rate is technically determined by the surface reaction in a growth unit,thus ν=1 and the factornis correspondingly 2 as displayed in Table 2.While the growth is controlled by the transport of growth units through the solution to the crystal surface as in the volume diffusion-controlled mechanism,one can accordingly get that ν=0.5 andnis 1.5 as shown in Table 2.

    By introducing differentf(s)in Table 2 to Eq.(5),it is possible to relate the supersaturation and the induction time under different mechanisms[44].To easily do this,another functionF(s)[20]was derived by rearranging Eq.(5)for normal,spiral,and volume diffusion-controlled growth:

    Thus the plot ofF(s)versus 1/(lns)can be fitted by a parabolic curve.Depending on the goodness of the fit to Eqs.(6)or(7),it should be identified the growth mechanism as one of the four above once the correlation index(R2)is in the tolerant range.The expressions ofF(s)for different operating mechanisms are also shown in Table 2.

    4.2.Results and discussion

    The determination of induction time for metastable polymorph is difficult due to the transition tendency,that is why thein situRaman spectroscopy and FBRM were combined to distinguish the polymorph and measure the induction time simultaneously in our previous work[42].Here in this paper,the induction time and supersaturation data were reanalyzed in order to fulfill different growth mechanisms.Specifically the calculatedF(s)are plotted against1/(ln2s)for the normal,spiral,and volume diffusion-controlled growth mechanism as shown in Fig.2,whileF(s)against1/(lns)is plotted in Fig.3 following the 2D nucleation-mediated growth mechanism.

    Table 2Functions and parameters for different crystal growth mechanisms

    Fig.2.Plots of F(s)versus 1/ln2s for δ form of mannitol under(a)the normal growth mechanism,(b)the spiral growth mechanism,(c)the volume diffusion controlled growth mechanism.

    Fig.3.Plot of F(s)versus 1/ln s for δ form of mannitol under the 2D nucleation-mediated growth mechanism.

    It is clear that the three linear fittings in Fig.2 are quite different.The correlation coefficient is as poor as 0.9058 in Fig.2(b),which means that the growth of the δ form of mannitol is barely following the spiral growth mechanism.The data points in Fig.2(a)are fitted to the normal growth mechanism while those in Fig.2(c)are fitted to the volume diffusion controlled growth mechanism.It can be seen that the correlation coefficients of these two fittings are better than that in the spiral growth mechanism.But the largestR2of 0.9912 appears when the data are fitted to the 2D nucleation-mediated mechanism as shown in Fig.3.Therefore it is reasonable to believe that the growth mechanism of the metastable δ form of mannitol should be 2D nucleation-mediated in a cooling crystallization.Since δ mannitol only nucleates at high initial concentration in aqueous solution as mentioned in our previous paper[42],it seems that once this metastable form nucleates from the solution,the growth is mediated by the formation and spread of numerous 2D nuclei.

    The method used in this work for crystal growth mechanism investigation has only been used in material without polymorphism phenomenon in the literature[20,44].However the high correlation index indicates that it should be suitable for polymorphic materials.To testify this,more detailed and microscopic work will be done in the future.

    6.2.2.3 冷藏冷凍商品貯存?zhèn)}庫、陳列柜和熱熟食展示柜都有功能正常的溫度顯示器,并且溫度滿足產(chǎn)品要求,定時做好冷藏冷凍庫(柜)和熱展示柜的溫度監(jiān)控記錄。熱展示柜的溫度在60℃以上,冷藏溫度應(yīng)為0℃~8℃;冷凍溫度應(yīng)為-20℃~-1℃, 宜低于-12℃。

    5.Conclusions

    The nomenclature of D-mannitol polymorphs is summarized in this paper due to the confusion of polymorph identification.It was con firmed that there are three pure anhydrous forms of mannitol based on the unit cell parameters even though some of them have been given various names in different literatures.The three pure mannitol polymorphs are named β,α,and δ in this work based on the review to many publications.Moreover the literatures on crystal growth of mannitol polymorphs are reviewed,and it was found the growth can kinetically be affected by many factors.After that,the induction time previously determined by us is applied to investigate the crystal growth mechanism of the δ mannitol polymorph of mannitol in a bulk crystallization.And it was found that the growth of the metastable δ form should be 2D nucleation-mediated.

    Nomenclature

    athe molecular area,m2

    ana factor related to the crystal shape in the expression of induction time

    Ba constant related to the nucleation rate

    Dxcrystal density,kg·m?3

    fsthe surface shape factor

    fvthe volume shape factor

    Grate of crystal growth,m·s?1

    Jrate of nucleation,m?3·s?1

    KGgrowth rate constant,m·s?1

    KJnucleation rate constant,m?3·s?1

    mthe dimensionality of growth

    sSupersaturation(s=c/c*)

    tindinduction time,s

    Vsystem volume,m3

    vmolecular volume,m3

    α volume fraction of the new formed phase

    β2Da numerical 2D shape factor

    γ interfacial free energy,J·m?2

    κ specific edge free energy of the nuclei,J·m?2

    [1]J.Bernstein,Polymorphism in Molecular Crystals,Oxford University Press,USA,2002.

    [2]S.Datta,D.J.W.Grant,Crystal structures of drugs:Advances in determination,prediction and engineering,Nat.Rev.Drug Discov.3(1)(2004)42–57.

    [3]B.O'Sullivan,The Application of In situ Analysis to Crystallization Process Development.Ph.D.Thesis University College Dublin,Ireland,2005.

    [4]L.Walter-Levy,The crystalline varieties of D-mannitol,C.R.Acad.Sc.Paris,Ser.C.267(1968)1779.

    [5]F.R.Fronczek,H.N.Kamel,M.Slattery,Three polymorphs(alpha,beta and delta)of D-mannitol at 100 K,Acta Crystallogr.Sect.C:Cryst.Struct.Commun.59(10)(2003)o567–o570.

    [6]A.Burger,J.O.Henck,S.Hetz,J.M.Rollinger,A.A.Weissnicht,H.Stottner,Energy temperature diagram and compression behavior of the polymorphs of D-mannitol,J.Pharm.Sci.89(4)(2000)457–468.

    [7]C.Nunes,R.Suryanarayanan,C.E.Botez,P.W.Stephens,Characterization and crystal structure of D-mannitol hemihydrate,J.Pharm.Sci.93(11)(2004)2800–2809.

    [8]J.Cornel,P.Kidambi,M.Mazzotti,Precipitation and transformation of the three polymorphs of D-mannitol,Ind.Eng.Chem.Res.49(12)(2010)5854–5862.

    [9]W.Su,C.Li,H.Hao,J.Whelan,M.Barrett,B.Glennon,Monitoring the liquid phase concentration by Raman spectroscopy in a polymorphic system,J.Raman Spectrosc.46(11)(2015)1150–1156.

    [10]I.S.Lee,A.Y.Lee,A.S.Myerson,Concomitant polymorphism in con fined environment,Pharm.Res.25(4)(2008)960–968.

    [11]M.Svard,F.L.Nordstrom,T.Jasnobulka,A.C.Rasmuson,Thermodynamics and nucleation kinetics of m-Aminobenzoic acid polymorphs,Cryst.Growth Des.10(2010)195–204.

    [12]W.Ostwald,Uber die vemeintliche Isomerie des roten und gelben quecksilberoxyds und die ober flachen-spannung fester korper,Z.Phys.Chem.34(1900)495–512.

    [13]M.Kitamura,Crystallization behavior and transformation kinetics of L-histidine polymorphs,J.Chem.Eng.Jpn26(3)(1993)303–307.

    [14]T.Ono,H.J.M.Kramer,J.H.terHorst,P.J.Jansens,Process modeling of the polymorphic transformation of L-glutamic acid,Cryst.Growth Des.4(6)(2004)1161–1167.

    [15]M.W.Hermanto,N.C.Kee,R.B.H.Tan,M.S.Chiu,R.D.Braatz,Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals,AIChE J54(12)(2008)3248–3259.

    [16]M.Kitamura,T.Ishizu,Growth kinetics and morphological change of polymorphs of L-glutamic acid,J.Cryst.Growth209(1)(2000)138–145.

    [17]N.C.S.Kee,P.D.Arendt,L.May Goh,R.B.H.Tan,R.D.Braatz,Nucleation and growth kinetics estimation for l-phenylalanine hydrate and anhydrate crystallization,CrystEngComm13(4)(2011)1197–1209.

    [18]L.Carpentier,K.Filali Rharrassi,P.Derollez,Y.Guinet,Crystallization and polymorphism of l-arabitol,Thermochim.Acta556(0)(2013)63–67.

    [19]J.Scholl,C.Lindenberg,L.Vicum,J.Brozio,M.Mazzotti,Precipitation of alpha L-glutamic acid determination of growth kinetics,Faraday Discuss.136(2007)247–264.

    [20]A.Kuldipkumar,G.S.Kwon,G.G.Z.Zhang,Determining the growth mechanism of tolazamide by induction time measurement,Cryst.Growth Des.7(2)(2007)234–242.

    [21]T.C.Marwick,An X-ray study of mannitol,dulcitol,and mannose,Proc.R.Soc.London,Ser.A131(818)(1931)621–633.

    [22]A.Rye,H.Sorum,Crystalline modifications of D-mannitol,Acta Chem.Scand.6(1952)1128–1129.

    [23]H.M.Berman,G.A.Jeffrey,R.D.Rosenstein,The crystal structures of the alpha and beta forms of D-mannitol,Acta Crystallogr.Sect.B:Struct.Sci.B24(1968)442–449.

    [24]W.Kaminsky,Crystal optics of D-mannitol,C6H14O6crystal growth,structure,basic physical properties,birefingence,optical activity,Faraday effect,electro-optic effects and model calculations,Z.Kristallogr.212(1997)283–296.

    [25]H.S.Kim,G.A.Jeffrey,R.D.Rosenstein,The crystal structure of the K form of D-mannitol,Acta Crystallogr.Sect.B:Struct.Sci.B24(1968)1449–1455.

    [26]C.E.Botez,P.W.Stephens,C.Nunes,R.Suryanarayanan,Crystal structure of anhydrous delta D-mannitol,Powder Diffract.18(3)(2003)214–218.

    [27]P.Groth,Chemical Crystallography,Part Three:Aliphatic and Aromatic Hydrocarbon Compounds,Verlag von Wilhelm Engelmann,Leipzig,1910.

    [28]I.Pitkanen,P.Perkkalainen,H.Rautiainen,Thermoanalytical studies on phases of D-mannitol,Thermochim.Acta214(1)(1993)157–162.

    [29]T.B.Grindley,M.S.McKinnon,R.E.Wasylishen,Towards understanding13C-NMR chemical shifts of carbohydrates in the solid state.The spectra of D-mannitol polymorphs and of DL-mannitol,Carbohydr.Res.197(1990)41–52.

    [30]B.Debord,C.Lefebvre,A.M.Guyot-Hermann,J.Hubert,R.Bouché,J.Guyot,Study of different crystalline forms of mannitol:Comparative behaviour under compression,Drug Dev.Ind.Pharm.13(9–11)(1987)1533–1546.

    [31]A.I.Kim,M.J.Akers,S.L.Nail,The physical state of mannitol after freeze-drying:Effects of mannitol concentration,freezing rate,and a noncrystallizing cosolute,J.Pharm.Sci.87(8)(1998)931–935.

    [32]B.O'Sullivan,P.Barrett,G.Hsiao,A.Carr,B.Glennon,In situ monitoring of polymorphic transitions,Org.Process.Res.Dev.7(2003)977–982.

    [33]D.Giron,Thermal-analysis and calorimetric methods in the characterization of polymorphs and solvates,Thermochim.Acta248(1995)1–59.

    [34]K.Nakagawa,W.Murakami,J.Andrieu,S.Vessot,Freezing step controls the mannitol phase composition heterogeneity,Chem.Eng.Res.Des.87(2009)1017–1027.

    [35]X.Liao,R.Krishnamurthy,R.Suryanarayanan,Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol-implications in freezedrying,Pharm.Res.22(11)(2005)1978–1985.

    [36]D.Dixon,S.Tchessalov,A.Barry,N.Warne,The impact of protein concentration on mannitol and sodium chloride crystallinity and polymorphism upon lyophilization,J.Pharm.Sci.98(9)(2009)3419–3429.

    [37]S.K.Poornachary,J.V.Parambil,P.S.Chow,R.B.H.Tan,J.Y.Y.Heng,Nucleation of elusive crystal polymorphs at the solution–substrate contact line,Cryst.Growth Des.13(3)(2013)1180–1186.

    [38]R.B.Hammond,K.Pencheva,K.J.Roberts,Structural variability within,and polymorphic stability of,nano-crystalline molecular clusters of L-glutamic acid and D-mannitol,modelled with respect to their size,shape and ‘crystallisability’,CrystEngComm14(3)(2012)1069–1082.

    [39]W.Y.Su,H.X.Hao,M.Barrett,B.Glennon,The impact of operating parameters on the polymorphic transformation of D-mannitol characterized in situ with Raman spectroscopy,FBRM,and PVM,Org.Process.Res.Dev.14(6)(2010)1432–1437.

    [40]B.O'Sullivan,B.Glennon,Application ofin situ FBRMand ATR-FTIR to the monitoring of the polymorphic transformation of D-mannitol,Org.Process.Res.Dev.9(6)(2005)884–889.

    [41]J.L.Crisp,S.E.Dann,C.G.Blatchford,Antisolvent crystallization of pharmaceutical excipients from aqueous solutions and the use of preferred orientation in phase identification by powder X-ray diffraction,Eur.J.Pharm.Sci.42(5)(2011)568–577.

    [42]W.Su,H.Hao,B.Glennon,M.Barrett,Spontaneous polymorphic nucleation of D-mannitol in aqueous solution monitored with Raman spectroscopy and FBRM,Cryst.Growth Des.13(12)(2013)5179–5187.

    [43]J.W.Mullin,Crystallization,4th Ed,London,2001.

    [44]M.Zhi,Y.Wang,J.Wang,Determining the primary nucleation and growth mechanism of cloxacillin sodium in methanol–butyl acetate system,J.Cryst.Growth314(1)(2011)213–219.

    猜你喜歡
    冷藏顯示器倉庫
    倉庫里的小偷
    把顯示器“穿”在身上
    填滿倉庫的方法
    四行倉庫的悲壯往事
    一種新型點(diǎn)陣顯示器的設(shè)計
    電子制作(2019年24期)2019-02-23 13:22:32
    感應(yīng)式帶電顯示器抗干擾處理
    電子測試(2018年13期)2018-09-26 03:29:36
    食物冷藏不要超過多少天
    哪些應(yīng)該放冷藏?哪些應(yīng)該放冷凍?哪些不用放冰箱?
    媽媽寶寶(2017年2期)2017-02-21 01:21:04
    冷藏保溫車發(fā)展?jié)摿Ρ患ぐl(fā)
    專用汽車(2016年5期)2016-03-01 04:14:39
    再談冷藏保溫車:市場已升溫
    專用汽車(2016年5期)2016-03-01 04:14:38
    亚洲国产av影院在线观看| 黄色配什么色好看| 一区福利在线观看| 亚洲视频免费观看视频| 精品国产一区二区三区久久久樱花| 国产一区二区激情短视频 | 亚洲国产精品成人久久小说| 久久国产精品男人的天堂亚洲| 色94色欧美一区二区| freevideosex欧美| 自拍欧美九色日韩亚洲蝌蚪91| 久久 成人 亚洲| 精品少妇一区二区三区视频日本电影 | 2018国产大陆天天弄谢| 国产人伦9x9x在线观看 | 日韩av免费高清视频| 美女国产视频在线观看| 久久久精品国产亚洲av高清涩受| 精品一区二区免费观看| 国产一区二区在线观看av| av免费观看日本| 国产精品成人在线| 久久久久精品久久久久真实原创| 肉色欧美久久久久久久蜜桃| 亚洲视频免费观看视频| 久久精品aⅴ一区二区三区四区 | 亚洲精品一二三| 成年av动漫网址| 欧美亚洲日本最大视频资源| 国产乱来视频区| 亚洲国产欧美日韩在线播放| 九九爱精品视频在线观看| 中文字幕制服av| 午夜精品国产一区二区电影| 在线观看人妻少妇| 丁香六月天网| 国产伦理片在线播放av一区| 黄色配什么色好看| 免费看不卡的av| 久久久欧美国产精品| 亚洲欧美成人精品一区二区| 黄片小视频在线播放| 人妻一区二区av| 亚洲av电影在线进入| 男女下面插进去视频免费观看| 黄片无遮挡物在线观看| 中文字幕人妻熟女乱码| 一本色道久久久久久精品综合| 亚洲精品国产色婷婷电影| 国产av国产精品国产| 日本欧美国产在线视频| 热re99久久精品国产66热6| 国产深夜福利视频在线观看| 日韩电影二区| 日本黄色日本黄色录像| 男女下面插进去视频免费观看| 欧美日韩一级在线毛片| 国产成人a∨麻豆精品| 国产欧美日韩一区二区三区在线| 久久国产精品大桥未久av| 精品国产一区二区久久| 日韩中文字幕视频在线看片| 亚洲内射少妇av| 久久ye,这里只有精品| 久久青草综合色| 久久久久久久精品精品| av在线播放精品| 午夜福利视频精品| 一本久久精品| 在现免费观看毛片| 亚洲精品中文字幕在线视频| 韩国av在线不卡| 成年女人毛片免费观看观看9 | 亚洲国产欧美网| 侵犯人妻中文字幕一二三四区| 一个人免费看片子| 亚洲人成网站在线观看播放| 国产精品av久久久久免费| 亚洲色图 男人天堂 中文字幕| 97在线视频观看| 精品卡一卡二卡四卡免费| 日韩伦理黄色片| 一本色道久久久久久精品综合| 日本爱情动作片www.在线观看| 亚洲精品日本国产第一区| 精品人妻一区二区三区麻豆| 一级爰片在线观看| 女人久久www免费人成看片| 高清黄色对白视频在线免费看| 日韩av不卡免费在线播放| 免费在线观看黄色视频的| 2018国产大陆天天弄谢| 啦啦啦在线免费观看视频4| 亚洲国产精品成人久久小说| 女的被弄到高潮叫床怎么办| 亚洲三级黄色毛片| 国产在线免费精品| 中文天堂在线官网| 国产精品秋霞免费鲁丝片| 一级毛片电影观看| 亚洲欧美清纯卡通| 婷婷成人精品国产| 久久婷婷青草| 国产精品一区二区在线观看99| 男女啪啪激烈高潮av片| 日本wwww免费看| 色播在线永久视频| 青春草视频在线免费观看| 母亲3免费完整高清在线观看 | 纯流量卡能插随身wifi吗| 日韩视频在线欧美| 免费大片黄手机在线观看| 大话2 男鬼变身卡| 18在线观看网站| 18禁裸乳无遮挡动漫免费视频| 日韩av免费高清视频| 成人18禁高潮啪啪吃奶动态图| 2018国产大陆天天弄谢| 久久久久久久久免费视频了| 欧美人与性动交α欧美软件| 欧美亚洲日本最大视频资源| h视频一区二区三区| 欧美最新免费一区二区三区| 久久久久精品久久久久真实原创| 久久人人爽av亚洲精品天堂| 最近2019中文字幕mv第一页| av在线老鸭窝| 国产精品麻豆人妻色哟哟久久| 中文乱码字字幕精品一区二区三区| 涩涩av久久男人的天堂| 欧美日韩综合久久久久久| 久久久久久伊人网av| 日本爱情动作片www.在线观看| 黄色 视频免费看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品一区二区三区四区五区乱码 | 亚洲欧美色中文字幕在线| 久久久久久久久久久免费av| 成人国产麻豆网| 国产日韩一区二区三区精品不卡| 日韩免费高清中文字幕av| videos熟女内射| 色94色欧美一区二区| 亚洲av成人精品一二三区| 亚洲情色 制服丝袜| 女性被躁到高潮视频| 美女视频免费永久观看网站| 日韩精品免费视频一区二区三区| 色网站视频免费| 亚洲天堂av无毛| 国产精品欧美亚洲77777| 男人爽女人下面视频在线观看| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀 | 18在线观看网站| 久久97久久精品| 高清在线视频一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲情色 制服丝袜| 丝瓜视频免费看黄片| 制服丝袜香蕉在线| 成人漫画全彩无遮挡| 18禁观看日本| 亚洲av国产av综合av卡| 高清不卡的av网站| 韩国av在线不卡| 老女人水多毛片| 久久av网站| 男女免费视频国产| 亚洲欧美成人综合另类久久久| 日本爱情动作片www.在线观看| 亚洲av免费高清在线观看| 一级黄片播放器| 午夜激情av网站| 国产亚洲精品第一综合不卡| 国产精品.久久久| 免费人妻精品一区二区三区视频| 一边亲一边摸免费视频| 中文字幕精品免费在线观看视频| 韩国精品一区二区三区| 在线天堂中文资源库| 亚洲人成电影观看| 久久久久久久久免费视频了| 久久精品久久久久久久性| 亚洲国产精品国产精品| 亚洲成色77777| 国产极品粉嫩免费观看在线| 99久久中文字幕三级久久日本| 免费观看在线日韩| 美女大奶头黄色视频| 性少妇av在线| 天美传媒精品一区二区| 日韩制服骚丝袜av| 精品一区在线观看国产| 男人爽女人下面视频在线观看| 国产欧美日韩一区二区三区在线| 久热这里只有精品99| 自线自在国产av| 午夜福利视频在线观看免费| 欧美黄色片欧美黄色片| 免费女性裸体啪啪无遮挡网站| 精品久久久久久电影网| 日本av手机在线免费观看| 一边摸一边做爽爽视频免费| 丝袜喷水一区| 亚洲av电影在线进入| 亚洲欧美成人综合另类久久久| 成人漫画全彩无遮挡| 亚洲三区欧美一区| 午夜精品国产一区二区电影| 亚洲伊人久久精品综合| 成人国产av品久久久| 久久99精品国语久久久| 国产成人精品无人区| 一级毛片黄色毛片免费观看视频| 久久久久久久亚洲中文字幕| av线在线观看网站| 欧美av亚洲av综合av国产av | 夜夜骑夜夜射夜夜干| 午夜福利在线免费观看网站| 妹子高潮喷水视频| 巨乳人妻的诱惑在线观看| 2018国产大陆天天弄谢| 欧美日韩视频精品一区| 叶爱在线成人免费视频播放| 亚洲精品aⅴ在线观看| 欧美精品高潮呻吟av久久| 精品亚洲成a人片在线观看| 国产一区有黄有色的免费视频| 老司机亚洲免费影院| 老司机亚洲免费影院| 黄网站色视频无遮挡免费观看| 高清欧美精品videossex| 日韩免费高清中文字幕av| 最近2019中文字幕mv第一页| 国产精品久久久久久精品古装| videos熟女内射| 少妇的逼水好多| 亚洲人成77777在线视频| 午夜福利在线观看免费完整高清在| 亚洲欧美精品自产自拍| 日韩一本色道免费dvd| av免费观看日本| 菩萨蛮人人尽说江南好唐韦庄| 久久久久视频综合| 91精品国产国语对白视频| 亚洲色图 男人天堂 中文字幕| 国产精品国产三级专区第一集| 日本午夜av视频| av又黄又爽大尺度在线免费看| 综合色丁香网| 老司机亚洲免费影院| 久久人人97超碰香蕉20202| 欧美av亚洲av综合av国产av | 91久久精品国产一区二区三区| 美女xxoo啪啪120秒动态图| 美女xxoo啪啪120秒动态图| 精品久久久精品久久久| 国产精品 欧美亚洲| 天美传媒精品一区二区| 午夜老司机福利剧场| 久久国产亚洲av麻豆专区| 在线观看三级黄色| 成年女人毛片免费观看观看9 | 国产精品一区二区在线观看99| 国产成人精品久久久久久| 日本av免费视频播放| 各种免费的搞黄视频| 色视频在线一区二区三区| 国产片特级美女逼逼视频| 如何舔出高潮| 另类亚洲欧美激情| 午夜福利,免费看| 亚洲一码二码三码区别大吗| 欧美日韩成人在线一区二区| 免费不卡的大黄色大毛片视频在线观看| 久久久久人妻精品一区果冻| 一二三四中文在线观看免费高清| 老司机影院成人| 黄网站色视频无遮挡免费观看| 亚洲国产毛片av蜜桃av| 人人妻人人爽人人添夜夜欢视频| 女人久久www免费人成看片| 午夜日本视频在线| 精品一区二区三区四区五区乱码 | 精品国产国语对白av| 777久久人妻少妇嫩草av网站| 高清在线视频一区二区三区| 欧美在线黄色| 99re6热这里在线精品视频| 久久久久久久久久久免费av| 满18在线观看网站| 青草久久国产| 国产成人91sexporn| www.精华液| 一二三四中文在线观看免费高清| 国产乱人偷精品视频| av.在线天堂| 日韩制服骚丝袜av| 午夜日韩欧美国产| 在线亚洲精品国产二区图片欧美| 一区二区日韩欧美中文字幕| 人体艺术视频欧美日本| 欧美日韩成人在线一区二区| 男女高潮啪啪啪动态图| 久久人人爽人人片av| 久久国产精品男人的天堂亚洲| 看十八女毛片水多多多| 亚洲色图 男人天堂 中文字幕| 综合色丁香网| 婷婷色av中文字幕| 1024香蕉在线观看| 91午夜精品亚洲一区二区三区| 午夜激情久久久久久久| 亚洲四区av| 丝袜喷水一区| 欧美最新免费一区二区三区| 青草久久国产| 啦啦啦视频在线资源免费观看| 久久精品久久久久久久性| 亚洲久久久国产精品| 一级片免费观看大全| 亚洲精品国产一区二区精华液| 曰老女人黄片| 美女午夜性视频免费| 男女下面插进去视频免费观看| 欧美精品国产亚洲| 亚洲一区中文字幕在线| 国产一区有黄有色的免费视频| 国产一区二区激情短视频 | 制服诱惑二区| 亚洲情色 制服丝袜| 中文乱码字字幕精品一区二区三区| 亚洲国产看品久久| 国产熟女欧美一区二区| 777米奇影视久久| 在线 av 中文字幕| 精品少妇内射三级| 9热在线视频观看99| 国产免费又黄又爽又色| 亚洲第一区二区三区不卡| 女人精品久久久久毛片| 亚洲精品av麻豆狂野| 国产亚洲一区二区精品| 热99久久久久精品小说推荐| 欧美亚洲 丝袜 人妻 在线| 国产免费一区二区三区四区乱码| 老汉色∧v一级毛片| 免费女性裸体啪啪无遮挡网站| 成人黄色视频免费在线看| 国产免费一区二区三区四区乱码| 热99久久久久精品小说推荐| 成年av动漫网址| 国产精品国产av在线观看| 国产福利在线免费观看视频| 91久久精品国产一区二区三区| 欧美成人午夜精品| 伦理电影大哥的女人| 国产精品人妻久久久影院| 欧美日韩av久久| 久久精品国产亚洲av涩爱| 免费人妻精品一区二区三区视频| 国产精品三级大全| 国产黄色视频一区二区在线观看| 成人午夜精彩视频在线观看| 永久免费av网站大全| 2018国产大陆天天弄谢| 曰老女人黄片| 国产成人午夜福利电影在线观看| 天天操日日干夜夜撸| 自拍欧美九色日韩亚洲蝌蚪91| av电影中文网址| av视频免费观看在线观看| 久久精品亚洲av国产电影网| 观看美女的网站| 亚洲av综合色区一区| 精品酒店卫生间| 久久精品亚洲av国产电影网| 老司机影院成人| 少妇被粗大的猛进出69影院| 男的添女的下面高潮视频| 国产亚洲最大av| 少妇熟女欧美另类| 久久精品国产亚洲av涩爱| 久久久精品国产亚洲av高清涩受| 美女福利国产在线| 老女人水多毛片| 午夜福利网站1000一区二区三区| 黑人猛操日本美女一级片| 麻豆精品久久久久久蜜桃| 秋霞伦理黄片| av网站免费在线观看视频| 久久综合国产亚洲精品| 国产爽快片一区二区三区| 国产高清不卡午夜福利| 街头女战士在线观看网站| 一级毛片电影观看| 一区二区三区激情视频| 深夜精品福利| 国产精品亚洲av一区麻豆 | 国产精品偷伦视频观看了| 在线观看三级黄色| av在线播放精品| 熟妇人妻不卡中文字幕| 国产av码专区亚洲av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品一区三区| 久久精品国产亚洲av天美| av.在线天堂| 夫妻午夜视频| 欧美日韩亚洲高清精品| 午夜福利在线免费观看网站| 免费不卡的大黄色大毛片视频在线观看| 国产片特级美女逼逼视频| 免费在线观看完整版高清| 日韩制服骚丝袜av| 亚洲一区中文字幕在线| 午夜福利,免费看| 少妇人妻久久综合中文| 一级黄片播放器| 一级毛片黄色毛片免费观看视频| 国产精品一区二区在线不卡| 亚洲国产精品国产精品| 老鸭窝网址在线观看| 国产一区二区 视频在线| 女人高潮潮喷娇喘18禁视频| a级毛片在线看网站| 亚洲国产欧美网| 久久久欧美国产精品| 日本午夜av视频| 人妻人人澡人人爽人人| 久久这里有精品视频免费| 免费在线观看黄色视频的| 国产一区有黄有色的免费视频| 另类亚洲欧美激情| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| 免费黄频网站在线观看国产| 亚洲激情五月婷婷啪啪| 黄色毛片三级朝国网站| 午夜福利视频在线观看免费| 人成视频在线观看免费观看| 久久99热这里只频精品6学生| 美女中出高潮动态图| 中文欧美无线码| 国产成人a∨麻豆精品| 在线观看免费视频网站a站| av.在线天堂| 看免费av毛片| 男女无遮挡免费网站观看| 日本wwww免费看| 免费日韩欧美在线观看| 亚洲,欧美,日韩| 成人手机av| 色婷婷久久久亚洲欧美| 十八禁网站网址无遮挡| 日日撸夜夜添| 国产爽快片一区二区三区| 大陆偷拍与自拍| 可以免费在线观看a视频的电影网站 | 亚洲色图 男人天堂 中文字幕| 久久 成人 亚洲| 精品视频人人做人人爽| 国产熟女午夜一区二区三区| 91成人精品电影| 肉色欧美久久久久久久蜜桃| 中国三级夫妇交换| 国产成人欧美| 午夜福利网站1000一区二区三区| 丰满迷人的少妇在线观看| 国产成人精品一,二区| 欧美bdsm另类| av不卡在线播放| 国产毛片在线视频| 搡女人真爽免费视频火全软件| 男男h啪啪无遮挡| 日韩一区二区视频免费看| 亚洲色图 男人天堂 中文字幕| 亚洲国产色片| 不卡视频在线观看欧美| 七月丁香在线播放| 热re99久久精品国产66热6| 亚洲成色77777| 国产精品 欧美亚洲| 丝瓜视频免费看黄片| 亚洲精品日韩在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 少妇的逼水好多| 菩萨蛮人人尽说江南好唐韦庄| 在线观看www视频免费| 男女免费视频国产| av国产精品久久久久影院| 久久精品aⅴ一区二区三区四区 | 欧美另类一区| 天堂俺去俺来也www色官网| 久久久久久久久久久免费av| av一本久久久久| 一个人免费看片子| 午夜av观看不卡| 精品久久久精品久久久| 久久婷婷青草| 搡女人真爽免费视频火全软件| 国产日韩欧美视频二区| 免费观看av网站的网址| 黄片播放在线免费| 国产一区有黄有色的免费视频| 国产国语露脸激情在线看| www.自偷自拍.com| 七月丁香在线播放| 精品亚洲成国产av| 亚洲av中文av极速乱| 国产乱来视频区| 天天操日日干夜夜撸| 国产成人aa在线观看| 日韩人妻精品一区2区三区| 亚洲国产精品成人久久小说| 亚洲精品aⅴ在线观看| 少妇 在线观看| 国产精品国产三级专区第一集| 久久久久国产精品人妻一区二区| 久久精品人人爽人人爽视色| 欧美国产精品一级二级三级| 亚洲欧美色中文字幕在线| 大片电影免费在线观看免费| 亚洲国产看品久久| 亚洲精品乱久久久久久| 欧美在线黄色| 黑人猛操日本美女一级片| 欧美av亚洲av综合av国产av | h视频一区二区三区| 桃花免费在线播放| 精品亚洲成国产av| 免费播放大片免费观看视频在线观看| 精品99又大又爽又粗少妇毛片| 国产国语露脸激情在线看| 中文字幕亚洲精品专区| 日本午夜av视频| 超碰97精品在线观看| 国产成人精品无人区| a级毛片黄视频| 亚洲欧美一区二区三区黑人 | av.在线天堂| 黄色视频在线播放观看不卡| 人成视频在线观看免费观看| 亚洲精品第二区| 亚洲精品视频女| 妹子高潮喷水视频| av福利片在线| 久久久久久久国产电影| 日韩不卡一区二区三区视频在线| 精品亚洲乱码少妇综合久久| 少妇的丰满在线观看| 波多野结衣av一区二区av| 日韩大片免费观看网站| 在线观看一区二区三区激情| 久久精品国产自在天天线| 性色av一级| 91午夜精品亚洲一区二区三区| 卡戴珊不雅视频在线播放| 欧美+日韩+精品| av天堂久久9| 国产精品国产av在线观看| 国产成人精品婷婷| 韩国精品一区二区三区| 欧美人与性动交α欧美精品济南到 | 黄色怎么调成土黄色| 欧美老熟妇乱子伦牲交| 国产亚洲欧美精品永久| 精品亚洲成a人片在线观看| 久久久久精品久久久久真实原创| 久久久精品区二区三区| 汤姆久久久久久久影院中文字幕| 黄色视频在线播放观看不卡| 亚洲国产精品一区二区三区在线| 一区二区三区乱码不卡18| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区| 欧美在线黄色| 中文字幕色久视频| 精品人妻一区二区三区麻豆| 极品人妻少妇av视频| 国产乱人偷精品视频| 一本—道久久a久久精品蜜桃钙片| 久久国产精品男人的天堂亚洲| 一区二区av电影网| 日韩制服丝袜自拍偷拍| 五月伊人婷婷丁香| 高清在线视频一区二区三区| av免费在线看不卡| 少妇精品久久久久久久| 亚洲内射少妇av| 亚洲国产看品久久| 一级毛片电影观看| 亚洲精华国产精华液的使用体验| 青青草视频在线视频观看| 国产毛片在线视频| 亚洲内射少妇av| 免费在线观看完整版高清| 国产成人免费无遮挡视频| av有码第一页| 精品久久久精品久久久| 欧美日韩一区二区视频在线观看视频在线| 久久99热这里只频精品6学生| 高清视频免费观看一区二区| 色哟哟·www| 黄片小视频在线播放| 久久综合国产亚洲精品| www.av在线官网国产| 黄色怎么调成土黄色| 十八禁网站网址无遮挡| 日日爽夜夜爽网站| 99国产综合亚洲精品| 日日摸夜夜添夜夜爱| 99国产综合亚洲精品| 欧美国产精品va在线观看不卡|