• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of metastable zone and induction time of analgin for cooling crystallization☆

    2017-05-28 07:29:00LingZhouZhaoWangMeijingZhangMingxiaGuoShijieXuQiuxiangYin

    Ling Zhou ,Zhao Wang ,2,Meijing Zhang ,2,Mingxia Guo ,Shijie Xu ,Qiuxiang Yin ,2,*

    1 School of Chemical Engineering and Technology,State Key Laboratory of Chemical Engineering,Tianjin University,Tianjin 300072,China

    2 Collaborative Innovation Center of Chemical Science and Chemical Engineering,Tianjin 300072,China

    1.Introduction

    Solution crystallization is a pivotal operating unit for producing high-quality product with desired purity,crystal size distribution,and shape[1,2].The crystallization process should be entirely controlled for the product to meet the requirements.

    Nucleation is important in determining the role of product quality and crystal morphology during crystallization[3].The discrepancy between concentration and saturation(i.e.,supersaturation)is the only driving force.This discrepancy could be produced using several methods(e.g.,evaporation,anti-solvent addition,and cooling).The region between the solubility equilibrium curve and the super solubility curve is called the metastable zone[4].Operating in this region could avoid spontaneous nucleation and may ensure that products meet the requirements of particle size distribution.Therefore,determining the metastable zone width is very essential.Furthermore,the information of metastable zone width is required for probing the nucleation mechanism[5,6]and the industrial amplification[7].The metastable zone width is not a thermodynamic property like solubility but influenced by several parameters including stirring rate,solvent species,cooling rate and so on[8].

    The induction time during crystallization process is the time between a supersaturated solution reaching to the onset of nucleation[4].Therefore,the induction time can be analyzed through nucleation theory[7].The induction time influenced by several parameters including solvent species,temperature,concentration and so on.

    Up to now,the most commonly determining method of the metastable zone width is polythermal technique.This method involves the measurement of the nucleation temperature through the cooling saturation solution with a certain rate[9].The metastable zone width is the discrepancy between the equilibrium temperature and the nucleation temperature for a cooling crystallization process.The metastable zone width can be determined using several methods,including laser,nephelometer conductivity meter,and focused beam reflectance measurement[10–13].This study usesin situRaman to monitor the onset of nucleation by observing the change in the analgin solution concentration and the solid crystal formation.

    Analgin is a well-known and widely used analgetic and antipyretic drug employed for multicomponent preparations.Accordingly,the use of pure products has decreased because of some side effects.Analgin is one of the five active ingredients of Pentalgin-FS tablets produced by Farmstandart–Leksredstva[14].Some problems in the industrial production of analgin are long production periods,small particle sizes,maldistribution,and long drying and filtration times.Optimizing the cooling crystallization process and determining the optimum operating curve for producing high-quality products are important in solving these problems.Basic data,such as solubility,metastable zone width,and induction times,are all necessary for this goal[15].

    Little data is available on the solubility,metastable zone width and nucleation parameters of analgin in the existing literature.In this study,the metastable zone width and the induction period of analgin in the ethanol–aqueous system are experimentally determined by thein situRaman method.The nucleation parameters are estimated using classical nucleation theory of Ny'vlt through the data of metastable zone width at different cooling rates.Interfacial energy and some nucleation parameters are subsequently calculated using classical nucleation theory relatingtindwith supersaturation.From the results of fitting the experimental data to the classical nucleation theory,the nucleation mechanism is identified,which can provide basic data for optimizing and controlling the analgin-crystallization process.

    2.Theory

    Similar to the Arrhenius reaction rate equation,Classical nucleation theory states that the nucleation rate(J)can be given as follows[7]:

    wherekis the Boltzmann constant;Ais the pre-exponential factor;andTnis the nucleation temperature.Gibb's free energy,ΔG,is dependent on nucleus radiusrand can be written as follows:

    where ΔGvis the free energy change;and γ is the interfacial energy.At pointd(ΔG)/dr=0,the nucleus reach the critical size,r*,free energy is maximum.

    From the previous equations,free energy change can be calculated as follows:

    wherec*is solubility;Sis supersaturation;andVmis molar volume.Substituting Eqs.(5)and(6),

    Therefore,the induction time can be expressed as supersaturation,

    At constant temperature,lntindand 1/ln2Sshould be show a linear relationship.The slope can be obtained by:

    3.Experimental Procedure

    3.1.Materials

    Analgin(purity:99.5%)was supplied by the Shandong Xinhua Pharmaceutical Co.,Ltd.,China.Anhydrous ethanol(purity:99.7%)was purchased from Tianjin Chemical Reagent Company.

    3.2.Apparatus and procedure

    3.2.1.Characterization of analgin

    Powder X-ray diffraction(PXRD)pattern of the crystallinity of analgin was obtained using Cu Kαradiation(0.154nm)on Rigaku D/max-2500(Rigaku,Japan).The samples were conducted over a 2-theta range from 2°to 50°at a scanning rate of 1 step per second.

    To determine the melting temperature and enthalpy fusion of analgin,a thermogravimetric/differential scanning calorimetry(Mettler-Toledo,Switzerland)was used for thermal analysis experiment under a nitrogen atmosphere.

    3.2.2.Determination of solubility

    The solubility data of analgin were measured by the gravimetric method previously described in literature[16–18].A 50 ml cylindrical double-jacketed glass was used.The jacketed temperature was controlled(±0.01 K)by a thermostat(XOYS-2006,Nanjing Xianou Instrument Manufacturing Co.,Ltd.,China).Stirring was stopped when the system reached the equilibrium,and the suspension stood for a while.The supernate was filtered with a filter membrane(0.22 μm).Subsequently,the filtrate was weighed as quickly as possible and dried at 50°C until no change was observed.The solubility data was obtained through repeating three times in each group to take the average value.

    The molar fraction solubility of analgin in the ethanol–aqueous system can be obtained as follows:

    wherem,mA,andmWare the mass of analgin,ethanol,and water respectively.M,MA,andMWare the molecule mass of analgin,ethanol,and water,respectively.

    3.2.3.Determination of metastable zone width and induction time

    The saturated solutions of the analgin ethanol aqueous system at certain temperatures were first prepared to determine the metastable zone width.To ensure complete dissolution,solutions were stirred for 20 min before each run at a temperature which is 5 K higher than the equilibrium temperature[19].Then,cool the solution with a certain cooling rate until the first crystal appeared.The metastable zone width is obtained through the difference between equilibrium temperature and nucleation temperature.

    The induction time was experimentally measured over the supersaturation range from 1.1 to 1.4 at three different temperatures(i.e.,323.15 K,333.15 K,and 343.15 K).A saturated analgin solution at a particular experiment temperature is con figured according to the solubility data that has been determined by heating the suspension to 5 K higher than the equilibrium temperature and maintaining the solution in this state for 20 min.Rapid cooling the solution to experiment temperature to get the supersaturation level target.The solution was stirred at this temperature until nucleation occurred.The induction timetindwas the interval time between the creation of supersaturation and the nucleation point.

    The Raman spectra could offer information about the solution and solid phases[20–24].Therefore,Raman spectroscopy,as a light scattering technique,could be easily exploited for monitoring phase changes in crystallization systems.The Raman spectra of different components exhibited some distinct differences that can be chosen as the characteristic peaks for each component[25–29].

    This study employed in-situ Raman spectroscopy to determine the nucleation point using the Raman RXN2-HYBRID analyzer instrument.Raman spectroscopy was successfully used to identify the analgin solution and the solid(Fig.1).The peak at1002 cm?1(peak I)was chosen to represent the analgin solution,while that at 1630 cm?1(peak II)was selected to monitor the solid phase.Fig.2 shows the primary nucleation temperature when the solution equilibrium temperature is at 343.15 K and the cooling rate is at0.5 K/min which is shown as a typical measurement.The point at the characteristic peak intensity of the analgin solution started to decline and the solid peak intensity began to increase indicate the onset of nucleation.Fig.3 shows the comparative result of the nucleation temperatures measuring byin situRaman spectroscopy and the focused beam reflectance measurement(FBRM)(Mettler-Toledo,Switzerland).The two methods provided similar results of analgin in the ethanol–aqueous system.

    Fig.1.Raman spectra of solution and suspension of analgin.

    Fig.2.Measured change of the characteristic peak intensity with temperature during the cooling of a solution saturated at 343.15 K and cooled with a 0.5 K·min?1 rate.

    Fig.3.Comparison of the nucleation points of analgin from the Raman and FBRM measurements.

    4.Results and Discussion

    4.1.Material characterization

    Fig.4 is the PXRD pattern of analgin,there was no polymorphism in the experiments.

    Fig.4.Power X-ray diffraction pattern of analgin.

    The TGA analysis(Fig.5)shows two stages in the thermal decomposition process.The crystal water is lost in the first stage with the weight decreasing by about 4.8%and the second step from 510.15 K with a weight loss as the decomposition.The DSC analysis shows that both the exothermic and endothermic peaks appear from 505 K to 525 K which indicate that analgin should be decomposed with melting.Therefore,the melting temperature and the enthalpy of fusion of analgin could not be got by the thermal analysis experiment.

    4.2.Solubility

    The solubility data of analgin in 85%ethanol–aqueous system over the temperature range from 283.15 K to 353.15 K were experimentally determined.According to the Van't Hoff equation,the solubility mole fraction solubility values(C0)could be described as follows[7]:

    Fig.5.Thermal analysis(TGA/DSC)of analgin.The solid and dashed lines are the DSC and TGA curves,respectively.

    whereRis the ideal gas constant;anda,b,andhare the parameters.The enthalpy changes of solution ΔHS*and the specific heat capacity of analginCp*can be estimated by the parametersaandbas follows:

    Fig.6 shows the above equation can predict solubility data well.The apparent solution enthalpy and the specific heat capacity at 298 K were obtained using Eqs.(15)(16)[7]:

    Fig.6.Van't Hoff plot for the correlation of the analgin solubility data.

    The obtained specific heat capacity is consistent with the data determined by indirect method of DSC,464.64 J·mol?1·K?1.

    4.3.Metastable zone width

    Supersaturation is the discrepancy between concentration and saturation and it is the fundamental driving force of the crystallization process.The metastable zone is the area between the super solubility curve and the solubility curve.Operating in this region could avoid spontaneous nucleation and may ensure that products meet the requirements of particle size distribution.The base data of the metastable zone width will be used for getting better control of nucleation[30].

    According to the classical approach of Ny'vlt,the relationship between primary number nucleation rate(Jn)and supersaturation(Δc)can be described as[3]:

    The value of dc*/dTcan be obtained is the slope of the solubility curve.On the point of nucleation,the relationship of the maximum supersaturation(Δcmax)and the maximum supercooling degree(ΔTn)can be described as follows:

    Assuming that supersaturation generated rate is equal to the primary nucleation,the mass of the formed nuclei(M)can be given as follows,

    where α is the volume shape factor,knis the mass nucleation rate constant and ρcis density.Combining previous equations,we obtain:

    By linear fitting of lnRcand ln(ΔTn),the parametersmandkncan be obtained.

    The metastable zone width in the analgin ethanol–aqueous system is measured at various cooling rates to determine the nucleation kinetic parameters.It is can be seen from Fig.7 and Table 1 that the experimental data can be fitted to Eq.(23)satisfactorily.Accordingly,the nucleation rate constant increases and the nucleation order decreases with equilibrium temperature increase.

    Fig.7.Apparent nucleation orders estimated from the MSZW data using Ny'vlt theory.

    Table 1Nucleation kinetic parameters evaluated by fitting the MSZW experimental data

    4.4.Induction time

    Fig.8 shows the induction time is dependent on supersaturations in analgin.The induction timetindis plotted against the supersaturation ratiosSat three different temperatures.The induction time increases when decrease the supersaturation ratio for a particular temperature and increases when decrease the temperature for a certain supersaturation.Fig.9 shows the result of linear fitting on ln(tind)and 1/ln2Sat three different temperatures.It is observed that the slope is higher at higher supersaturation regions and the slope is lower at lower supersaturation regions.Other investigators reported the similar results for various organic chemicals[30–33].It attributed this to different nucleation mechanisms at different supersaturation regions.Homogeneous nucleation occurred at the region of high supersaturation as well as heterogeneous nucleation more likely happen at the region of low supersaturation.Heterogeneous nucleation occurred in the already existing surface such as the surface of crystals,crystallizer walls,impellers and so on.In crystallization process,the free energy barrier is reduced to already existing nucleation sites.Therefore,heterogeneous nucleation is more likely to occur if there are nucleation sites than homogeneous nucleation.When supersaturation is high,the nucleation is dominant because of high homogeneous nucleation rate.At the region of low supersaturation,the homogeneous nucleation rate is low,which results in the heterogeneous nucleation to predominate[7].Table 2 shows the fitting results according to the Eq.(10).The interfacial tension(γ)can be estimated from the slope of straight line according to homogeneous nucleation according to Eq.(11).Table 3 presents the values of interfacial energy.Some papers have also used this method to determine thermodynamic parameters for other systems[7,34].The value of the interfacial energy can reflect the ability of the spontaneous nucleation of the solute.Accordingly,the higher the value of the interfacial energy is,the more difficult to crystallize.Therefore,this is a significant parameter for the selection of solvent in the crystallization process.

    Fig.8.Isothermal dependence of the induction time on analgin supersaturations.

    Fig.9.Plot of ln(t ind)versus 1/ln2S for analgin at different temperatures.

    Table 2Parameters and correlation indices in Eq.(10)at different temperatures

    Table 3Interfacial analgin energy

    5.Conclusions

    The solubility,metastable zone width,and induction time of analgin in an ethanol–aqueous system for batch cooling crystallization were determined.The analgin solubility in the selected solvents increases with temperature increase,which means that analgin could be efficiently separated using mixing solvent of ethanol and water through cooling crystallization.Fitting the solubility data with the Van't Hoff equation,the apparent solution enthalpy and the specific heat capacity can be estimated.The metastable zone width significantly broadens with the cooling rate increase and the saturation temperature decrease.Furthermore,the nucleation kinetic parameters are achieved through the Ny'vlt model fitting.The induction period was experimentally measured over a supersaturation range at three different temperatures.According to classical nucleation theory,nucleation parameters and interfacial energy are calculated by analyzing the induction time data.The nucleation parameters vary with temperature.Moreover,the nucleation rate increases with increasing temperature.Homogeneous nucleation tended to occur when the supersaturation is high,whereas heterogeneous nucleation was more likely to occur when the supersaturation is low.This finding can provide basic data for optimizing and controlling the analgin-crystallization process.

    Nomenclature

    Apre-exponential factor,m3·s?1

    a,b,hempirical constant for van't Hoff equation

    C0mole fraction solubility,mol·mol?1

    Cp*apparent heat capacity,J·mol·K?1

    c* equilibrium concentration,mol·mol?1

    Δcthe supersaturation(Δc=c?c*),mol·mol?1

    Δcmaxmaximum supersaturation,mol·mol?1

    ΔGGibb's free energy,J·mol?1

    ΔG* free energy to form the critical size nucleus,J·mol?1

    ΔGvfree energy change per unit volume,J·mol?1

    ΔHS*apparent enthalpy of solution,J·mol?1

    Jnnucleation rate,m3·s?1

    Kempirical constant for the relationship between induction time and supersaturation

    kBoltzmann constant,1.38 × 10?23J·K?1

    knthe mass nucleation rate constant

    k'n the number nucleation rate constant

    Mamolecule mass of analgin,g·mol?1

    Memolecule mass of ethanol,g·mol?1

    Mwmolecule mass of water,g·mol?1

    mamass of analgin,g

    memass of ethanol,g

    mwmass of water,g

    nnucleation order

    Rideal gas constant,8.3145 J·mol·K?1

    Rccooling rate,K·s?1

    rradius of the nucleus,nm

    r* critical radius of the nucleus,nm

    Ssupersaturation ratio,S=c/c*

    Ttemperature,K

    Tnnucleation temperature,K

    T0solubilization temperature,K

    ΔTnmetastable zone width,K

    tindinduction time,s

    Vmmolar crystal volume,m3

    α slope of this straight line for lntindagainst 1/ln2S

    γ interfacial energy,mJ·m?2

    ρcdensity,kg·m?3

    ? volume shape factor

    Superscripts

    a analgin

    c cooling

    e ethanol

    ind induction

    n nucleation

    w water

    [1]K.Sangwal,Effect of impurities on the metastable zone width of solute–solvent systems,J.Cryst.Growth311(16)(2009)4050–4061.

    [2]Y.Liu,M.Pietzsch,J.Ulrich,Purification of L-asparaginase II by crystallization,Front.Chem.Sci.Eng.7(1)(2013)37–42.

    [3]D.Erdemir,A.Y.Lee,A.Myerson,Nucleation of crystals from solution:Classical and two-step models,Acc.Chem.Res.42(5)(2009)621–629.

    [4]J.Mullin,Crystallization,fourth ed.Butterworth-Heinemann,Oxford,2001 201.

    [5]X.Y.Zhang,Z.Q.Yang,J.Chai,J.Y.Xu,L.Zhang,G.Qian,X.G.Zhou,Nucleation kinetics of lovastatin in different solvents from metastable zone width,Chem.Eng.Sci.133(2015)62–69.

    [6]A.A.Ceyhan,A.N.Bulutcu,The effect of surface charge and KNO3additive on the crystallization of potassium chloride,J.Cryst.Growth327(1)(2011)110–116.

    [7]L.Maheswata,S.Debasis,Determination of metastable zone width,induction period and primary nucleation,J.Cryst.Growth408(408)(2014)85–90.

    [8]J.Nyvlt,O.Sohnel,M.Matuchova,M.Broul,The kinetics of industrial crystallization,Elsevier,Amsterdam,the Netherlands,1985.

    [9]N.A.Mitchell,P.J.Frawley,Nucleation kinetics of paracetamol–ethanol solutions from metastable zone widths,J.Cryst.Growth312(19)(2010)2740–2746.

    [10]A.Jaiswal,D.Sarkar,In situ determination of metastable zone width by a simple optical probe,Cryst.Res.Technol50(5)(2015)347–353.

    [11]L.L.Simon,Z.K.Nagy,K.Hungerbuhler,Endoscopy-based in situ bulk video imaging of batch crystallization process,Org.Process.Res.Dev.13(6)(2009)1254–1261.

    [12]A.Saleemi,I.I.Onyemelukwe,N.Zoltan,Effects of a structurally related substance on the crystallization of paracetamol,Front.Chem.Sci.Eng.7(1)(2013)79–87.

    [13]J.Ulrich,P.Frohberg,Problems,potentials and future of industrial crystallization,Front.Chem.Sci.Eng.7(1)(2013)1–8.

    [14]G.B.Golubitskii,A.V.Kostarnoi,E.V.Budko,V.M.Ivanov,E.M.Basova,Decomposition of analgin in aqueous acetonitrile solutions,J.Anal.Chem.61(10)(2006)997–1001.

    [15]W.O.Mar,J.U.Irich,Solid liquid equilibrium,metastable zone,and nucleation parameters of the oxalic acid–water system,Cryst.Growth Des.6(8)(2006)1927–1930.

    [16]P.L.Cui,Q.X.Yin,J.B.Gong,Solubility of candesartan cilexetil in different solvents at various temperatures,J.Chem.Eng.Data56(3)(2011)658–660.

    [17]X.Yang,X.J.Wang,C.B.Ching,Solubility of form α and form γ of glycine in aqueous solutions,J.Chem.Eng.Data53(5)(2008)1133–1137.

    [18]Y.H.Yin,Y.Bao,Z.G.Gao,Solubility of Cefotaxime sodium in ethanol+water mixtures under acetic acid conditions,Chem.Eng.Data59(6)(2014)1865–1871.

    [19]S.G.Wu,F.Feng,L.N.Zhou,Experimental determination of the solid–liquid equilibrium,metastable zone,and nucleation parameters of the flunixin meglumine–ethanol system,J.Cryst.Growth354(1)(2012)164–168.

    [20]L.T.Dang,K.K.Nguyen,Inline monitoring of taltirelin crystallization in batch cooling mode using Raman spectroscopy,Chem.Eng.Technol.,38(6)(2015)1059–1067.

    [21]H.Qu,J.Kohonen,M.Louhi-Kultanen,S.P.Reinikainen,J.Kallas,Spectroscopic monitoring of carbamazepine crystallization and phase transformation in ethanol–water solution,Ind.Eng.Chem.Res.47(18)(2008)6991–6998.

    [22]Y.Hu,J.K.Liang,A.S.Myerson,L.S.Taylor,Crystallization monitoring by Raman spectroscopy:Simultaneous measurement of desupersaturation pro file and polymorphic form in flufenamic acid systems,Ind.Eng.Chem.Res.44(5)(2004)1233–1240.

    [23]M.Barrett,H.Hao,A.Maher,K.Hodnett,B.Glennon,D.Croker,In situ monitoring of supersaturation and polymorphic form of piracetam during batch cooling crystallization,Org.Process Res.Dev.15(3)(2011)681–687.

    [24]X.Wang,S.Wu,W.Dong,J.Gong,In situ monitoring of the solvent-mediated transformation of cefadroxil DMF solvate into monohydrate,Org.Process.Res.Dev.1(17)(2013)1110–1116.

    [25]H.Hao,W.Su,M.Barrett,V.Caron,A.M.Healy,B.Glennon,A calibration-free application of Raman spectroscopy to the monitoring of mannitol crystallization and its polymorphic transformation,Org.Process Res.Dev.14(5)(2010)1209–1214.

    [26]J.Cornel,C.Lindenberg,M.Mazzotti,Experimental characterization and population balance modeling of the polymorph transformation of L-glutamic acid,Cryst.Growth Des.9(1)(2009)243–252.

    [27]K.S.Lee,K.J.Kim,J.Ulrich,In situ monitoring of cocrystallization of salicylic acid-4,4′-dipyridyl in solution using Raman spectroscopy,Cryst.Growth Des.14(6)(2014)2893–2899.

    [28]H.Pataki,I.Markovits,B.Vajna,Z.K.Nagy,G.Marosi,In-line monitoring of carvedilol crystallization using Raman spectroscopy,Cryst.Growth Des.12(12)(2012)5621–5628.

    [29]E.Simone,A.N.Saleemi,Z.K.Nagy,Application of quantitative Raman spectroscopy for the monitoring of polymorphic transformation in crystallization processes using a good calibration practice procedure,Chem.Eng.Res.Des.92(4)(2014)594–611.

    [30]D.W.Wei,H.Li,C.Liu,B.H.Wang,The effect of temperature on the solubility of 11-cyanoundecanoic acid in cyclohexane,n-hexane,and water,Ind.Eng.Chem.Res.50(1)(2011)2473–2477.

    [31]J.Nyvlt,Kinetics of nucleation in solutions,J.Cryst.Growth3(1968)377–383.

    [32]A.Kuldipkumar,G.S.Kwon,G.G.Z.Zhang,Determining the growth mechanism of tolazamide by induction time measurement,Cryst.Growth Des.7(2)(2007)234–242.

    [33]N.Kubota,A unified interpretation of metastable zone widths and induction times measured for seeded solutions,J.Cryst.Growth312(4)(2010)548–554.

    [34]X.W.Zhang,S.D.Zhang,X.D.Sun,Z.Q.Yin,Q.J.Liu,X.W.Zhang,Q.X.Yin,Nucleation and growth mechanism of cefodizime sodium at different solvent compositions,Front.Chem.Sci.Eng.7(4)(2013)490–495.

    久久青草综合色| 欧美xxⅹ黑人| 国产精品不卡视频一区二区| 国产色爽女视频免费观看| 国产深夜福利视频在线观看| 午夜福利视频在线观看免费| 国产在线视频一区二区| 国产 一区精品| 日本猛色少妇xxxxx猛交久久| 爱豆传媒免费全集在线观看| 久久99蜜桃精品久久| freevideosex欧美| 搡老乐熟女国产| 久久久久精品性色| 午夜免费观看性视频| 午夜福利在线观看免费完整高清在| 搡女人真爽免费视频火全软件| 免费观看性生交大片5| a级毛色黄片| 久久这里有精品视频免费| 肉色欧美久久久久久久蜜桃| 最近最新中文字幕免费大全7| 少妇猛男粗大的猛烈进出视频| 啦啦啦啦在线视频资源| 亚洲精品美女久久av网站| 国产精品偷伦视频观看了| 久久久精品94久久精品| 最近的中文字幕免费完整| 黄色欧美视频在线观看| 美女大奶头黄色视频| 大码成人一级视频| 下体分泌物呈黄色| 少妇的逼水好多| 中文天堂在线官网| 有码 亚洲区| 男人爽女人下面视频在线观看| 国产色爽女视频免费观看| 精品国产露脸久久av麻豆| 精品国产一区二区久久| 午夜福利影视在线免费观看| 久久久国产欧美日韩av| 永久免费av网站大全| 精品午夜福利在线看| 一本大道久久a久久精品| a级毛片在线看网站| 国产伦精品一区二区三区视频9| 日日爽夜夜爽网站| 少妇熟女欧美另类| 一个人看视频在线观看www免费| 大香蕉久久成人网| 少妇猛男粗大的猛烈进出视频| 国产欧美日韩一区二区三区在线 | 欧美精品国产亚洲| 最近的中文字幕免费完整| 日韩欧美一区视频在线观看| 一区二区三区精品91| av又黄又爽大尺度在线免费看| 一级毛片 在线播放| 日韩,欧美,国产一区二区三区| 色5月婷婷丁香| 国产av精品麻豆| 亚洲精品乱码久久久久久按摩| 五月伊人婷婷丁香| 爱豆传媒免费全集在线观看| 亚洲国产精品一区三区| 婷婷色综合www| 午夜激情av网站| 中文字幕免费在线视频6| 天天影视国产精品| 美女中出高潮动态图| 一区二区日韩欧美中文字幕 | 妹子高潮喷水视频| 亚洲少妇的诱惑av| 国产精品国产av在线观看| 老司机影院毛片| 久久久亚洲精品成人影院| 五月伊人婷婷丁香| 午夜激情久久久久久久| 久久久久久久精品精品| 99久国产av精品国产电影| 丰满饥渴人妻一区二区三| tube8黄色片| 91精品三级在线观看| 久久99一区二区三区| 婷婷色综合大香蕉| 日韩中文字幕视频在线看片| 久久人人爽av亚洲精品天堂| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品古装| 国产一区有黄有色的免费视频| 精品人妻熟女毛片av久久网站| 国产免费福利视频在线观看| 日韩精品有码人妻一区| a级毛片免费高清观看在线播放| 亚洲国产最新在线播放| 日韩一区二区三区影片| 精品人妻一区二区三区麻豆| 国产一区有黄有色的免费视频| 国产片内射在线| 99热网站在线观看| 国产成人精品婷婷| 黑人欧美特级aaaaaa片| 一二三四中文在线观看免费高清| 熟女人妻精品中文字幕| 97精品久久久久久久久久精品| 亚洲一区二区三区欧美精品| 日日摸夜夜添夜夜爱| 亚洲国产精品一区三区| 亚洲国产精品专区欧美| 日韩av不卡免费在线播放| 免费观看av网站的网址| 天堂中文最新版在线下载| 高清视频免费观看一区二区| 久久久精品免费免费高清| 晚上一个人看的免费电影| 丰满饥渴人妻一区二区三| 女性被躁到高潮视频| 国产精品久久久久久av不卡| 成人漫画全彩无遮挡| 黑人高潮一二区| 亚洲综合色惰| 少妇被粗大猛烈的视频| 免费播放大片免费观看视频在线观看| 欧美日韩视频精品一区| av播播在线观看一区| a级毛片在线看网站| 国产成人精品无人区| 免费观看av网站的网址| 夜夜看夜夜爽夜夜摸| 国产女主播在线喷水免费视频网站| 欧美日韩一区二区视频在线观看视频在线| 国产女主播在线喷水免费视频网站| 三级国产精品欧美在线观看| av网站免费在线观看视频| 亚洲欧美一区二区三区黑人 | 只有这里有精品99| 欧美精品人与动牲交sv欧美| 国产精品嫩草影院av在线观看| 性色avwww在线观看| 欧美3d第一页| 国产日韩欧美亚洲二区| 精品99又大又爽又粗少妇毛片| 乱人伦中国视频| 夜夜爽夜夜爽视频| 日韩在线高清观看一区二区三区| 人妻一区二区av| 80岁老熟妇乱子伦牲交| 日韩精品免费视频一区二区三区 | 国产片内射在线| 大片电影免费在线观看免费| 亚洲av福利一区| 大片电影免费在线观看免费| 国产欧美另类精品又又久久亚洲欧美| 亚洲av男天堂| 亚洲国产av新网站| 国产精品秋霞免费鲁丝片| av免费观看日本| 大香蕉久久网| 午夜免费男女啪啪视频观看| 亚洲av综合色区一区| 国产精品国产三级国产专区5o| 婷婷成人精品国产| 在线亚洲精品国产二区图片欧美 | 欧美 亚洲 国产 日韩一| 美女福利国产在线| 日本欧美国产在线视频| 丰满饥渴人妻一区二区三| 三上悠亚av全集在线观看| 久热久热在线精品观看| 国产精品蜜桃在线观看| 国产在线一区二区三区精| a级片在线免费高清观看视频| 日日摸夜夜添夜夜添av毛片| 亚洲av二区三区四区| 国产黄频视频在线观看| 日日撸夜夜添| 黄片播放在线免费| 性色av一级| 亚洲国产毛片av蜜桃av| 大香蕉久久网| 日本午夜av视频| 亚洲欧洲日产国产| 天美传媒精品一区二区| 亚洲欧美中文字幕日韩二区| 国产69精品久久久久777片| 亚洲精品中文字幕在线视频| 精品亚洲成a人片在线观看| av有码第一页| 伊人亚洲综合成人网| 免费高清在线观看视频在线观看| 成人手机av| 26uuu在线亚洲综合色| 日韩中字成人| 一本—道久久a久久精品蜜桃钙片| 中文精品一卡2卡3卡4更新| 九色成人免费人妻av| 久久久久久久精品精品| 久久午夜福利片| av女优亚洲男人天堂| 日本黄色片子视频| 极品少妇高潮喷水抽搐| 一区二区日韩欧美中文字幕 | 国产高清国产精品国产三级| 婷婷色综合www| 在线免费观看不下载黄p国产| 建设人人有责人人尽责人人享有的| 欧美日韩亚洲高清精品| 国产日韩欧美亚洲二区| 赤兔流量卡办理| 国产成人一区二区在线| 国产精品一区二区三区四区免费观看| 夫妻性生交免费视频一级片| 三级国产精品欧美在线观看| 超色免费av| 街头女战士在线观看网站| 哪个播放器可以免费观看大片| 看非洲黑人一级黄片| 色吧在线观看| 男女边吃奶边做爰视频| 免费大片18禁| 国产免费视频播放在线视频| 亚洲国产色片| 美女视频免费永久观看网站| 蜜桃久久精品国产亚洲av| 国产精品麻豆人妻色哟哟久久| 日韩一区二区视频免费看| 免费看光身美女| 看免费成人av毛片| 99国产综合亚洲精品| 日韩av不卡免费在线播放| 观看av在线不卡| 精品午夜福利在线看| 青青草视频在线视频观看| 国产成人a∨麻豆精品| 美女cb高潮喷水在线观看| 久久人人爽人人片av| 晚上一个人看的免费电影| 丝袜喷水一区| 亚洲精品一二三| 老司机影院毛片| 人成视频在线观看免费观看| 国产精品成人在线| 国产精品秋霞免费鲁丝片| 2018国产大陆天天弄谢| 黑人欧美特级aaaaaa片| 大片免费播放器 马上看| 亚洲精品日本国产第一区| 国产精品一二三区在线看| 内地一区二区视频在线| 久久狼人影院| 欧美人与善性xxx| 插逼视频在线观看| 日韩人妻高清精品专区| av免费观看日本| 啦啦啦在线观看免费高清www| 国产亚洲最大av| 一二三四中文在线观看免费高清| 一本一本综合久久| 久久99热6这里只有精品| 免费黄网站久久成人精品| 日韩精品免费视频一区二区三区 | 午夜福利影视在线免费观看| 一边摸一边做爽爽视频免费| 如何舔出高潮| 中文字幕久久专区| 99国产精品免费福利视频| 夜夜看夜夜爽夜夜摸| 草草在线视频免费看| 91久久精品国产一区二区成人| 国产成人aa在线观看| 大香蕉97超碰在线| 国产成人av激情在线播放 | 中文字幕免费在线视频6| 99国产精品免费福利视频| 亚洲精品自拍成人| 亚洲av电影在线观看一区二区三区| 五月天丁香电影| 亚洲国产精品国产精品| 国产在线免费精品| 超色免费av| 色哟哟·www| av电影中文网址| 老熟女久久久| 久久久久久久久久成人| 国产黄色免费在线视频| 777米奇影视久久| 一本久久精品| 久久精品国产a三级三级三级| 亚洲三级黄色毛片| 国产av码专区亚洲av| 久久精品久久久久久噜噜老黄| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品古装| 不卡视频在线观看欧美| 亚洲欧美成人综合另类久久久| 一区二区三区乱码不卡18| 婷婷成人精品国产| 亚洲欧美成人精品一区二区| 男女啪啪激烈高潮av片| 五月玫瑰六月丁香| 亚洲精品av麻豆狂野| 性色av一级| 91精品一卡2卡3卡4卡| 狠狠婷婷综合久久久久久88av| 少妇人妻久久综合中文| 日日摸夜夜添夜夜爱| 婷婷色av中文字幕| 97超碰精品成人国产| 久久热精品热| 黑人高潮一二区| 亚洲成人手机| 999精品在线视频| 成人午夜精彩视频在线观看| 中文字幕人妻丝袜制服| 亚洲色图 男人天堂 中文字幕 | 不卡视频在线观看欧美| 两个人免费观看高清视频| 人妻夜夜爽99麻豆av| 制服诱惑二区| 中文字幕精品免费在线观看视频 | 色婷婷久久久亚洲欧美| 另类亚洲欧美激情| 国产精品秋霞免费鲁丝片| 最近2019中文字幕mv第一页| 日韩熟女老妇一区二区性免费视频| 亚洲欧洲精品一区二区精品久久久 | 伦精品一区二区三区| 成年人免费黄色播放视频| 黄片无遮挡物在线观看| 最近中文字幕高清免费大全6| 免费日韩欧美在线观看| 国产午夜精品一二区理论片| 久久99蜜桃精品久久| 免费日韩欧美在线观看| 考比视频在线观看| 国产精品99久久久久久久久| 亚洲精品乱码久久久久久按摩| 日韩大片免费观看网站| 久久青草综合色| 精品亚洲成a人片在线观看| 亚洲一区二区三区欧美精品| 午夜免费鲁丝| 纯流量卡能插随身wifi吗| 久久人妻熟女aⅴ| 婷婷色综合大香蕉| 国产精品国产三级国产专区5o| 国产精品久久久久久久电影| 午夜激情久久久久久久| 熟女人妻精品中文字幕| 国产在线免费精品| 一级毛片电影观看| 免费黄网站久久成人精品| 亚洲精品日韩在线中文字幕| 免费观看无遮挡的男女| 美女中出高潮动态图| 国产一区二区在线观看日韩| 插阴视频在线观看视频| 日韩一区二区视频免费看| 九九久久精品国产亚洲av麻豆| 五月天丁香电影| 精品一品国产午夜福利视频| 久久热精品热| 日本猛色少妇xxxxx猛交久久| 麻豆精品久久久久久蜜桃| 久久鲁丝午夜福利片| 久久久久久久久大av| 亚洲欧美一区二区三区国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av.在线天堂| 久久人人爽人人爽人人片va| 三级国产精品片| 伦理电影大哥的女人| 七月丁香在线播放| av不卡在线播放| 国产午夜精品一二区理论片| 日韩不卡一区二区三区视频在线| 91在线精品国自产拍蜜月| 国产精品国产三级国产专区5o| 人人妻人人爽人人添夜夜欢视频| 免费人妻精品一区二区三区视频| 国产免费视频播放在线视频| 伊人久久国产一区二区| 午夜激情久久久久久久| 男人爽女人下面视频在线观看| 亚洲久久久国产精品| 日韩中字成人| 一级毛片我不卡| 成年女人在线观看亚洲视频| 日韩av在线免费看完整版不卡| 啦啦啦中文免费视频观看日本| 国产爽快片一区二区三区| www.av在线官网国产| 日韩制服骚丝袜av| 丰满少妇做爰视频| 国产亚洲精品第一综合不卡 | 成人亚洲精品一区在线观看| 亚洲国产精品专区欧美| 精品少妇内射三级| 国产日韩欧美亚洲二区| 免费观看av网站的网址| 在线观看三级黄色| 美女cb高潮喷水在线观看| 日韩视频在线欧美| 亚洲精品日韩在线中文字幕| 久久人人爽av亚洲精品天堂| 成人二区视频| 国产精品.久久久| 精品国产一区二区久久| 欧美日韩国产mv在线观看视频| 午夜福利视频在线观看免费| 三级国产精品欧美在线观看| 一级毛片电影观看| 如何舔出高潮| 免费av不卡在线播放| 精品久久久久久电影网| 丰满少妇做爰视频| kizo精华| 亚洲美女黄色视频免费看| 99久久精品国产国产毛片| 亚洲久久久国产精品| 一本色道久久久久久精品综合| 国产成人aa在线观看| av有码第一页| 欧美精品国产亚洲| 久久久久国产精品人妻一区二区| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 99热全是精品| 成人亚洲精品一区在线观看| 在线观看三级黄色| a级毛色黄片| 大香蕉久久网| 一边亲一边摸免费视频| 嘟嘟电影网在线观看| 高清午夜精品一区二区三区| 国产亚洲欧美精品永久| 国产亚洲精品久久久com| 国产精品不卡视频一区二区| 精品国产一区二区久久| 国产成人aa在线观看| 久久精品人人爽人人爽视色| 午夜激情久久久久久久| 高清在线视频一区二区三区| 日韩av在线免费看完整版不卡| av卡一久久| 国产不卡av网站在线观看| 中国三级夫妇交换| 青春草国产在线视频| 看免费成人av毛片| 亚洲内射少妇av| 少妇精品久久久久久久| 伦精品一区二区三区| 黄色配什么色好看| 久久ye,这里只有精品| 亚洲图色成人| 国产熟女午夜一区二区三区 | 美女脱内裤让男人舔精品视频| 久久97久久精品| 在线播放无遮挡| 爱豆传媒免费全集在线观看| 18禁动态无遮挡网站| 中文字幕人妻丝袜制服| 美女xxoo啪啪120秒动态图| 伊人久久国产一区二区| a级毛片在线看网站| 国产av国产精品国产| 国产高清三级在线| 黄片无遮挡物在线观看| 日韩欧美精品免费久久| 国产淫语在线视频| 国产 一区精品| 插阴视频在线观看视频| 少妇被粗大的猛进出69影院 | 亚洲国产精品国产精品| 久久免费观看电影| 欧美 亚洲 国产 日韩一| 色94色欧美一区二区| 国产日韩一区二区三区精品不卡 | 99精国产麻豆久久婷婷| 综合色丁香网| 国产又色又爽无遮挡免| 777米奇影视久久| 久久久久久久久久久丰满| 69精品国产乱码久久久| 日韩欧美精品免费久久| 麻豆成人av视频| 亚洲精品乱久久久久久| 美女视频免费永久观看网站| 亚洲av日韩在线播放| 国精品久久久久久国模美| 青春草视频在线免费观看| 国产极品天堂在线| 春色校园在线视频观看| 伦理电影大哥的女人| 日本猛色少妇xxxxx猛交久久| 一边摸一边做爽爽视频免费| 亚洲人成77777在线视频| av一本久久久久| 亚洲国产精品国产精品| 亚洲美女黄色视频免费看| 亚洲精品国产av成人精品| 人妻一区二区av| 日韩中文字幕视频在线看片| 韩国高清视频一区二区三区| 99国产综合亚洲精品| 国产亚洲最大av| 久久精品国产鲁丝片午夜精品| 精品人妻偷拍中文字幕| 男男h啪啪无遮挡| a级片在线免费高清观看视频| xxx大片免费视频| 国产精品一区www在线观看| 国产高清不卡午夜福利| 精品久久久久久久久av| 飞空精品影院首页| 亚洲一区二区三区欧美精品| 成人无遮挡网站| 欧美激情极品国产一区二区三区 | 亚洲av成人精品一二三区| 狂野欧美白嫩少妇大欣赏| 中文字幕人妻丝袜制服| 国精品久久久久久国模美| 免费人成在线观看视频色| 精品国产乱码久久久久久小说| 国产片特级美女逼逼视频| 久久久国产精品麻豆| 免费大片18禁| 在线观看免费视频网站a站| 日韩伦理黄色片| 超碰97精品在线观看| 国产精品久久久久久久电影| 日本爱情动作片www.在线观看| 亚洲人成网站在线观看播放| 亚洲精品色激情综合| 国产爽快片一区二区三区| 日韩av在线免费看完整版不卡| 日韩免费高清中文字幕av| 黄色配什么色好看| av天堂久久9| 欧美精品高潮呻吟av久久| 日本色播在线视频| 97精品久久久久久久久久精品| 九九在线视频观看精品| 黄色怎么调成土黄色| 久久婷婷青草| 一级毛片 在线播放| 纯流量卡能插随身wifi吗| 美女大奶头黄色视频| 最后的刺客免费高清国语| 国产成人freesex在线| 黑人猛操日本美女一级片| 涩涩av久久男人的天堂| 日韩精品有码人妻一区| 亚洲欧美日韩另类电影网站| 色网站视频免费| 91久久精品国产一区二区三区| 免费黄频网站在线观看国产| 亚洲综合色网址| 日韩一区二区视频免费看| 午夜久久久在线观看| 欧美变态另类bdsm刘玥| 国产高清国产精品国产三级| 人妻 亚洲 视频| 久久久精品94久久精品| 亚洲精品一二三| 黑人欧美特级aaaaaa片| 91精品一卡2卡3卡4卡| 亚洲情色 制服丝袜| 国产在线视频一区二区| 高清不卡的av网站| 久久精品人人爽人人爽视色| 精品卡一卡二卡四卡免费| 国产成人精品久久久久久| 亚洲欧美中文字幕日韩二区| 人成视频在线观看免费观看| 熟女人妻精品中文字幕| 欧美精品人与动牲交sv欧美| 免费黄色在线免费观看| 街头女战士在线观看网站| 蜜桃国产av成人99| 免费高清在线观看视频在线观看| 国产成人aa在线观看| 亚洲精品aⅴ在线观看| 免费日韩欧美在线观看| 插逼视频在线观看| 一区二区三区免费毛片| 成人免费观看视频高清| 免费观看性生交大片5| 在线精品无人区一区二区三| 久久影院123| 亚洲欧美成人精品一区二区| 免费av中文字幕在线| 在线观看免费视频网站a站| 又粗又硬又长又爽又黄的视频| 国产精品麻豆人妻色哟哟久久| av免费在线看不卡| 久久久国产欧美日韩av| 久久精品夜色国产| 国产在线免费精品| 91在线精品国自产拍蜜月| 国产在线视频一区二区| 王馨瑶露胸无遮挡在线观看| 色网站视频免费| 国产亚洲精品久久久com| 久久99一区二区三区| 精品人妻熟女av久视频| 国产极品天堂在线| 久久久精品区二区三区| 午夜av观看不卡| 中文字幕亚洲精品专区| 亚洲欧美成人综合另类久久久| 久久久久久久久久久丰满| 97超视频在线观看视频| 秋霞伦理黄片| 国产高清国产精品国产三级|