• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High halogenated nitrobenzene hydrogenation selectivity over nano Ir particles☆

    2017-05-28 07:28:58LeiMaJianguoWangHanbingWangQunfengZhangChunshanLuXiaoboHeXiaonianLi

    Lei Ma,Jianguo Wang*,Hanbing Wang,Qunfeng Zhang,Chunshan Lu,Xiaobo He,Xiaonian Li*

    Industrial Catalysis Institute of Zhejiang University of Technology,State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,Hangzhou 310032,China

    1.Introduction

    Aromatic haloamines are important organic intermediates in the chemical synthesis of medicines,organic dyes,perfumes,herbicides,pesticides,and preservatives.At present,the reduction of the corresponding nitrocompounds is the main method to synthesize haloamines.Given the environmental impact associated with the use of hydrochloric acid,the hydrogenation route has been developed in the past decades.However,controlling the selectivity is a critical problem when reducing halonitrobenzenes with metal catalyst.Extensive hydrogenolysis of carbon–halogen bond to aromatic amines during hydrogenation can occur.Kosak[1]reported that the susceptibility to hydrogenolysis for the halogen position is in the following order:ortho>para>meta.A number of metal catalysts,such as Co[2],Ni[3–5],Ru[6–8],Pd[9–11],Pt[12–15],and Au[16]have been investigated.In addition,much effort has been given to improve the selectivity ofthe reaction,including selective poisoning of a catalyst with compounds containing sulfur[17,18],preparing bimetallic or multi-metallic catalysts[19–25],and tuning the particle sizes of the catalysts[23–29].

    The particle size of active metal has very significant effect on several catalytic reactions.Controlling the particle size of Pt or Pd can effectively inhibit the occurrence of hydrogenolysis side reaction.Copet al.[26]found that the large particle size of the Pt catalyst had an inhibitory effect on hydrogenolysis side reaction.Yanet al.[27]and Liet al.[28,29]also found the same rules on Pd catalysts.Liet al.[29]further revealed the cause of the large particle size of Pd to inhibit the hydrogenolysis side reaction through density functional theory(DFT)calculations.

    Supported iridium catalysts are outstanding candidates for various catalytic reactions because of their stability,activity,and selectivity under reaction conditions.For example,supported Ir catalysts have been successfully employed for selective hydrogenation of unsaturated aldehydes to corresponding unsaturated alcohols[30–34].In addition,supported Ir catalysts possess unique characteristics for hydrogenolysis ofn-hexane[35]and selective catalytic reduction of NOx[36–38].At the same time,ZrO2or Al2O3supported Ir catalysts have also been found that show high selectivity in selective hydrogenation of halonitrobenzenes to phenylhydroxylamine[39,40]or haloamines[40–42].However,there is no further study of the reasons for the high selectivity of supported Ir catalysts.

    In the current study,we observed that the activated carbonsupported Ir catalyst(Ir/C)is highly selective for hydrogenation of chloronitrobenzenes(CNBs)into chloroanilines(CANs),which is particularly notable because hydrogenolysis side reaction does not occur completely.The influence of the Ir nanoparticle in the hydrogenation of CNBs is investigated through DFT calculations.The possible mechanistic reasons for the selectivity of the Ir catalyst are also discussed.

    2.Experimental and Theoretical Methods

    2.1.Catalyst preparation

    The activated carbon was provided by Fujian Xinsen Carbon Co.,Ltd.(China).The commercial activated carbon with Brunauer–Emmett–Teller(BET)surface area of1662 m2·g?1was made from coconut shells.The activated carbon was out gassed in a vacuum at 383 K overnight.A desired volume of H2IrCl6or H2PdCl4(Sino-Platinum Metals Co.,Ltd.)aqueous solution(0.035 g·L?1),with nominal Ir loading of 1 wt%,was added into an aqueous suspension of the activated carbon.The aqueous suspension of the activated carbon was subsequently dried at 353 K for 6 h.The formed catalyst was then reduced by hydrogen with 3 MPa pressure in distilled water at 363 K for 9 h.Afterward,the Ir/C or Pd/C catalyst was filtered,rinsed in distilled water until neutral,and degassed in a vacuum at 383 K overnight.The nominal Pd loading was 1 wt%as same as that of the Ir.ICP experiments showed that the actual loadings of Ir and Pd were 0.9985%and 0.9992%,respectively.

    2.2.Catalyst characterization

    The particle size of Ir or Pd on the active carbon surface was determined by transmission electron microscopy(TEM)using a Tecnai G2F30S-Twin microscope(Philips-FEI Co.).At least 200 individual Ir particles were counted for each catalyst.The Ir or Pd particle size of the catalysts,ds,was calculated using the following equation:ds=Σnidi3/Σnidi2,where visible particle sizedion the micrographs was measured by a computerized system.

    2.3.Reaction and product analysis

    Liquid phase catalytic hydrogenation of nitrocompounds to corresponding amines was conducted in this study.Brie fly,25 ml pf ethanol,0.02 mol CNB,and 0.05 g of Ir/C or Pd/C catalyst were mixed in a 75 ml stainless steel stirred reactor(5000 multiple reactor system,Parr Instrument Company).The reactor was initially filled with nitrogen three times,followed by hydrogen to replace nitrogen three times,and then heated slowly until the desired reaction temperature.When pressurized with hydrogen until 1.0 MPa,the reaction was started at a stirring rate of 1200 r·min?1.After the complete conversion of the reactant,the catalyst was filtered from the liquid product.

    The hydrogen consumed in the reaction was provided by a 300 ml gas tank with pressure sensor.The pressure changes in the reaction process were recorded by computer.And the amount of hydrogen consumption in the reaction process was calculated.When the product distribution was studied,the stirring was first closed in the setting time,and then the hydrogen was replaced with nitrogen to terminate the reaction.

    The liquid reactants,intermediates,products,and byproducts were analyzed by high-pressure liquid chromatography on an Agilent HPLC 1100 system with a UV detector(model 610).Analysis was carried out on a Hedera ODS-2 C18 column(4.6 mm i.d.×250 mm)at a flow rate of 1.0 ml·min?1,with 70:30 mobile phase of acetonitrile and distilled water.

    2.4.Computational details

    All calculations were performed using the Viennaab initiosimulation package(VASP)[43–45],a periodic density functional theory(DFT)code with projector augmented wave(PAW)potentials.The vdw interactions in the VASP code were implemented through a selfconsistent vdw-DFT functional[46].In this study,the vdw-DF functional with PBE exchange was used,and successfully applied to polycyclic aromatic hydrocarbons and chlorobenzene on Au and Pt surfaces.

    The flat Ir(111)surfaces,stepped Ir(211)surfaces,and icosahedral Ir55,Ir13 were used as substrates,which represent the terrace,step,and corner sites of Ir nanoparticles.Four layers(4×4)Ir(111)and five layers(1×4)Ir(211)were used,in which the two bottom layers were fixed during the optimizations and the vacuum layer of Ir(111)and Ir(211)was 1.5 nm.The Ir55 and Ir13 clusters in a 20×20×20 unit cell were fully relaxed.The Brillouin zone integration was performed using the Monkhorst–Pack scheme with 4 × 4 × 1 and 4×2×1 mesh for the flat Ir(111)and stepped Ir(211)surfaces;the gamma points were used for Ir55 and Ir13 clusters.All structures were optimized with a convergence criterion of100 meV·nm?1for the forces and 0.01 meV for the energy.Transition states were searched using the climbing image nudged elastic band(CI-NEB)method.

    3.Results and Discussion

    3.1.Reaction characteristics of Ir catalyst

    The reaction pathways for the hydrogenation of CNB to CANviathe different intermediates are shown in Fig.1[1].There exist two reaction pathways for the hydrogenation of CNB to CAN.A direct pathway is through nitrosobenzene and phenylhydroxylamine intermediates.However,the two intermediates can undergo condensation side reaction to form azoxybenzene intermediates.Another indirect pathway for the hydrogenation of CNB to CAN is through azoxybenzene,azobenzene and dihalohydrazobenzene intermediates.

    Fig.1.Reaction pathways for the hydrogenation of CNB to CAN.

    The TEM micrograph and particle size distribution of the Ir/C and Pd/C catalysts are shown in Fig.2.The surface metal particles of the two catalysts showed small and uniform state.The average particle size of the Ir/C catalyst is very close to that of the Pd/C catalyst,indicating that the two catalysts should have the similar amount of active sites under the same metal load.In this study,we had investigated the effect of the particle size of the Pd/C catalyst on the catalytic hydrogenation of CNBs[28,29].We found that the catalytic hydrogenation of CNBs was sensitive to Pd particle size.The hydrogenolysis side reaction was more likely to occur on the surface of the small particle size of Pd.Thus,we can infer that the Ir and Pd particles are so small that the Ir/C and Pd/C catalysts may have similar reaction properties.

    However,the reaction results of the Ir/C catalyst were completely beyond our expectations(Table 1).The two catalysts exhibited different catalytic properties.The Pd/C catalyst showed a “typical”catalytic performance,and the hydrogenolysis side reaction was dominant.As a comparison,the catalytic performance of the Ir/C catalyst was “abnormal”.Although the reactant iso-CNB,no hydrogenolysis side reaction can be observed.Notably,the selectivity of azobenzene byproducts of the Ir/C catalyst is significantly higher than that of the Pd/C catalyst.The small particle size of Ir can completely inhibit the hydrogenolysis side reaction;this is a very interesting result to conduct a thorough study.

    Fig.2.TEM micrograph and particle size distribution of the Ir/C and Pd/C catalysts.

    Table 1Experimental results of the hydrogenation of different CNBs over the Ir/C and Pd/C catalysts

    In addition to selectivity,the catalytic hydrogenation reaction rate of the two catalysts was also significantly different.The hydrogen consumption of the reaction process is measured,and the hydrogen consumption rate is calculated.The results are shown in Fig.3.The hydrogen consumption rate of the Ir/C catalyst is much lower than that of the Pd/C catalyst,regardless of the position of the chlorine substituent.At the same time,the hydrogen consumption rate of the Ir/C catalyst is almost unaffected by the position of the chlorine substituent,which is obviously different from that of the Pd/C catalyst.Thus,we speculate that the differences in the selectivity of the two catalysts may be related to the difference in reaction rate.Usually,a low reaction rate is helpful to restrain the generation of side reactions.The difference in reaction rate is related to the metal and the number of metal active sites.Fig.2 shows that the two catalysts have similar number of metal active sites.Therefore,the difference in reaction rate of the two catalysts cannot be related to the number of active sites,but may be related to the properties of the metal.However,we are still unable to determine how the special properties of metal Ir can cause significant difference in the reaction rate and the selectivity between the metal Pd.

    The azobenzene byproducts of the Ir/C catalyst in the reaction are significantly higher than those of the Pd/C catalyst.Azobenzene byproducts are composed of the nitrosobenzene intermediate and the phenylhydroxylamine intermediate.Therefore,the product distribution of the hydrogenation process was investigated in this study.The nitrosobenzene and phenylhydroxylamine intermediates are the key object of investigation.Given the lack of suitable standard sample,nitrobenzene was chosen as research object.The results are shown in Fig.4.Although the nitrosobenzene intermediate was not detected,the phenylhydroxylamine intermediate can be detected in the reaction process.Notably,the amount of phenylhydroxylamine intermediate in the reaction system of the Ir/C catalyst is significantly more than that of the Pd/C catalyst.This finding may explain why the selectivity of the azobenzene by-products of the Ir/C catalyst is significantly more than that of the Pd/C catalyst.Thus,we hypothesized that the Ir/C and Pd/C catalysts follow the same reaction mechanism in nitrobenzene catalytic hydrogenation reaction.However,the interaction between the reactants,intermediates,or products and the active metals may have significant differences,which may be the main reason for the difference in reaction rate and product selectivity.Therefore,we also studied the adsorption state of the reactants,intermediates,or products on the surface of Pd and Ir by DFT.

    3.2.Adsorption of p-CNB on Ir surfaces and clusters

    The adsorption ofp-CNB on the Ir(111),Ir(211)surfaces and the Ir13 cluster are investigated.The selected several stable structures ofp-CNB on Ir(111)are shown in Fig.5 and Table 2.Similar to Pd(111),the benzene rings,being either on the bridge or in the hollow site,exhibited stable con figurations.Different with Pd(111),on the most stable structure,the oxygen ofp-CNB directly bonds with Ir,and the distances between two oxygen and Ir are 0.212 nm and 0.208 nm,respectively.However,the distance between Cl and Ir is slightly longer than that on Pd.Therefore,for the most stable structure,the adsorption ofp-CNB on Ir(111)is?1.51 eV,very similar to that on Pd(111)(?1.57 eV).The adsorption energies of two other structures are?1.30 and?1.21 eV,respectively.On the stepped Ir(211)surfaces,the adsorption ofp-CNB on the most stable structure is much stronger than that on Ir(111),which is?2.62 eV,respectively.The benzene ring is adsorbed on the step edge of Ir(211).The distance between the oxygen and Ir is 0.215 and 0.205 nm;the chlorine is away from the Ir with 0.279 nm.Although only one oxygen bonds with Ir,the adsorption energy ofp-CNB is only?2.28 eV.When only benzene ring bonded with step of Ir(211)and two oxygen bonded with Ir,the adsorption energy is?2.35 eV.The adsorption ofp-CNB on the two different ideal Ir13 clusters is shown in Fig.5c.The adsorbedp-CNB can induce the structure change of the Ir 13 clusters,in which the adsorption energy is extremely large(?5.76 eV).In this con figuration,the oxygen bonds with Ir.When oxygen is away from Ir,the adsorption energy is only?4.13 eV.On icosadeltaheronal Ir clusters,the adsorption ofp-CNB is?3.93,?3.78,and?3.13 eV with two,one,and no oxygen bonding with Ir.

    3.3.Dechlorination of p-CNB and p-CAN on the Ir surfaces and clusters

    In our previous study[28,29],we investigated the reaction mechanism of hydrogenation and dechlorination ofp-CNB on Pd surfaces and clusters.Our results showed that the reaction barriers of the hydrogenation ofp-CNB on Pd(111)and Pd(211)are nearly same.In addition,the reaction barriers of the dechlorination ofp-CNB andp-CAN are dependent on the Pd models.Based on the method describing the size and the catalytic properties developed in our group,the optimum Pd size of the selective hydrogenation ofp-CNB is 30 nm based on the DFT calculations and experiments.Our present study shows that Ir has different catalytic properties with Pd,in which small Ir and Pd nanoparticles have very high and low selectivity for the ideal product.Therefore,only the dechlorination ofp-CNB andp-CAN was investigated on different Ir models,as shown in Fig.6.On Ir(111)and Ir(211),the dechlorination ofp-CNB is endothermic with 0.63 and 0.33 eV,respectively.Meanwhile,on the Ir13 cluster,the dechlorination is slightly exothermic with about?0.38 eV,which is probably caused by the cluster structure fluctuation.Especially,the reaction barriers of dechlorination ofp-CNB are extremely large,which is more than 1 eV.From Ir(111),Ir(211)to Ir13 cluster,the reaction barrier increases from 1.14,1.37,and 1.45 eV,which contradicts that of the Pd models.The optimized structures of the transition states of the dechlorination ofp-CNB on Ir(111),Ir(211)to Ir13 are also shown in Fig.7.For thep-CAN,similar conclusions are identified.The dechlorinations ofp-CAN on Ir(111)and Ir(211)are 0.66 and 0.25 eV.On the Ir13 cluster,the dechlorination is slightly exothermic with about?0.47 eV.The reaction barriers also increases from 1.35,1.74 and 1.81 eV on Ir(111),Ir(211)to Ir13.The reaction barriers of the dechlorination ofp-CNB andp-CAN over different Ir models are much larger than those on Pd ones.Especially,lower coordination of Ir results to larger the barriers of the dechlorination reaction.As discussed in our previous paper,a relationship exists between the percentages of the reaction sites(terraces,steps,and corners)and the nanoparticle size.The percentage of the terrace sites significantly increases with the increase in nanoparticle size.The percentage of the edge sites increases with the decrease in particle size.The edge sites become predominant when the particle size is below~2 nm.Small metal nanoparticle contains large percentage of edge sites,which has very large reaction barriers of the dechlorination reaction.Therefore,small Ir nanoparticles have very high selectivity of hydrogenation of halogenated nitrobenzenes.

    Fig.3.Hydrogen consumption rate of the Ir/C catalyst and the Pd/C catalyst.Reaction conditions:0.05 g catalyst;25 ml ethanol;0.02 mol chloronitrobenzene;p H2=1.0 MPa;T=353 K;stirring rate=1200 r·min?1.

    Fig.4.Product distribution of catalytic hydrogenation of nitrobenzene on the Ir/C catalyst and the Pd/C catalyst.Reaction conditions:0.05 g catalyst;25 ml ethanol;0.02 mol chloronitrobenzene;p H2=1.0 MPa;T=353 K;stirring rate=1200 r·min?1.

    Fig.5.The optimized structures of p-CNB on Ir(111),Ir(211)surfaces and Ir13 clusters.

    Table 2The adsorption site,energy and geometry of p-CNBs on p-CNB on Ir(111),Ir(211)surfaces and Ir13 clusters

    Fig.6.Reaction energy diagram for the dechlorination of p-CNB(p-CAN)on Ir(111)and Ir(211)surfaces and Ir13 clusters.

    Fig.7.The optimized structures for the transition states of dechlorination of p-CAN and p-CNB on Ir(111),Ir(211)surfaces and Ir(13)clusters.

    4.Conclusions

    In this study,high selectivity for hydrogenation of halogenated nitrobenzene(>99%)was achieved over small(<3 nm)Ir nanoparticles,in which the selectivity over Pd with the same size was much lower than those on Ir nanoparticles.Meanwhile,Ir and Pd had different hydrogen consumption and reaction rates.p-CNB showed different adsorption properties on Ir and Pd based on the DFT calculations.The distance between oxygen(cholorine)and Ir are much shorter(longer)than that between oxygen and Pd.The reaction barriers of the dechlorination ofp-CNB andp-CAN over different Ir models are much higher than those on Pd ones.In particular,lower coordination of Ir leads to higher barriers of the dechlorination reaction.These theoretical results explain the difference between Ir and Pd in the hydrogenation of halogenated nitrobenzene.

    [1]J.R.Kosak,in:W.H.Jones(Ed.),Catalysis in organic syntheses,Academic Press,New York 1980,pp.107–117.

    [2]L.Xing,J.S.Qiu,C.H.Liang,C.Wang,L.Mao,A new approach to high performance Co/C catalysts for selective hydrogenation of chloronitrobenzenes,J.Catal.250(2007)369–372.

    [3]C.F.Winans,Nickel as a catalyst for the hydrogenation of aromatic halogen compounds,J.Am.Chem.Soc.61(1939)3564–3565.

    [4]N.Yao,J.Chen,J.Zhang,J.Zhang,Influence of support calcination temperature on properties of Ni/TiO2for catalytic hydrogenation ofo-chloronitrobenzene too-chloroaniline,Catal.Commun.9(2008)1510–1516.

    [5]X.C.Meng,H.Y.Cheng,S.Fujita,Y.F.Hao,Y.J.Shang,Y.C.Yu,S.X.Cai,F.Y.Zhao,M.Arai,Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2:Significance of molecular interactions,J.Catal.269(2010)131–139.

    [6]A.Tijani,B.Coq,F.Figueras,Hydrogenation of para-chloronitrobenzene over supported ruthenium-based catalysts,Appl.Catal.76(1991)255–266.

    [7]M.H.Liu,W.Y.Yu,H.F.Liu,Selective hydrogenation ofo-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts,J.Mol.Catal.A Chem.138(1999)295–303.

    [8]B.J.Zuo,Y.Wang,Q.L.Wang,J.L.Zhang,N.Z.Wu,L.D.Peng,L.L.Gui,X.D.Wang,R.M.Wang,D.P.Yu,An efficient ruthenium catalyst for selective hydrogenation oforthochloronitrobenzene prepared via assembling rutheniumand tin oxide nanoparticles,J.Catal.222(2004)493–498.

    [9]V.Kratky,M.Kralik,M.Mecarova,M.Stolcova,L.Zalibera,M.Hronec,Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes,Appl.Catal.A Gen.235(2002)225–231.

    [10]L.M.Sikhwivhilu,N.J.Coville,B.M.Pulimaddi,J.Venkatreddy,V.Vishwanathan,Selective hydrogenation ofo-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts,Catal.Commun.8(2007)1999–2006.

    [11]J.H.Lyu,X.B.He,C.S.Lu,L.Ma,Q.F.Zhang,F.Feng,X.N.Li,J.G.Wang,The promoting role of minor amount of water in solvent-free hydrogenation of halogenated nitrobenzenes,Chin.Chem.Lett.25(2014)205–208.

    [12]X.L.Yang,H.F.Liu,Influence of metal ions on hydrogenation ofochloronitrobenzene over platinum colloidal clusters,Appl.Catal.A Gen.164(1997)197–203.

    [13]J.L.Zhang,Y.Wang,H.Ji,Y.G.Wei,N.Z.Wu,B.J.Zuo,Q.L.Wang,Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation ofortho-chloronitrobenzene,J.Catal.229(2005)114–118.

    [14]M.H.Liu,X.X.Mo,Y.Y.Liu,H.L.Xiao,Y.Zhang,J.Y.Jing,V.L.Colvin,W.W.Yu,Selective hydrogenation ofo-chloronitrobenzene using supported platinum nanoparticles without solvent,Appl.Catal.A Gen.439-440(2012)192–196.

    [15]R.G.Xie,X.Q.Cao,Y.Pan,H.W.Gu,Synthesis of Pt nanocatalysts for selective hydrogenation ofortho-halogenated nitrobenzene,Sci.China:Chem.58(2015)1051–1055.

    [16]M.Boronat,P.Concepcion,A.Corma,S.Gonzalez,F.Illas,P.Serna,A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2catalysts:A cooperative effect between gold and the support,J.Am.Chem.Soc.129(2007)16230–16237.

    [17]H.Green field,F.S.Dovell,Metal sul fide catalysts for hydrogenation of halonitrobenzenes to haloanilines,J.Org.Chem.32(1967)3670–3671.

    [18]C.Su,X.N.Li,Q.F.Zhang,L.Ma,C.S.Lu,F.Feng,Behavior of adsorbed diphenyl-sul fide on the Pd/C catalyst foro-chloronitrobenzene hydrogenation,Chin.Chem.Lett.24(2013)59–62.

    [19]X.H.Yan,J.Q.Sun,Y.W.Wang,J.F.Yang,A Fe-promoted Ni–P amorphous alloy catalyst(Ni–Fe–P)for liquid phase hydrogenation ofm-andp-chloronitrobenzene,J.Mol.Catal.A Chem.252(2006)17–22.

    [20]J.Su,B.Zhao,Y.Chen,Hydrogenation ofp-chloronitrobenzene on Mo-doped NiB cluster catalysts,Ind.Eng.Chem.Res.50(2011)1580–1587.

    [21]H.Li,Q.Zhao,H.Li,Selective hydrogenation ofp-chloronitrobenzene over Ni–P–B amorphous catalyst and synergistic promoting effects of B and P,J.Mol.Catal.A Chem.285(2008)29–35.

    [22]X.L.Yang,H.F.Liu,H.Zhong,Hydrogenation ofo-chloronitrobenzene over polymerstabilized palladium–platinum bimetallic colloidal clusters,J.Mol.Catal.A Chem.147(1999)55–62.

    [23]M.H.Liu,J.Zhang,J.Q.Liu,W.W.Yu,Synthesis of PVP-stabilized Pt/Ru colloidal nanoparticles by ethanol reduction and their catalytic properties for selective hydrogenation ofortho-chloronitrobenzene,J.Catal.278(2011)1–7.

    [24]N.Mahataa,O.S.G.P.Soaresa,I.R.Ramos,M.F.R.Pereira,J.J.M.Orfao,J.L.Figueiredo,Promotional effect of Cu on the structure and chloronitrobenzene hydrogenation performance of carbon nanotube and activated carbon supported Pt catalysts,Appl.Catal.A Gen.464–465(2013)28–34.

    [25]R.Mistri,J.Llorca,B.C.Ray,A.Gayen,Pd0.01Ru0.01Ce0.98O2??:A high active and selective catalyst for the liquid phase hydrogenation ofp-chloronitrobenzene under ambient conditions,J.Mol.Catal.A Chem.376(2013)111–119.

    [26]B.Coq,A.Tijani,F.Figueras,Particle size effect on the kinetics ofpchloronitrobenzene hydrogenation over platinum/alumina catalysts,J.Mol.Catal.68(1991)331–345.

    [27]L.C.Jiang,H.Z.Gu,X.Z.Xu,X.H.Yan,Selective hydrogenation ofochloronitrobenzene(o-CNB)over supported Pt and Pd catalysts obtained by laser vaporization deposition of bulk metals,J.Mol.Catal.A Chem.310(2009)144–149.

    [28]L.Ma,S.Chen,C.S.Lu,Q.F.Zhang,X.N.Li,Highly selective hydrogenation of 3,4-dichloronitrobenzene over Pd/C catalysts without inhibitors,Catal.Today173(2011)62–67.

    [29]J.H.Lyu,J.G.Wang,C.S.Lu,L.Ma,Q.F.Zhang,X.B.He,X.N.Li,Size-dependent halogenated nitrobenzene hydrogenation selectivity of Pd nanoparticles,J.Phys.Chem.C118(2014)2594–2601.

    [30]P.Reyes,C.Rodriguez,J.Fernandez,G.Pecchi,J.L.G.Fierro,Hydrogenation of cinnamaldehyde on Ir/γ-Al2O3catalysts,influence of the surface acidity,React.Kinet.Catal.Lett.74(2001)127–133.

    [31]P.Reyes,H.Rojas,J.L.G.Fierro,Kinetic study of liquid-phase hydrogenation of citral over Ir/TiO2catalysts,Appl.Catal.A Gen.248(2003)59–65.

    [32]U.K.Singh,M.A.Vannice,Liquid-phase citral hydrogenation over SiO2-supported group VIII metals,J.Catal.199(2001)73–84.

    [33]P.Reyes,H.Rojas,G.Pecchi,J.L.G.Fierro,Liquid-phase hydrogenation of citral over Ir-supported catalysts,J.Mol.Catal.A Chem.179(2002)293–299.

    [34]J.P.Breen,R.Burch,J.G.Lopeza,K.Grif fin,M.Hayes,Steric effects in the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol using an Ir/C catalyst,Appl.Catal.A Gen.268(2004)267–274.

    [35]A.Majeste,S.Balcon,M.Guerin,C.Kappenstein,Z.Paal,Hydrogenolysis ofn-hexane on Al2O3-supported Ir catalysts of various treatments,J.Catal.187(1999)486–492.

    [36]F.Baudina,P.D.Costa,C.Thomas,S.Calvo,Y.Lendresse,S.Schneider,F.Delacroix,G.Plassat,G.D.Mariadassou,NOxreduction over CeO2–ZrO2supported iridium catalyst in the presence of propanol,Top.Catal.30–31(2004)97–101.

    [37]M.Nawdali,E.Iojoiu,P.Gelin,H.Praliaud,M.Primet,Influence of the pre-treatment on the structure and reactivity of Ir/γ-Al2O3catalysts in the selective reduction of nitric oxide by propene,Appl.Catal.A Gen.220(2001)129–139.

    [38]T.Nakatsuji,Studies on the structural evolution of highly active Ir-based catalysts for the selective reduction of NO with reductants in oxidizing conditions,Appl.Catal.B Environ.25(2000)163–179.

    [39]K.Taya,Hydrogenating activity of an iridium catalyst,Chem.Commun.(London)14(1966)464–465.

    [40]V.I.Savchenko,I.A.Makaryan,V.G.Dorokhov,Harnessing the unique properties of iridium,Platin.Met.Rev.41(4)(1997)176–183.

    [41]G.Y.Fan,L.Zhang,H.Y.Fu,M.L.Yuan,R.X.Li,H.Chen,X.J.Li,Hydrous zirconia supported iridium nanoparticles:An excellent catalyst for the hydrogenation of haloaromatic nitro compounds,Catal.Commun.11(5)(2010)451–455.

    [42]M.Pietrowski,Selective hydrogenation ofortho-chloronitrobenzene over Ru and Ir catalysts under the conditions of the aqueous-phase reforming of bioethanol,Green Chem.13(7)(2011)1633–1635.

    [43]G.Kresse,J.Furthmuller,Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,Phys.Rev.B54(1996)11169–11186.

    [44]G.Kresse,J.Hafner,Ab initio molecular-dynamics for liquid-metals,Phys.Rev.B47(1993)558–561.

    [45]G.Kresse,J.Hafner,Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements,J.Phys.Condens.Matter6(1994)8245–8257.

    [46]A.Gulans,M.J.Puska,R.M.Nieminen,Linear-scaling self-consistent implementation of the van der Waals density functional,Phys.Rev.B79(2009)201105.

    久久久久久久久中文| 久久草成人影院| 美女高潮的动态| 久久精品国产亚洲av天美| 欧美成人精品欧美一级黄| 亚洲精品粉嫩美女一区| 变态另类丝袜制服| 青青草视频在线视频观看| 18禁在线无遮挡免费观看视频| 禁无遮挡网站| 日韩一区二区三区影片| 蜜桃久久精品国产亚洲av| 男女那种视频在线观看| 午夜免费男女啪啪视频观看| 亚洲欧美日韩东京热| 夜夜看夜夜爽夜夜摸| 又粗又爽又猛毛片免费看| 亚洲精品成人久久久久久| 97超视频在线观看视频| 一级毛片电影观看 | 两个人的视频大全免费| 亚洲三级黄色毛片| 亚洲av中文字字幕乱码综合| 中文字幕人妻熟人妻熟丝袜美| 色综合站精品国产| 国产精品日韩av在线免费观看| 国产一区二区亚洲精品在线观看| 国产国拍精品亚洲av在线观看| 99在线人妻在线中文字幕| 日韩强制内射视频| a级毛片免费高清观看在线播放| 少妇裸体淫交视频免费看高清| 成人午夜高清在线视频| 国产成人影院久久av| 高清毛片免费观看视频网站| 国产亚洲av嫩草精品影院| 51国产日韩欧美| 99热这里只有精品一区| 成年版毛片免费区| 丰满人妻一区二区三区视频av| 成人无遮挡网站| 日本三级黄在线观看| 国产毛片a区久久久久| 精品人妻视频免费看| 黄色视频,在线免费观看| 午夜激情欧美在线| 国产在线男女| 日本与韩国留学比较| 一级二级三级毛片免费看| 免费在线观看成人毛片| 国产成人午夜福利电影在线观看| 深夜a级毛片| 搡老妇女老女人老熟妇| 国产久久久一区二区三区| 国产精品.久久久| 男女下面进入的视频免费午夜| 91在线精品国自产拍蜜月| 99久国产av精品| 不卡视频在线观看欧美| 亚洲综合色惰| 高清毛片免费观看视频网站| 国产av麻豆久久久久久久| 日韩欧美 国产精品| 亚洲国产欧洲综合997久久,| 老司机影院成人| 免费观看精品视频网站| 神马国产精品三级电影在线观看| 亚洲av第一区精品v没综合| 精品日产1卡2卡| 天天一区二区日本电影三级| 国产一区二区在线观看日韩| 国产成人影院久久av| 真实男女啪啪啪动态图| 亚洲精品自拍成人| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 好男人视频免费观看在线| 色尼玛亚洲综合影院| 人体艺术视频欧美日本| 色哟哟·www| 久99久视频精品免费| 亚洲av中文字字幕乱码综合| 免费观看a级毛片全部| 日日干狠狠操夜夜爽| 欧美另类亚洲清纯唯美| 高清午夜精品一区二区三区 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲第一区二区三区不卡| 99热只有精品国产| 国产美女午夜福利| 久久鲁丝午夜福利片| 欧美bdsm另类| 日本欧美国产在线视频| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 日本av手机在线免费观看| 嘟嘟电影网在线观看| 99久久九九国产精品国产免费| 免费av毛片视频| 久久国内精品自在自线图片| 午夜视频国产福利| 国产一区二区在线观看日韩| 两个人视频免费观看高清| 国产精品久久久久久精品电影小说 | 丰满乱子伦码专区| 人妻久久中文字幕网| 三级男女做爰猛烈吃奶摸视频| 国产精品一及| 51国产日韩欧美| 麻豆成人av视频| 五月伊人婷婷丁香| 亚洲av免费高清在线观看| 成人欧美大片| 国产精品无大码| 丰满人妻一区二区三区视频av| 99riav亚洲国产免费| 中文字幕久久专区| 亚洲精品成人久久久久久| 久久午夜福利片| av在线老鸭窝| 国产极品天堂在线| videossex国产| 亚洲三级黄色毛片| 五月伊人婷婷丁香| 久久久久网色| 免费看光身美女| 久久婷婷人人爽人人干人人爱| 18禁裸乳无遮挡免费网站照片| 成人综合一区亚洲| 日韩欧美精品v在线| 好男人视频免费观看在线| 亚洲欧美日韩高清在线视频| 91aial.com中文字幕在线观看| 99国产精品一区二区蜜桃av| 啦啦啦观看免费观看视频高清| 亚洲精品久久久久久婷婷小说 | 春色校园在线视频观看| 在线播放无遮挡| 久久精品国产自在天天线| 高清毛片免费观看视频网站| 久久亚洲国产成人精品v| 久久精品国产自在天天线| 亚洲精品国产av成人精品| av专区在线播放| 亚洲欧美日韩无卡精品| 国产精品嫩草影院av在线观看| 欧美变态另类bdsm刘玥| 久久精品国产自在天天线| 国产亚洲精品久久久com| 国产欧美日韩精品一区二区| 国产午夜精品久久久久久一区二区三区| 一区二区三区四区激情视频 | 亚洲精品国产成人久久av| 嘟嘟电影网在线观看| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 日韩电影二区| 国产 一区精品| 99九九在线精品视频| 一级毛片aaaaaa免费看小| 久久99蜜桃精品久久| 91久久精品国产一区二区成人| 乱码一卡2卡4卡精品| 美女大奶头黄色视频| 国产成人av激情在线播放 | 美女主播在线视频| 国产精品99久久99久久久不卡 | 2021少妇久久久久久久久久久| 久热这里只有精品99| 制服诱惑二区| 久久久久网色| 人人妻人人澡人人爽人人夜夜| 国产国拍精品亚洲av在线观看| 另类精品久久| 中文天堂在线官网| 亚洲高清免费不卡视频| 人妻一区二区av| 少妇人妻久久综合中文| 超碰97精品在线观看| 大陆偷拍与自拍| 色哟哟·www| 在线亚洲精品国产二区图片欧美 | 久久精品久久久久久久性| 久久国产精品大桥未久av| 男女边吃奶边做爰视频| 欧美 日韩 精品 国产| 肉色欧美久久久久久久蜜桃| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 一区在线观看完整版| 热99国产精品久久久久久7| 伦精品一区二区三区| 十分钟在线观看高清视频www| 少妇 在线观看| 久久精品人人爽人人爽视色| 青春草亚洲视频在线观看| 亚洲不卡免费看| 国产精品 国内视频| 啦啦啦视频在线资源免费观看| 久久久久久久亚洲中文字幕| 99热国产这里只有精品6| a级毛片黄视频| 精品少妇黑人巨大在线播放| 有码 亚洲区| 如何舔出高潮| 久久免费观看电影| 99久久精品国产国产毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲中文av在线| 国产男女内射视频| 极品少妇高潮喷水抽搐| 久久99精品国语久久久| 在线 av 中文字幕| 国产精品.久久久| 欧美另类一区| 精品久久久噜噜| 日本色播在线视频| 丝袜脚勾引网站| 欧美激情国产日韩精品一区| 精品人妻偷拍中文字幕| 午夜激情久久久久久久| 2021少妇久久久久久久久久久| 亚洲,欧美,日韩| 日韩三级伦理在线观看| 如何舔出高潮| av在线观看视频网站免费| 一本大道久久a久久精品| 在线播放无遮挡| 中国三级夫妇交换| 999精品在线视频| 九九在线视频观看精品| 久久精品久久精品一区二区三区| 精品人妻在线不人妻| 亚洲国产精品专区欧美| 国产精品久久久久久久久免| av在线观看视频网站免费| 久久国内精品自在自线图片| 亚洲av二区三区四区| 久久影院123| videos熟女内射| 国产一区二区三区av在线| 国产亚洲精品久久久com| 亚洲久久久国产精品| 精品久久蜜臀av无| 极品少妇高潮喷水抽搐| 日韩不卡一区二区三区视频在线| 嘟嘟电影网在线观看| 美女大奶头黄色视频| 最近中文字幕高清免费大全6| 美女中出高潮动态图| 成人国产麻豆网| 久久人人爽人人片av| 国产熟女欧美一区二区| 王馨瑶露胸无遮挡在线观看| 久久鲁丝午夜福利片| 男女高潮啪啪啪动态图| 乱码一卡2卡4卡精品| 免费观看a级毛片全部| 国产成人aa在线观看| 在线天堂最新版资源| 亚洲精品久久午夜乱码| 久久av网站| 少妇的逼好多水| 十八禁高潮呻吟视频| 中文乱码字字幕精品一区二区三区| 看免费成人av毛片| 国产成人av激情在线播放 | 十分钟在线观看高清视频www| 美女视频免费永久观看网站| 2022亚洲国产成人精品| 国产黄色视频一区二区在线观看| 国产精品久久久久久久电影| 精品国产国语对白av| 欧美人与善性xxx| 一级a做视频免费观看| 国产乱人偷精品视频| 亚洲熟女精品中文字幕| 久久精品夜色国产| 交换朋友夫妻互换小说| 2021少妇久久久久久久久久久| 成人免费观看视频高清| 国精品久久久久久国模美| 国产成人午夜福利电影在线观看| 欧美国产精品一级二级三级| av专区在线播放| 亚洲精品色激情综合| 高清毛片免费看| 日本av免费视频播放| 久久久久国产精品人妻一区二区| 边亲边吃奶的免费视频| 热99国产精品久久久久久7| 国产男女超爽视频在线观看| 久久青草综合色| 热99久久久久精品小说推荐| 男女高潮啪啪啪动态图| 考比视频在线观看| 男女国产视频网站| 国产精品国产av在线观看| 国产成人精品婷婷| 欧美精品高潮呻吟av久久| 日本wwww免费看| 晚上一个人看的免费电影| 亚洲精品,欧美精品| 国产精品99久久99久久久不卡 | 国产精品久久久久久精品古装| 亚洲av欧美aⅴ国产| 久久国内精品自在自线图片| 精品熟女少妇av免费看| av不卡在线播放| 国产av精品麻豆| 国产免费视频播放在线视频| 女性生殖器流出的白浆| 一二三四中文在线观看免费高清| 久久鲁丝午夜福利片| 久久人人爽av亚洲精品天堂| 人妻一区二区av| 91久久精品国产一区二区三区| 国产淫语在线视频| 九色成人免费人妻av| av在线老鸭窝| 五月玫瑰六月丁香| 大又大粗又爽又黄少妇毛片口| 中国三级夫妇交换| 国产一区有黄有色的免费视频| 色婷婷av一区二区三区视频| 精品亚洲成国产av| 一级毛片 在线播放| 亚洲美女搞黄在线观看| 亚洲欧洲国产日韩| 99久久人妻综合| 久久精品久久久久久噜噜老黄| 婷婷成人精品国产| 欧美人与性动交α欧美精品济南到 | 最新中文字幕久久久久| 18禁观看日本| 精品久久久久久电影网| 中文字幕人妻熟人妻熟丝袜美| 亚洲怡红院男人天堂| 久久久久久久大尺度免费视频| 男人操女人黄网站| 在线亚洲精品国产二区图片欧美 | 久久久久久久亚洲中文字幕| xxx大片免费视频| av在线app专区| 草草在线视频免费看| 国产精品蜜桃在线观看| 日韩不卡一区二区三区视频在线| 国产在线一区二区三区精| 免费播放大片免费观看视频在线观看| 九九爱精品视频在线观看| 最新中文字幕久久久久| 伊人久久国产一区二区| av免费在线看不卡| 国产日韩欧美在线精品| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 少妇的逼好多水| 免费人成在线观看视频色| 又粗又硬又长又爽又黄的视频| 在线观看一区二区三区激情| 又粗又硬又长又爽又黄的视频| 精品久久久噜噜| 大码成人一级视频| 青春草视频在线免费观看| 午夜激情久久久久久久| 在线观看免费视频网站a站| 日韩av免费高清视频| 国产淫语在线视频| 日韩强制内射视频| 亚洲在久久综合| 在线观看美女被高潮喷水网站| 中国美白少妇内射xxxbb| 制服人妻中文乱码| 伦精品一区二区三区| 国产成人av激情在线播放 | 国产片内射在线| kizo精华| 免费观看性生交大片5| 亚洲国产日韩一区二区| 在线观看免费高清a一片| 亚洲成色77777| videossex国产| 美女脱内裤让男人舔精品视频| 最后的刺客免费高清国语| 99视频精品全部免费 在线| 最近手机中文字幕大全| 91久久精品电影网| 国产乱来视频区| 中文欧美无线码| 免费看av在线观看网站| 26uuu在线亚洲综合色| 欧美成人午夜免费资源| 亚洲精品乱久久久久久| 午夜免费观看性视频| 国产亚洲最大av| a级片在线免费高清观看视频| 91久久精品国产一区二区三区| 91精品一卡2卡3卡4卡| 人人澡人人妻人| 免费看光身美女| 啦啦啦视频在线资源免费观看| 国产成人精品在线电影| 国内精品宾馆在线| 国产精品 国内视频| 99热6这里只有精品| 一区二区三区精品91| 超碰97精品在线观看| 久久精品国产自在天天线| 自线自在国产av| 国产成人免费观看mmmm| 久久国产精品男人的天堂亚洲 | 97精品久久久久久久久久精品| 免费高清在线观看视频在线观看| 女的被弄到高潮叫床怎么办| 亚洲国产av新网站| 日本欧美视频一区| 搡老乐熟女国产| 高清视频免费观看一区二区| 91精品伊人久久大香线蕉| 99国产综合亚洲精品| 大香蕉97超碰在线| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产专区5o| 亚洲熟女精品中文字幕| 97在线人人人人妻| 2018国产大陆天天弄谢| 久久av网站| 亚洲欧美日韩卡通动漫| 全区人妻精品视频| 国产精品一区www在线观看| 汤姆久久久久久久影院中文字幕| 晚上一个人看的免费电影| 亚洲国产av新网站| 日韩电影二区| 天堂8中文在线网| 女性生殖器流出的白浆| 热99国产精品久久久久久7| 日韩一本色道免费dvd| 建设人人有责人人尽责人人享有的| 欧美日韩在线观看h| 内地一区二区视频在线| 亚洲av福利一区| 国产午夜精品一二区理论片| 黄色怎么调成土黄色| 久久久国产精品麻豆| 免费观看的影片在线观看| 国产精品 国内视频| 热re99久久精品国产66热6| 少妇被粗大猛烈的视频| av在线老鸭窝| 国产精品一区二区在线不卡| 日韩熟女老妇一区二区性免费视频| 大香蕉97超碰在线| 久久久国产精品麻豆| 99久久精品国产国产毛片| 精品人妻偷拍中文字幕| 亚洲成人一二三区av| 亚洲怡红院男人天堂| 久久国产精品男人的天堂亚洲 | 久久精品国产亚洲网站| 欧美日韩精品成人综合77777| av在线app专区| 日韩av免费高清视频| 国产伦理片在线播放av一区| 中文字幕av电影在线播放| 国产有黄有色有爽视频| 九色亚洲精品在线播放| 亚洲天堂av无毛| 十八禁高潮呻吟视频| 九色成人免费人妻av| 麻豆成人av视频| 精品卡一卡二卡四卡免费| 欧美xxⅹ黑人| 韩国av在线不卡| 最新中文字幕久久久久| 在线观看一区二区三区激情| 国产精品一区二区在线不卡| 性高湖久久久久久久久免费观看| 国内精品宾馆在线| 免费高清在线观看视频在线观看| 自线自在国产av| 久久人人爽人人爽人人片va| 国产成人一区二区在线| videossex国产| 母亲3免费完整高清在线观看 | 国产精品一区二区在线不卡| av有码第一页| 在现免费观看毛片| 久久99蜜桃精品久久| 久久久久久久久久久丰满| 一边亲一边摸免费视频| 国产探花极品一区二区| 一本大道久久a久久精品| 婷婷色麻豆天堂久久| 99热这里只有精品一区| 久久久国产一区二区| 99re6热这里在线精品视频| 精品久久久精品久久久| 亚洲激情五月婷婷啪啪| 久久久久久人妻| 中文精品一卡2卡3卡4更新| 麻豆成人av视频| 性色avwww在线观看| 视频在线观看一区二区三区| 中文字幕免费在线视频6| 又粗又硬又长又爽又黄的视频| 欧美+日韩+精品| 精品久久久精品久久久| 亚洲av国产av综合av卡| 亚洲精品乱码久久久v下载方式| 日韩av免费高清视频| 亚洲精品美女久久av网站| 亚洲四区av| 欧美精品一区二区免费开放| 日本91视频免费播放| 精品一区在线观看国产| 看十八女毛片水多多多| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久小说| 成人综合一区亚洲| 日本爱情动作片www.在线观看| 亚洲第一区二区三区不卡| 性色av一级| 中国三级夫妇交换| 国产毛片在线视频| 亚洲综合精品二区| 日本与韩国留学比较| 精品亚洲成国产av| 欧美性感艳星| 肉色欧美久久久久久久蜜桃| 妹子高潮喷水视频| av又黄又爽大尺度在线免费看| 亚洲无线观看免费| 高清欧美精品videossex| 久久99蜜桃精品久久| 久久久a久久爽久久v久久| 免费大片18禁| 亚洲欧美精品自产自拍| 香蕉精品网在线| 久久人人爽人人爽人人片va| www.av在线官网国产| 欧美日韩av久久| 视频区图区小说| 考比视频在线观看| 成人无遮挡网站| 欧美日韩成人在线一区二区| videos熟女内射| 免费大片18禁| 亚洲av日韩在线播放| 91精品国产九色| 中文精品一卡2卡3卡4更新| 看免费成人av毛片| 国产成人aa在线观看| 亚洲怡红院男人天堂| 亚洲精品一二三| 我要看黄色一级片免费的| 欧美日韩视频精品一区| 国产日韩欧美在线精品| 亚洲,一卡二卡三卡| 久久久久久久久久久久大奶| 免费黄网站久久成人精品| 国产片内射在线| 精品国产露脸久久av麻豆| 三级国产精品片| 亚洲精品色激情综合| 久久鲁丝午夜福利片| 水蜜桃什么品种好| 国产成人91sexporn| 亚洲无线观看免费| 女性被躁到高潮视频| 99热国产这里只有精品6| 少妇的逼水好多| av电影中文网址| 亚洲精品日韩av片在线观看| 秋霞伦理黄片| 成人无遮挡网站| 国产精品无大码| 免费人成在线观看视频色| 丝袜美足系列| av播播在线观看一区| 中文字幕久久专区| 国产成人a∨麻豆精品| freevideosex欧美| 亚洲国产毛片av蜜桃av| 国产黄片视频在线免费观看| 天天躁夜夜躁狠狠久久av| av在线app专区| 精品少妇久久久久久888优播| 边亲边吃奶的免费视频| 精品亚洲乱码少妇综合久久| 综合色丁香网| 两个人的视频大全免费| 久久精品国产鲁丝片午夜精品| 青青草视频在线视频观看| 交换朋友夫妻互换小说| 97在线人人人人妻| 精品少妇久久久久久888优播| 国产永久视频网站| 国产乱人偷精品视频| 午夜免费鲁丝| 久久热精品热| av在线app专区| 国产高清有码在线观看视频| 日韩av不卡免费在线播放| av在线老鸭窝| 国产免费视频播放在线视频| 日产精品乱码卡一卡2卡三| 夜夜爽夜夜爽视频| 好男人视频免费观看在线| 日本av免费视频播放| 精品人妻在线不人妻| 免费观看的影片在线观看| 成人国产麻豆网|