• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of epichlorohydrin from 1,3-dichloropropanol using solid base☆

    2017-05-28 07:28:56YangchengLuTianyangLiRuiWangGuangshengLuo

    Yangcheng Lu*,Tianyang Li,Rui Wang,Guangsheng Luo

    State Key Laboratory of Chemical Engineering,Department of Chemical Engineering,Tsinghua University,Beijing 100084,China

    1.Introduction

    Epichlorohydrin(ECH)is an organochlorine compound and an epoxide with high reactivity.The ring-open reactions of ECH may occur under attacks from nucleophiles,electrophiles or radicals due to the different electron densities of its three carbon atoms and oxygen atom[1].ECH and its ramifications are widely used in polymer science,either as crosslink reagents in polymer synthesis or as raw materials of epoxy adhesives,coatings and composite materials[2–4].The conventional ECH production process is originated from allyl chloride[5–7].Recently,with the fast development of biodiesel production,the main byproduct—glycerol— is becoming an important starting material[8,9].Although different starting materials correspond to various process routes,there exists a common step—the cyclization of dichloropropanol(DCP)through reacting with sodium hydroxide(NaOH)aqueous solution or calcium hydroxide(Ca(OH)2)slurry at 90°C or higher temperature.The DCP has two isomers,1,3-DCP and 2,3-DCP.The 1,3-DCP is almost the unique intermediate in the synthesis of ECH with glycerol as starting material.The cyclization of DCP abides an internal nucleophilic substitution mechanism,i.e.,the internal nucleophile(--O?)attacks the carbon with leaving group to form a C--O bond and break the C--Cl bond[10].The reactivity of DCP is strongly affected by the position of substituent groups and their electron withdrawing characters.Although there exists different reports on the reaction orders of the cyclization of DCP[11,12],researchers have common recognition that the synthesis from 1,3-DCP to ECH,much faster than that from 2,3-DCP to ECH,is easy to reach high conversion.But,the critical challenges still need to be met that excessive introduction of water leads to heavy burdens with respect to ECH separation and wastewater treatment[13],and high risk of ECH hydrolysis resulting in unsatisfied selectivity(lower than 95%)[14,15].

    Solid base is an important branch of reagents and catalysts,particularly known as heterogeneous base catalysts.Reactions catalyzed by heterogeneous catalysts are highly preferred in industry for the convenience to separate the catalysts and products.The syntheses of some fine chemicals,such as transesterification of oil to give biodiesel,isomerization of unsaturated hydrocarbons and addition reactions,have been widely reported to use strong solid base catalysts like alumina coated with alkali and alkaline-earth metal oxides,or weak solid base catalysts like zeolites and hydrotalcites[16–19].In contrast,using solid base as reactant is rarely reported,of which main disadvantage is high cost without considerations of wastewater treatment and base regeneration.It should be noted that the production of NaOH by sodium chloride(NaCl)electrolysis is a well-known commercial process,in which considerable amount of energy is consumed by concentrating NaCl aqueous solution.Using solid NaOH instead of NaOH aqueous solution may greatly improve the economic feasibility of NaOH regeneration and near-zero emission of wastewater in ECH production.A nonaqueous environment is also worth expecting for enhanced selectivity.

    In this work,the synthesis of ECH from 1,3-dichloropropanol(DCP)by using solid NaOH was carefully investigated.Inert organic solvent,1-octanol,was introduced to ensure reaction intensity under control.The reaction performances with respect to apparent kinetics and selectivity were determined to explore optimized reaction conditions and con firm potentials for enhancing productivity in one batch.The reaction mechanism was discussed to understand how the reaction occurs and how to establish a rational reaction system.Furthermore,a process design towards free additional water was proposed to manipulate solid NaOH,by-product,and unreacted starting materials to realize a nearly closed circuit.The usage of solid NaOH is meaningful for water saving,wastewater decrement,and selectivity enhancement in ECH production.

    2.Materials and Methods

    2.1.Chemicals

    1,3-Dichloropropanol(DCP,99 wt%,Acros),NaOH(96.0 wt%,particle,less than 1 mm in diameter,Xilong),1-octanol(99.0 wt%,Fuchen),1-methyl-2-pyrrolidinone(NMP,TCI),solid calcium oxide(CaO,98.0 wt%,powder,Fuchen),and Ca(OH)2(95.0 wt%,powder,Fuchen)were of analytical grade and used as received.

    2.2.Apparatus and procedure

    A 100 ml three-necked balloon flask with condenser and magnetic stirrer was used to carry out batch reactions,which was placed in a water bath(DF-101S,Kexi)to control the reaction temperature.Before experiment,solid base,1-octanol,and DCP were weighed separately.One half of 1-octanol was mixed with DCP to obtain DCP solution.The DCP solution and remained 1-octanol were preheated to reaction temperature in advance.The experimental procedures included:(1)added the remained 1-octanol into the flask;(2)added the solid base into the flask quickly;(3)10 min later,added DCP solution to startup the reaction;(4)as preset time intervals reached,withdrew liquid phase samples by syringe with filter head instantly.Throughout the experiments,the magnetic stirrer was working at constant speed of 600 r·min?1.The sampling amounts were little enough to minimize the effects of sampling operation on reaction control.The sum of the weights of DCP and 1-octanol was kept at 50 g.

    For the samples,gas chromatography(GC-2014,Shimadzu)was used to determine the mass fractions of DCP and ECH;elementary analyzer(Elementar Vario EL III)was used to determine the content of carbon,and the changing of liquid phase mass during reaction proceeding was considered based on the assumption of total carbon conversation in the liquid phase.Thus,the conversion of DCP(C)and the selectivity from DCP to ECH(S)were calculated as the following.

    Fig.1.The time pro files of conversion(a)and selectivity(b)at various temperatures.[DCP]0=5 wt%,M=0.50.

    wheremis the mass of liquid phase;[DCP]and[ECH]are the concentrations of DCP and ECH,respectively;128.9 and 92.5 are relative molecular masses of DCP and ECH,respectively;the subscripts 0 andtindicate the initial value and the value at sampling time point,respectively.

    3.Results and Discussion

    3.1.Reaction performances using solid NaOH

    We first investigated the apparent kinetics in terms of DCP conversion under various temperatures.The initial concentration of DCP was set as low as 5 wt%to weaken the interference from reaction heat releasing on temperature control.Considering that water is a by-product of DCP conversion and an excess of NaOH may result in undesired ECH hydrolysis,the mole ratio of NaOH to DCP(M)was set as 0.5,far deviated from stoichiometric ratio.Fig.1(a)shows typical results,where the theoretical maximal conversion is about 50%.As seen,DCP conversion corresponding to the first sampling point(1 min)could directly jump to 15%at 298.2 K,23%at 308.2 K,and 39%at 323.2 K,respectively.Afterwards,the increasing of DCP conversion becomes smooth.Especially for 298.2 K and 308.2 K,the tendencies are similarly linear.In general,the temperature increasing could accelerate the conversion process much,and 10 min and 20 min could be regarded as total conversion durations for323.2 K and 308.2 K,respectively.Fig.1(b)shows the selectivities calculated from measurements for various sampling points.Selectivity over 97%could be guaranteed throughout experiments.

    We further changed the initial DCP concentration to explore perhaps apparent kinetics changing.The temperature was set at 298.2 K to obtain a mild reaction process,which is favorite to figure out some details.Fig.2(a)indicates that these time pro files of conversion almost coincide each other.High initial DCP concentration,favorite in terms of productivity and operation costs for batch reaction,is compatible with fast DCP conversion at least.Fig.2(b)shows corresponding selectivities.No clear variance is found as changing initial DCP concentration individually.

    3.2.Reaction mechanism

    The apparent kinetics performances shown in Figs.1 and 2 reflect some discontinuity around the first sampling point.In details,to the left of the first sampling point,the abrupt jump of conversion implies a quite fast reaction even at 298.2 K;to the right of the first sampling point,the smooth increasing of conversion implies that the control step is not a reaction but mass transfer.In this heterogeneous system,decisive mass transfer steps may be the dissolution of solid NaOH or the transfer of DCP towards the surface of solid NaOH.As vigorous stirring was consistent in experiment,the latter could be excluded.Herein,we carried out dissolution experiments for NaOH in 1-octanol individually.All the procedures were the same with what described in Section 2.2 but without advanced mixing of solid NaOH and 1-octanol.The addition of solid NaOH was 2.0 g.As the time intervals reached,the solution samples were withdrawn,and NaOH concentration in the samples was determined by titration method(Titration Excellence T50,METTLER TOLEDO).

    Fig.3 shows the time pro files of NaOH concentration in solution at various temperatures.Considering NaOH concentration changed little after 90 min,we supposed that NaOH concentration at90 min was a saturated concentration.As seen,after 10 min mixing,as done in reaction performance tests,NaOH concentration at 323.2 K was almost twice of that at 298.2 K.It approximately equal to their difference in the DCP conversion at the first sampling point.So,the abrupt jump of conversion might be attributed to that NaOH dissolved in liquid phase reacted with DCP instantly,and the smooth conversion rate at later stage was determined by NaOH dissolution rate.Based on the assumption of instant reaction(fast kinetics has been revealed for the reaction between 1,3-dichlopropanol and NaOH elsewhere[20]),we could derive that NaOH concentration in bulk is zero and apparent kinetics is determined by the rate of NaOH dissolution towards solute-free solution.From Fig.3,we can estimate such dissolution rates corresponding to the initial solid NaOH particles at various temperatures,which equal to,the slopes of dashed lines.Furthermore,we can infer that for each particle,the dissolution rate is only dependent on particle size,and independent on other particles.It provides an interpretation on the independence of DCP conversion with initial DCP concentration,since the dissolution process of each solid NaOH particle is not changed at all.

    Fig.4 gives a proposed scheme of reaction process using solid NaOH.In details,solid NaOH dissolves into the liquid phase first,and then is consumed instantly by the reaction with DCP to generate NaCl.The solubility of NaCl in 1-octanol is far lower than that of NaOH,so most of NaCl will precipitate as particles.Besides,there is no evidence supporting that solid NaOH could be coated by NaCl.In other words,full conversion of NaOH is achievable.

    According to the reaction mechanism,the dissolution of solid phase in non-aqueous solution is the prerequisite condition for the synthesis from DCP to ECH,and the dissolution rate of solid base will determine the apparent reaction kinetics.With the assumptions of instantaneous reaction and sufficient stirring in liquid phase,once we can obtain the proportional relationship between the dissolution rate and the surface area of solid base,the apparent reaction kinetics equation may be established to guide for a strict control on the reaction process.

    Fig.2.The time pro files of conversion(a)and selectivity(b)at various initial DCP concentrations.M=0.50,T=298.2 K.

    Fig.3.The apparent kinetics of NaOH dissolution in 1-octanol at various temperatures.

    Fig.4.The proposed reaction mechanism using solid NaOH.

    Herein,we further selected combinations of various solid bases and solvents to con firm our understanding on reaction mechanism.The results are shown in Table 1.As seen,in 1-octanol,both CaO and Ca(OH)2have no reaction activity;in NMP,a solvent with polarity higher than 1-octanol,NaOH has reaction activity as good as in 1-octanol,the reaction activity of Ca(OH)2also emerges,CaO has no reaction activity yet.As used for catalysis,CaO is traditionally dealt by dipping in active-hydrogen solutions(methanol,for instance)to alter the surface O2?into OH?(or OH),thus activating CaO[21].However,in this work,neither 1-octanol nor NMP activated CaO,and the reaction activity of Ca(OH)2in NMP may come from dissolving mechanism as well.On the other hand,the reaction activity of solid base is also dependent on the polarity of solvent,and a common criterion for solvent selection is of medium to high polarity as well as of chemical inertness.

    Table 1Conversion and selectivity with different solid bases and solvents at 323.15 K after 20 min reaction.[DCP]0=5 wt%,M=0.5

    3.3.Feasibility of productivity enhancement

    The productivity is an important consideration in reactor or process evaluation.Fig.2 shows that the variance of DCP concentration does not change the time pro file of conversion,so enhancing the productivity of bath reactor may be realized directly by increasing the concentration and the limitation of reactant(s)conversion.According to the reaction mechanism shown in Fig.4,the mole ratio of NaOH to DCP(M)or 100%is the limitation of reactant(s)conversion.While,it is obviously not suitable to set anMover 1.0,because excessive NaOH will exist after DCP converts to ECH totally and promote ECH hydrolysis(ECH was almost undetected finally whenMwas 2.0 in a separate experiment).Even if NaOH is not excessive,ECH hydrolysis may also be preferred when ECH is overwhelmed than DCP in concentration.Therefore,the up limit ofMin practice needs careful consideration.Herein,we carried out experiments under variousM(between 0.5 and 1.0)to explore such a limitation.Fig.5 shows the results.As seen in Fig.5(a),20 min is sufficient duration to fulfill DCP conversion for every case,corresponding to a conversion approximately equal toM.Meanwhile,no obvious change in selectivity was found withMincreasing in Fig.5(b).Perhaps explanations are:(1)the reaction process is mild under the control of solid NaOH dissolution rate,and DCP has enough time to supply to the periphery of solid NaOH;(2)ECH hydrolysis in non-aqueous solution is far slower than the conversion from DCP to ECH.Therefore,it is feasible and reliable to setMat0.95 to guarantee high selectivity.

    We further investigated the feasibility of increasing DCP concentration.Fig.6 shows the results.In the experiment using 100 wt%DCP,1-octanol was not introduced,step(1)in Section 2.2 was omitted,and solid NaOH was added into the pure DCP directly.Because NaOH dissolution did not occur before starting up the reaction,a little decrease of conversion could be found,as seen in Fig.6(a).However,the conversion after 20 min does not present clear difference.As for the selectivity,increasing DCP concentration may bring adverse effects since more water generated as by-product of reaction may promote ECH hydrolysis reaction.Fortunately,such situation does not take place,and the selectivity still reached over 97%as using 100 wt%DCP.Another noticeable phenomenon was that the reaction system using 100 wt%DCP was light dark in color,different from what's commonly transparent.The intensive NaOH dissolution process as well as lack of inert solvent as heat removal medium is a possible reason.From this point of view,the addition of inert solvent can help the control on reaction intensity,which is meaningful in engineering.

    3.4.Process design

    Fig.5.The responses of conversion(a)and selectivity(b)on changing the mole ratio of NaOH to DCP.[DCP]0=5%wt,T=323.2 K.

    Fig.6.The responses of conversion(a)and selectivity(b)on changing initial DCP concentration.M=0.50,T=323.2 K.

    Based on the understandings mentioned above,we can figure out a schematic flow sheet for the production of ECH from DCP by using solid NaOH,as shown in Fig.7.In details,select solvent(1-octanolin this work)to make up DCP solution as one feed of slurry reaction,and then feed solid NaOH(a little insufficient compared with DCP in reaction and almost equal molar compared with DCP input in the integrated system)under effective stirring.The reaction could fulfill with 20 min at around 323.2 K.The NaCl contained in slurry could be separated out by conventional solid–liquid separation method like filtration.The supernatant could be distillated to obtain ECH and H2O as light components.The heavy components including DCP and solvents as recycled stream could be mixed with added DCP to feed the slurry reaction.The addition of DCP could be carried by a direct extraction of DCP aqueous solution obtained from previous process like glycerol chlorination.Compared with conventional ECH production process using water as the carrier of base,this process extremely reduces the consumption of water and provides potential for near-zero wastewater emission.Besides,the byproduct,solid NaCl could be used to concentrate the depleted brine for recycled electrodialysis(organic impurities should be removed before feeding).The energy consumption saving for NaCl concentration could offset the energy consumption increasing for solid NaOH production to some extent.Another important advantage of this process is facile to complete DCP conversion as well as high selectivity over 97%at lower temperature.Therefore,the competitiveness of the production of ECH from DCP by using solid NaOH is worth expecting,whatever in terms of environmental compact and technical and economic evaluation.

    Fig.7.Schematic flow sheet for the production of ECH from DCP by using solid NaOH.

    4.Conclusions

    Using solid NaOH and 1,3-dichloropropanol(DCP)as reactants,1-octanol as solvent,the production of ECH is successfully realized in a non-aqueous system.The apparent kinetics of this process is sensitive to temperature.Twenty minutes are enough to achieve complete conversion at 323.2 K,independent on the initial concentration of DCP.Meanwhile,high selectivity over 97%is always obtained as the molar ratio of NaOH to DCP(M)less than 1.0.The dissolution and liquid phase reaction mechanism and instant reaction assumption could be used to interpret all the apparent kinetics performances revealed in the experiments,and also be supported by apparent dissolution kinetics tests.Accordingly,the reaction activity of solid base is dependent on the polarity of solvent,and a common criterion for solvent selection is of medium to high polarity as well as of chemical inertness.Since the reaction process is mild under the control of solid NaOH dissolution rate,and ECH hydrolysis in non-aqueous solution is far slower than the conversion from DCP to ECH,it is feasible and reliable to setMat 0.95 to guarantee high selectivity.Besides,increasing the initial DCP concentration is appropriate for productivity enhancement as long as the accumulation of reaction heat at local could be instantly removed by solvent.Furthermore,we proposed a schematic process that solid NaOH and DCP are feedstock and 1-octanol is recycled in system for hot spot inhibition.This ECH production process has advantages including near-zero wastewater emission,economically possible NaOH regeneration from NaCl,high selectivity,mild,and robust operating condition window.

    [1]G.S.Singh,K.Mollet,M.D'hooghe,N.De Kimpe,Epihalohydrins in organic synthesis,Chem.Rev.113(2013)1441–1498.

    [2]G.Moad,Chemical modification of starch by reactive extrusion,Prog.Polym.Sci.36(2011)218–237.

    [3]N.Morin-Crini,G.Crini,Environmental applications of water-insoluble β cyclodextrin–epichlorohydrin polymers,Prog.Polym.Sci.38(2013)344–368.

    [4]S.K.Yong,N.S.Bolan,E.Lombi,W.Skinner,E.Guaibal,Sulfur-containing chitin and chitosan derivatives as trace metal adsorbents:A review,Crit.Rev.Environ.Sci.Technol.43(2013)1741–1794.

    [5]N.Nagato,H.Mori,K.Maki,R.Ishioka,US Patent 4634784(1987).

    [6]S.M.Danov,A.V.Sulimov,A.V.Ovcharova,Modeling of the vapor–liquid equilibrium in the system formed by the epichlorohydrin synthesis products,Theor.Found.Chem.Eng.46(2012)31–43.

    [7]L.L.Wang,Y.M.Liu,W.Xie,H.J.Zhang,H.H.Wu,Y.W.Jiang,M.Y.He,P.Wu,Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts,J.Catal.246(2007)205–214.

    [8]B.M.Bell,J.R.Briggs,R.M.Campbell,S.M.Chambers,P.D.Gaarenstroom,J.G.Hippler,B.D.Hook,K.Keams,J.M.Kenney,W.J.Kruper,D.J.Schreck,C.N.Theiault,C.P.Wolfe,Glycerin as a renewable feedstock for epichlorohydrin production.The GTE process,Clean Soil Air Water36(2008)657–661.

    [9]E.Santacesaria,R.Vitiello,R.Tesser,V.Russo,M.Di Serio,Chemical and technical aspects of the synthesis of chlorohydrins from glycerol,Ind.Eng.Chem.Res.53(2014)8939–8962.

    [10]S.Carrà,E.Santacesaria,M.Morbidelli,P.Schwarz,C.Divo,Synthesis of epichlorohydrin by elimination of hydrogen chloride from chlorohydrins.2.Simulation of the reaction unit,Ind.Eng.Chem.Process.Des.Dev.18(1979)428–433.

    [11]J.S.Zhang,Y.C.Lu,Q.R.Jin,K.Wang,G.S.Luo,Determination of kinetic parameters of dehydrochlorination of dichloropropanol in a microreactor,Chem.Eng.J.203(2012)142–147.

    [12]S.Patai,The Chemistry of functional groups,Interscience Publishers,Wiley,New York,USA,1967.

    [13]Z.H.Luo,X.Z.You,J.Zhong,Design of a reactive distillation column for direct preparation of dichloropropanol from glycerol,Ind.Eng.Chem.Res.48(2009)10779–10787.

    [14]E.Santacesaria,R.Tesser,M.Di Serio,L.Casale,D.Verde,New process for producing epichlorohydrin via glycerol chlorination,Ind.Eng.Chem.Res.49(2010)964–970.

    [15]S.Carra,E.Santacesaria,M.Morbldelli,P.Schwarz,C.Divo,Synthesis of epichlorohydrin by elimination of hydrogen-chloride from chlorohydrins.1.Kinetic aspects of the process,Ind.Eng.Chem.Process.Des.Dev.18(1979)424–427.

    [16]P.L.Boey,G.P.Maniam,S.A.Hamid,Performance of calcium oxide as a heterogeneous catalyst in biodiesel production:A review,Chem.Eng.J.168(2011)15–22.

    [17]A.K.Endalew,Y.Kiros,R.Zanzi,Inorganic heterogeneous catalysts for biodiesel production from vegetable oils,Biomass Bioenergy35(2011)3787–3809.

    [18]Y.Ono,Solid base catalysts for the synthesis of fine chemicals,J.Catal.216(2003)406–415.

    [19]X.J.Liu,H.Y.He,Y.J.Wang,S.L.Zhu,X.L.Piao,Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol,Fuel87(2008)216–221.

    [20]W.Y.Shi,B.Q.He,J.C.Ding,J.X.Li,F.Yan,X.P.Liang,Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production,Bioresour.Technol.101(2010)1501–1505.

    [21]L.Ma,J.W.Zhu,X.Q.Yuan,Q.Yue,Synthesis of epichlorohydrin from dichloropropanols:Kinetic aspects of the process,Chem.Eng.Res.Des.85(2007)1580–1585.

    看黄色毛片网站| 国产免费一级a男人的天堂| 精品久久久久久久久av| 人妻制服诱惑在线中文字幕| 男插女下体视频免费在线播放| 亚洲精品乱码久久久久久按摩| 国产中年淑女户外野战色| 欧美区成人在线视频| 欧美在线一区亚洲| 午夜视频国产福利| 亚洲aⅴ乱码一区二区在线播放| 天堂√8在线中文| 国产一区二区三区av在线 | 亚洲在久久综合| 中文字幕免费在线视频6| 欧美成人a在线观看| 岛国在线免费视频观看| 少妇的逼好多水| 亚洲av成人av| 亚洲国产欧美在线一区| 非洲黑人性xxxx精品又粗又长| 日韩一区二区视频免费看| 亚洲久久久久久中文字幕| 嘟嘟电影网在线观看| 简卡轻食公司| 日本av手机在线免费观看| 国产精品日韩av在线免费观看| 亚洲精品色激情综合| 国产精品无大码| 全区人妻精品视频| 尾随美女入室| 亚洲av成人精品一区久久| 精品人妻一区二区三区麻豆| 啦啦啦啦在线视频资源| 好男人视频免费观看在线| 男女边吃奶边做爰视频| 国产一区亚洲一区在线观看| 亚洲综合色惰| 搡女人真爽免费视频火全软件| 自拍偷自拍亚洲精品老妇| 午夜福利在线观看免费完整高清在 | 一边亲一边摸免费视频| 国产爱豆传媒在线观看| 国产午夜精品一二区理论片| 国产乱人偷精品视频| 国产精品久久久久久精品电影小说 | 国产片特级美女逼逼视频| 天堂√8在线中文| 我的老师免费观看完整版| 国产伦在线观看视频一区| 欧美xxxx性猛交bbbb| 99在线人妻在线中文字幕| 夜夜夜夜夜久久久久| 免费av毛片视频| 亚洲电影在线观看av| 亚洲av成人精品一区久久| 久久久成人免费电影| www.av在线官网国产| 99久国产av精品国产电影| 深夜a级毛片| 麻豆成人av视频| 日本黄色片子视频| 久久久精品欧美日韩精品| 身体一侧抽搐| 国内精品久久久久精免费| 亚洲精品久久国产高清桃花| 精品久久久久久久久av| 国产伦精品一区二区三区视频9| 人体艺术视频欧美日本| 男女做爰动态图高潮gif福利片| 赤兔流量卡办理| 麻豆av噜噜一区二区三区| 一个人观看的视频www高清免费观看| 波多野结衣高清作品| 成年女人看的毛片在线观看| 欧美激情久久久久久爽电影| 国产色爽女视频免费观看| 中文字幕精品亚洲无线码一区| 深爱激情五月婷婷| 成人国产麻豆网| 色综合色国产| 十八禁国产超污无遮挡网站| 成人性生交大片免费视频hd| 我的女老师完整版在线观看| 2021天堂中文幕一二区在线观| 白带黄色成豆腐渣| 最近2019中文字幕mv第一页| 亚洲av成人av| 亚洲,欧美,日韩| 在线播放国产精品三级| 日韩大尺度精品在线看网址| 欧美日韩乱码在线| 波多野结衣高清作品| 男女做爰动态图高潮gif福利片| av天堂在线播放| 你懂的网址亚洲精品在线观看 | 亚洲人与动物交配视频| 能在线免费看毛片的网站| 美女xxoo啪啪120秒动态图| 深夜a级毛片| 免费看a级黄色片| 国产免费一级a男人的天堂| 少妇高潮的动态图| 赤兔流量卡办理| 精品人妻一区二区三区麻豆| 啦啦啦啦在线视频资源| 亚州av有码| 欧美日韩精品成人综合77777| 人人妻人人澡欧美一区二区| 亚洲精品乱码久久久久久按摩| 不卡一级毛片| 又粗又爽又猛毛片免费看| 人体艺术视频欧美日本| 国产白丝娇喘喷水9色精品| 一个人看视频在线观看www免费| 国产精品不卡视频一区二区| 91精品一卡2卡3卡4卡| 午夜视频国产福利| 看片在线看免费视频| 日本三级黄在线观看| 桃色一区二区三区在线观看| 国产精品久久久久久av不卡| 欧美三级亚洲精品| 国产91av在线免费观看| 给我免费播放毛片高清在线观看| 国产片特级美女逼逼视频| 可以在线观看的亚洲视频| 精品人妻熟女av久视频| 成人鲁丝片一二三区免费| 在线观看美女被高潮喷水网站| 久久久精品94久久精品| 麻豆国产97在线/欧美| 国产伦精品一区二区三区视频9| 国产真实伦视频高清在线观看| 国产亚洲5aaaaa淫片| 寂寞人妻少妇视频99o| 美女脱内裤让男人舔精品视频 | 欧美+日韩+精品| 国产精品不卡视频一区二区| 啦啦啦观看免费观看视频高清| 蜜桃久久精品国产亚洲av| 91精品国产九色| 69人妻影院| 色吧在线观看| www.色视频.com| 午夜a级毛片| 91av网一区二区| 99国产极品粉嫩在线观看| 亚洲一区二区三区色噜噜| 此物有八面人人有两片| 日韩av不卡免费在线播放| 男女啪啪激烈高潮av片| 午夜福利高清视频| 久久精品人妻少妇| 亚洲精品久久久久久婷婷小说 | 亚洲成a人片在线一区二区| 欧美丝袜亚洲另类| 亚洲精品国产av成人精品| 日韩成人av中文字幕在线观看| 插阴视频在线观看视频| 日本黄色片子视频| 亚洲精品456在线播放app| 国产精品一二三区在线看| 国产亚洲欧美98| 美女高潮的动态| 好男人在线观看高清免费视频| 亚洲四区av| 91aial.com中文字幕在线观看| 国产一级毛片在线| 亚洲一区高清亚洲精品| 欧美3d第一页| 欧美3d第一页| 嘟嘟电影网在线观看| 老司机福利观看| 欧美成人精品欧美一级黄| 特大巨黑吊av在线直播| 亚洲av电影不卡..在线观看| 别揉我奶头 嗯啊视频| 亚洲国产精品国产精品| 亚洲第一电影网av| 乱码一卡2卡4卡精品| 亚洲第一电影网av| av在线老鸭窝| 99热精品在线国产| 亚洲欧美成人精品一区二区| 日本熟妇午夜| 一个人看的www免费观看视频| 国内精品一区二区在线观看| 人妻制服诱惑在线中文字幕| 少妇熟女aⅴ在线视频| 岛国毛片在线播放| 亚洲av二区三区四区| 一级黄色大片毛片| 国产亚洲精品久久久久久毛片| 在线天堂最新版资源| 国产一级毛片七仙女欲春2| 国产精品久久久久久亚洲av鲁大| 久久99精品国语久久久| 国产一区二区在线观看日韩| avwww免费| 亚洲av成人av| 一区二区三区四区激情视频 | 乱码一卡2卡4卡精品| 中文资源天堂在线| 精品熟女少妇av免费看| 久久久久久九九精品二区国产| 此物有八面人人有两片| 国产不卡一卡二| 哪里可以看免费的av片| 精品久久久久久久末码| 国产人妻一区二区三区在| 亚洲一区高清亚洲精品| 男女那种视频在线观看| 麻豆一二三区av精品| 成人永久免费在线观看视频| 亚洲av二区三区四区| 亚洲精品亚洲一区二区| 日韩大尺度精品在线看网址| av视频在线观看入口| 丝袜美腿在线中文| 国产精品久久久久久精品电影小说 | 丰满乱子伦码专区| 卡戴珊不雅视频在线播放| 亚洲成人久久爱视频| 韩国av在线不卡| 欧美成人精品欧美一级黄| 国产 一区 欧美 日韩| 91精品一卡2卡3卡4卡| 国产爱豆传媒在线观看| 男女下面进入的视频免费午夜| 久久精品久久久久久噜噜老黄 | 亚洲精品亚洲一区二区| 久久婷婷人人爽人人干人人爱| 亚洲av一区综合| 高清毛片免费观看视频网站| 男插女下体视频免费在线播放| 国产黄色视频一区二区在线观看 | 在现免费观看毛片| 色播亚洲综合网| 国产麻豆成人av免费视频| 欧美色欧美亚洲另类二区| 国产淫片久久久久久久久| 精品一区二区三区视频在线| 日本一二三区视频观看| 日本一二三区视频观看| 春色校园在线视频观看| 免费av不卡在线播放| 国产午夜福利久久久久久| 久久精品人妻少妇| 国产精品无大码| 亚洲一级一片aⅴ在线观看| 国产一区二区在线av高清观看| 一区二区三区四区激情视频 | 国产美女午夜福利| 国产片特级美女逼逼视频| 久久精品国产99精品国产亚洲性色| 色尼玛亚洲综合影院| 欧美潮喷喷水| www.av在线官网国产| 国产高潮美女av| 爱豆传媒免费全集在线观看| 美女xxoo啪啪120秒动态图| 97热精品久久久久久| 色视频www国产| 国产又黄又爽又无遮挡在线| 日日摸夜夜添夜夜添av毛片| 人体艺术视频欧美日本| 少妇人妻一区二区三区视频| 亚洲内射少妇av| 91久久精品国产一区二区成人| 老司机影院成人| 精品日产1卡2卡| 亚洲在久久综合| 久久欧美精品欧美久久欧美| 99热只有精品国产| 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| 国内久久婷婷六月综合欲色啪| 国产成人一区二区在线| 不卡一级毛片| 久久久成人免费电影| 乱人视频在线观看| 亚洲欧美清纯卡通| 女的被弄到高潮叫床怎么办| 国内精品久久久久精免费| 国产精品人妻久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 深爱激情五月婷婷| 一本久久中文字幕| 亚洲人成网站高清观看| 亚洲成人av在线免费| av免费观看日本| 一个人免费在线观看电影| 午夜激情福利司机影院| 可以在线观看毛片的网站| 日本黄色视频三级网站网址| 午夜a级毛片| 精品久久久久久久末码| 亚洲天堂国产精品一区在线| 亚洲色图av天堂| 波多野结衣高清无吗| 黑人高潮一二区| 欧美成人a在线观看| 国产日本99.免费观看| 精品久久久久久久久久免费视频| 亚洲最大成人中文| 亚洲精品自拍成人| 久久久久久久久久黄片| 国产成人a∨麻豆精品| 免费看av在线观看网站| 美女被艹到高潮喷水动态| 国产精品一区二区在线观看99 | 久久精品久久久久久噜噜老黄 | 五月玫瑰六月丁香| 欧美在线一区亚洲| 日韩一区二区三区影片| 亚洲经典国产精华液单| 蜜臀久久99精品久久宅男| 深夜精品福利| 六月丁香七月| 久久草成人影院| 天堂av国产一区二区熟女人妻| 亚洲经典国产精华液单| 黄片无遮挡物在线观看| 国产黄a三级三级三级人| 99riav亚洲国产免费| 欧美成人精品欧美一级黄| 日韩欧美在线乱码| 不卡一级毛片| 国产精品av视频在线免费观看| 国产精品爽爽va在线观看网站| 99在线视频只有这里精品首页| 在线播放国产精品三级| 九草在线视频观看| 免费看a级黄色片| 国产一区二区亚洲精品在线观看| 1024手机看黄色片| 丝袜喷水一区| 天堂中文最新版在线下载 | 亚洲在线自拍视频| 欧美三级亚洲精品| 国产精品国产三级国产av玫瑰| 国产黄色小视频在线观看| 99久国产av精品| 内射极品少妇av片p| 国产精品美女特级片免费视频播放器| 亚洲熟妇中文字幕五十中出| 能在线免费看毛片的网站| 国产综合懂色| 国产成人精品久久久久久| 99热网站在线观看| 亚洲av熟女| 蜜桃亚洲精品一区二区三区| 老熟妇乱子伦视频在线观看| 日韩中字成人| 亚洲aⅴ乱码一区二区在线播放| 国产精品永久免费网站| 欧美日韩一区二区视频在线观看视频在线 | 少妇人妻精品综合一区二区 | ponron亚洲| 欧美性猛交黑人性爽| 国产视频内射| 成人永久免费在线观看视频| 免费观看a级毛片全部| 欧美zozozo另类| 蜜桃久久精品国产亚洲av| 成年版毛片免费区| 亚洲精品日韩av片在线观看| 精品免费久久久久久久清纯| 亚洲不卡免费看| 美女脱内裤让男人舔精品视频 | 两个人视频免费观看高清| 国产精品永久免费网站| 成年版毛片免费区| 国产精品av视频在线免费观看| 中国美女看黄片| 亚洲人成网站在线播| 看十八女毛片水多多多| 久久婷婷人人爽人人干人人爱| 毛片一级片免费看久久久久| 中文字幕免费在线视频6| 精品熟女少妇av免费看| 成年女人永久免费观看视频| 秋霞在线观看毛片| 欧美激情国产日韩精品一区| av国产免费在线观看| 最近中文字幕高清免费大全6| 免费看av在线观看网站| 色综合色国产| 麻豆国产97在线/欧美| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线 | 国产精品美女特级片免费视频播放器| 欧美+日韩+精品| 亚洲内射少妇av| 亚洲久久久久久中文字幕| 免费av不卡在线播放| 久久久久久久久大av| 欧美色视频一区免费| 波多野结衣巨乳人妻| 国产真实伦视频高清在线观看| 国产黄片视频在线免费观看| 日本免费a在线| 久久九九热精品免费| 日韩大尺度精品在线看网址| 12—13女人毛片做爰片一| 有码 亚洲区| 99热全是精品| 熟妇人妻久久中文字幕3abv| av免费观看日本| 六月丁香七月| 国产在线精品亚洲第一网站| 亚洲中文字幕一区二区三区有码在线看| 波多野结衣高清作品| 国产成人aa在线观看| 日韩在线高清观看一区二区三区| 欧美日本亚洲视频在线播放| 欧美zozozo另类| 久久久a久久爽久久v久久| 色哟哟哟哟哟哟| 我要看日韩黄色一级片| 亚洲精品456在线播放app| 三级经典国产精品| 国产精品国产三级国产av玫瑰| 99在线视频只有这里精品首页| 别揉我奶头 嗯啊视频| 国产精品一区二区在线观看99 | 国产视频首页在线观看| 久久精品国产99精品国产亚洲性色| 一级黄色大片毛片| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 人妻夜夜爽99麻豆av| 一级二级三级毛片免费看| 久久草成人影院| 亚洲欧美精品自产自拍| 久久精品综合一区二区三区| 中文字幕制服av| 永久网站在线| 成人午夜高清在线视频| 国产综合懂色| 边亲边吃奶的免费视频| 欧美一区二区亚洲| 成年av动漫网址| 日本五十路高清| 日日摸夜夜添夜夜爱| 国产成人精品一,二区 | 国模一区二区三区四区视频| 国产老妇伦熟女老妇高清| 日日摸夜夜添夜夜爱| 秋霞在线观看毛片| 黄色一级大片看看| 长腿黑丝高跟| 久久精品国产99精品国产亚洲性色| 成人特级黄色片久久久久久久| 精品免费久久久久久久清纯| 可以在线观看毛片的网站| 国产av在哪里看| 国产亚洲精品久久久com| 亚洲无线观看免费| 国产成人91sexporn| 在线免费观看不下载黄p国产| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久| 极品教师在线视频| 男人舔奶头视频| 简卡轻食公司| 亚洲欧美精品自产自拍| 亚洲av第一区精品v没综合| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩av片在线观看| 日本欧美国产在线视频| 亚洲性久久影院| 国产一区亚洲一区在线观看| 夜夜夜夜夜久久久久| 三级男女做爰猛烈吃奶摸视频| 国产精品日韩av在线免费观看| 91精品国产九色| 亚洲一区二区三区色噜噜| 亚洲七黄色美女视频| 成人一区二区视频在线观看| eeuss影院久久| 国产精品美女特级片免费视频播放器| 伊人久久精品亚洲午夜| 国产一区亚洲一区在线观看| 成年免费大片在线观看| 女同久久另类99精品国产91| a级毛片a级免费在线| 高清毛片免费看| 波多野结衣高清无吗| 18禁在线无遮挡免费观看视频| 午夜视频国产福利| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品影院6| 国产精品伦人一区二区| 人妻夜夜爽99麻豆av| 男女视频在线观看网站免费| 国产激情偷乱视频一区二区| 亚洲欧洲国产日韩| 精品人妻熟女av久视频| 国产老妇女一区| 青青草视频在线视频观看| 真实男女啪啪啪动态图| 自拍偷自拍亚洲精品老妇| 美女cb高潮喷水在线观看| 国产探花极品一区二区| 变态另类丝袜制服| 中文字幕免费在线视频6| 男女啪啪激烈高潮av片| 午夜福利在线观看吧| 国产成人午夜福利电影在线观看| 国产成人91sexporn| 夜夜夜夜夜久久久久| 永久网站在线| 亚洲aⅴ乱码一区二区在线播放| 美女被艹到高潮喷水动态| 国产精品一及| 国产v大片淫在线免费观看| 大型黄色视频在线免费观看| 1024手机看黄色片| 永久网站在线| 天天躁日日操中文字幕| 亚洲精华国产精华液的使用体验 | 丝袜美腿在线中文| 伦精品一区二区三区| 日韩强制内射视频| 大又大粗又爽又黄少妇毛片口| 久久亚洲精品不卡| 男人狂女人下面高潮的视频| 国产三级中文精品| 久久国内精品自在自线图片| 亚洲最大成人中文| 国产一区二区激情短视频| 级片在线观看| 热99在线观看视频| 亚洲人成网站在线播| 中文欧美无线码| 美女 人体艺术 gogo| 成年女人看的毛片在线观看| 免费搜索国产男女视频| 国产精品久久久久久久久免| 在线a可以看的网站| 女人十人毛片免费观看3o分钟| 亚洲欧美成人精品一区二区| a级毛片a级免费在线| 精品国内亚洲2022精品成人| 国产精品国产三级国产av玫瑰| 国内久久婷婷六月综合欲色啪| 久久国产乱子免费精品| 三级毛片av免费| 国产午夜福利久久久久久| 精品免费久久久久久久清纯| 赤兔流量卡办理| 五月玫瑰六月丁香| 桃色一区二区三区在线观看| 网址你懂的国产日韩在线| 国产黄色小视频在线观看| 99久久精品一区二区三区| 97超视频在线观看视频| 亚洲久久久久久中文字幕| 最新中文字幕久久久久| 国产精品伦人一区二区| 国产三级在线视频| 欧美xxxx性猛交bbbb| 国产成人精品久久久久久| 欧美xxxx黑人xx丫x性爽| 国产精品.久久久| 亚洲av第一区精品v没综合| 亚洲在久久综合| 亚洲国产精品成人综合色| 少妇高潮的动态图| 午夜福利在线观看吧| 你懂的网址亚洲精品在线观看 | 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 长腿黑丝高跟| 日韩大尺度精品在线看网址| 天堂√8在线中文| 看片在线看免费视频| 欧美性猛交╳xxx乱大交人| 伦精品一区二区三区| 天美传媒精品一区二区| 国产精品99久久久久久久久| 美女xxoo啪啪120秒动态图| 亚洲欧美成人精品一区二区| 综合色av麻豆| 欧美日韩国产亚洲二区| av视频在线观看入口| 婷婷亚洲欧美| 一个人观看的视频www高清免费观看| 三级男女做爰猛烈吃奶摸视频| 99久久无色码亚洲精品果冻| 白带黄色成豆腐渣| 免费人成视频x8x8入口观看| 黄色配什么色好看| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产精品合色在线| 日日摸夜夜添夜夜爱| 免费无遮挡裸体视频| 欧美在线一区亚洲| 免费无遮挡裸体视频| 性插视频无遮挡在线免费观看| 日韩国内少妇激情av| 一区二区三区高清视频在线| 在现免费观看毛片| 午夜福利高清视频| 美女 人体艺术 gogo| 99国产极品粉嫩在线观看| 国产日本99.免费观看| 最好的美女福利视频网| 亚洲一区高清亚洲精品| 欧美日韩在线观看h| 中出人妻视频一区二区|