• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of mass transfer coefficients in an asymmetric rotating disk contactor using effective diffusivity

    2017-05-28 07:28:54MeisamTorabMostaediMehdiAsadollahzadehJaberSafdari

    Meisam Torab-Mostaedi,Mehdi Asadollahzadeh*,Jaber Safdari

    Nuclear Fuel Cycle Research School,Nuclear Science and Technology Research Institute,P.O.Box:11365-8486,Tehran,Iran

    1.Introduction

    Liquid–liquid extraction columns are widely used on commercial scale in the hydrometallurgical,pharmaceutical,chemical and nuclear industries.Of the available counter-current extraction columns,the rotating disk contactor(RDC)is widely used in industrial solvent extraction processes due to its high throughput,low investment, flexible operation,and easy maintenance.Due to limitation of its structure,the mass transfer performance of commercial RDC columns is low because of severe back-mixing[1–6].Therefore,modifications of the RDC have been attempted in order to reduce the extent of back-mixing which causes significant reduction in mass transfer efficiency.For this reason,the RDC has appeared with modified structure such as the RDC with perforated disks and the asymmetric rotating disk contactors.It goes without saying that,modified RDC columns are finding wide applications in different industries[7–10].Asymmetric rotating disk contactors(ARDCs)are widely used in pharmaceutical,petrochemical,and chemical industries because of dual advantages of a high mass transfer rates and reduced back-mixing in both phases[11].In this extractor,a shaft carrying the disks is mounted off-centre,and two sets of staggered stator plates are provided,connected by a vertical segmental baffle.By this means,the mixing chambers are enclosed,and are connected to one another via openings each side of the vertical baffle leading to chambers which partial coalescence occurs[11].Since the coalescence zone in ARDC is isolated from the mixing zone,the coalescence of the dispersed droplets and the transport of the separated phase occur more efficiently in this contactor as compared to those in the RDC.This feature not only reduces the back-mixing between the stages,but also increases the power consumption in the mixing zone and high efficiency per stage through higher values of the dispersed phase holdup and interfacial area[11].

    Although the ARDC column has been used effectively for a number of separation processes,there are limited data in the literature on the performance of this type of extraction column[11].On this basis,pilot plant experiments on hydrodynamic and mass transfer characteristics of ARDC column is necessary for the purpose of establishing the optimal design procedure for this column.

    The present research work has examined the influence of operating variables including the rotor speed as well as the dispersed and continuous phase velocities on the mass transfer performance in a pilot scale ARDC column.An empirical correlation for prediction of enhancement factor is developed and used for the estimation of overall mass transfer coefficient.

    2.Previous Work

    The reliability of the design of liquid–liquid extraction columns depends upon the theories or correlations used for the calculation of overall mass transfer coefficients.In the literature,a large number of such theoretical and empirical equations are reported for the dispersed and continuous phase,and each has a particular range of application.For the dispersed phase,theories rather than correlations have been mostly used for the estimation of the mass transfer coefficient[12].These theories have usually been considered in the light of three mechanisms of mass transfer inside drops.

    The Gr?ber equation(Eq.(1))[13]concerns rigid drops which do not have any internal circulation and where mass transfer is more controlled by a transient molecular diffusion:

    The Kronig–Brink model(Eq.(2))[14]assumes a laminar diffusion with an inner circulation inside the drop,induced by its relative motion,with respect to the continuous phase.

    The Handlos–Baron model(Eq.(3))[15]deals with the case of drops with internal turbulent circulation and where mass transfer is controlled by turbulent diffusion.

    Although mass transfer in to or out of drops have been investigated for many years,it is still not fully understood,since it depends on several factors.These factors include the fact that the dispersed phase mass transfer coefficient depends upon the nature,size and behavior of the drop.The presently available equations for calculation of the dispersed phase mass transfer coefficient are not usually valid over a range of drop sizes and behaviors in a typical extraction column.An attractive method uses an enhanced molecular diffusivity,RDd(also referred to as effective diffusivity,Deff.)in the equation for diffusion in rigid spheres(Eq.(1)).The enhancement factor contains the effects of all known and unknown parameters that influence the mass transfer coefficient.The resulting equation for the dispersed phase mass transfer coefficient,given by Johnson and Hamielec[16],is the following equation:

    Several empirical correlations for estimation of the enhancement factor in extraction columns are described in the literature.These correlations are listed in Table 1.

    The idea of using enhancement factor provides a very appropriate practical method for estimation of mass transfer coefficient for a variety of drop sizes in distribution,with different residence time in an extraction column.

    3.Experimental

    The pilot plant comprises a 36 compartments asymmetric rotating disk contactor of 113 mm diameter.The main section of the ARDC column consists of a 1430 mm long outer Pyrex glass shell and stainless steel internals.The disks are mounted onto a shaft and driven by an electric motor via a variable gearbox.The flow rates of both phases are controlled via rotameters.The interface is maintained at the required level by using an optical sensor,which has been previously described[22,23].Centrifugal pumps(Penax model)were used to circulate both liquid phases through the column.A scheme of the ARDC pilot scale unit used in the present study is shown in Fig.1.The column dimensions are listed in Table 2.

    Two liquid–liquid test systems recommended by the European Federation of Chemical Engineering(E.F.C.E.),namely toluene-acetonewater andn-butyl acetate-acetone-water are used in the experiments.The physical properties of the liquid–liquid systems are given in Table 3.The equilibrium data were obtained from Mí?eket al.[24].

    Before starting each run,the aqueous and organic phases were first mutually saturated,after which acetone was added to the dispersed(organic)phase to give a concentration of about 3.5 wt%acetone.The samples of each phase were taken at their inlets to the column and used for determination of the initial solute concentration.The rotor speed and the continuous phase flow rate were set at the desired valves and the dispersed phase gradually admitted into the column up to the desired volumetric flow rate.The interface location was then maintained at the desired height,and the system was allowed to reach steady-state.For all experiments the steady-state condition could be achieved after three times the residence times.At the end of each run,samples of the aqueous and organic phases were taken at their respective outlet.The solute concentrations were then determined by UV–visible spectroscopy.All experiments were performed far from flooding conditions.For each liquid–liquid system the operating variables were systematically varied to determine their influence on the volumetric overall mass transfer coefficient.

    Drop size was determined by the photography method by means of a Nikon D3100 digital camera.Drop dimensions were then determined using Digimizer software.For elliptical drops both the vertical and horizontal axes were measured.In all cases,the stators thickness served as the reference for the drop size measurements.At least 400 drops were analyzed for each experiment to guarantee the significance of the determined Sauter mean drop diameter.The Sauter mean drop diameter was then calculated by the following equation:

    wherenidenotes the number of drops of diameterdi.

    The dispersed phase holdup was measured by the shut down(displacement)method where the continuous and dispersed inlet and outlet valves were shut simultaneously and the dispersion height between the initial and final interface was measured.

    4.Modeling

    In the design of extraction columns,an important step is to determine the required column height.Several models have been developed in recent years,since the effect of axial mixing on the performance of liquid–liquid extraction columns was recognized.The back flow and theaxial diffusion models are the most important practical approaches for considering the effect of axial mixing on the mass transfer performance of the column.In the present study,the mass transfer data are interpreted in terms of this model as described by Pratt and Stevens[25].Based upon the axial diffusion model and mass balance in the column,over the differential elements of the column with a total effective heightH,the equation set for the steady state process is established as follows,under the constant superficial velocitiesVcandVdat any given rotor speed:

    Table 1Previous correlations for estimation the enhancement factor in extraction columns

    Fig.1.Schematic flow diagram of the ARDC pilot plant.

    Table 2Dimensions of the pilot plant ARDC

    Table 3Physical properties of liquid-liquid systems investigated at 20°C[19]

    In this study,the dispersed phase axial dispersion is assumed to be negligible,with the continuous phase axial mixing coefficient calculated by the following equation proposed by Kumar and Hartland[26]:

    The three boundary conditions are as follows:

    At the top of the column(Z=0):

    By using the axial dispersion coefficient of the continuous phase,the measured continuous and dispersed phase concentrations and the boundary conditions together with equilibrium data,the continuous phase volumetric overall mass transfer coefficients(Koca)are calculated from Eqs.(13)and(14).

    The dispersed phase volumetric overall mass transfer coefficients are then calculated as follows:

    5.Results and Discussion

    Fig.2 illustrates the effect of the rotor speed on the volumetric overall mass transfer coefficient for both studied liquid–liquid systems.This figure shows that the mass transfer performance of the column is markedly dependent on the rotor speed.As expected,the increase of agitation rate results in smaller drops.Moreover,a higher dispersed phase holdup is obtained upon increasing rotor speed.The value of the interfacial area increases with both effects.However,the overall mass transfer coefficient decreases with an increase in the rotor speed.The reduction of internal circulation and turbulence in drops leads to decrease mass transfer coefficients.The results show that the effect of interfacial area becomes more predominant than the overall mass transfer coefficient effect and consequently,the mass transfer performance will increase.At high values of the rotor speed,however,the overall mass transfer coefficient starts to fall significantly with the formation of the rigid droplets,whereby the molecular diffusion controls the drop's mass transfer rate.Forn-butylacetate–acetone–water system,the effect of interfacial area may compensated by the effect of overall mass transfer coefficient at high agitation rate and consequently,the column performance is not affected by the rotor speed in this range of operating conditions.Fig.2 also shows that the mass transfer performance is significantly influenced by the interfacial tension of the system.As seen in this figure,the column performance improves within the system of lower interfacial tension due to the formation of smaller drops and higher interfacial area.It is also found that the effect of the rotor speed on the column performance of the toluene acetone–water system(high interfacial tension)is greater than that of butyl acetate–acetone–water(medium interfacial tension),because the breakup of the drops into smaller ones is limited within the latter system due to its lower interfacial tension.

    Fig.2.Variation in the volumetric overall mass transfer coefficient with rotor speed(V c=V d=1.33× 10?3 m·s?1).

    As shown in Fig.3,the effect of the dispersed phase velocity clearly shows that the higher the dispersed phase flow rate,the better the mass transfer of the column becomes.Increasing the dispersed phase velocity tends to increase the mean drop size.A higher dispersed phase velocity results in not only to a lager drop formation but also the higher coalescence frequencies.As expected,an increase in the dispersed phase flow rate leads to the increased holdup because a greater volume of the organic phase is fed to the column.In the present work,it is observed that the effect of the dispersed phase holdup on the interfacial area is greater than that of the drop size and,consequently,the interfacial area increases with an increase in the dispersed phase velocity.Furthermore,the dispersed phase mass transfer coefficient increases with an increase in the drop size due to the internal circulation inside the drop.The column performance increases with the increase in both mass transfer coefficient and interfacial area.A comparison of Figs.2 and 3 shows that the effect of dispersed phase velocity on the mass transfer performance is less pronounced than rotor speed and interfacial tension.

    Fig.3.Variation in the volumetric overall mass transfer coefficient with dispersed phase velocity(V c=1.33 ×10?3 m·s?1).

    Fig.4.Variation in the volumetric overall mass transfer coefficient with continuous phase velocity(V d=1.33× 10?3 m·s?1).

    The effect of continuous phase velocity on the volumetric overall mass transfer coefficient is illustrated in Fig.4.As seen in this figure,in the case of continuous phase velocity,no significant change in mass transfer performance is verified for the operating conditions continuous phase.Moreover,the experiments show that the mean drop size slightly increases with an increase in the continuous phase flow rate.As effects of the continuous phase velocity on the volumetric overall mass transfer coefficient,the contribution of holdup is positive and that of the mean drop size is negative because the interfacial area is directly proportional to the holdup and inversely proportional to the drop size.The results indicate that the former may be compensated by the latter and the volumetric coefficient is not affected by the continuous phase velocity within both systems.investigated in this research work.The dispersed phase holdup increases with an increase in the continuous phase velocity due to the increment of the drag force between the dispersed drops and the

    Predictive correlation for enhancement factor

    The overall dispersed phase mass transfer coefficient is determined by dividing the volumetric coefficient by the interfacial areaa(=6xd/d32).The experimental values of the overall mass transfer coefficient and the interfacial area are given in Table 4.

    One of the main objectives of this investigation is to develop a correlation that is capable of predicting the mass transfer coefficient in ARDC columns.The experimental results for the dispersed phase overall mass transfer coefficient are compared with those of the theoretical models and the models suggested for other types of extraction columns.The values of the average relative deviation(ARD)of the calculated values of the overall mass transfer coefficient obtained by applying the previous correlations to the experimental results are summarized in Table 5.As can be seen in this table,none of the previous correlations give reasonable estimates of the overall mass transfer coefficients in ARDC column.

    Therefore,the experimental values of overall mass transfer coefficient are used in Eq.(4)to define the enhancement factor.This equation is reduced to its first term in determining the R values.The experimental values ofRare also given in Table 4.

    After calculating the experimental values of the enhancement factor for the investigated operating conditions,Eq.(20)is derived in terms of the Reynolds number by using the least squares method.

    Table 4Experimental values of dispersed phase overall mass transfer coefficient,interfacial area,and enhancement factor

    Table 5The ARD values in the predicted values of K od obtained by previous equations with respect to the experimental data

    in whichVsis the slip velocity between the two phases through the column.The slip velocity between the phases is obtained as follows:

    The predicted values ofRare used in Eq.(4)to calculateKodvalues.A comparison between the predicted and experimental values ofKodis depicted in Fig.5 where a good agreement is observed.The proposed method predicts the experimental values ofKodwith an average relative deviation of 7.13%.

    Fig.5.Parity plot of experimental values of dispersed phase overall mass transfer coefficient against those predicted by Eqs.(4)and(20).

    6.Conclusions

    This paper presents an experimental study on the mass transfer performance of an asymmetric rotating disk contactor.The experimental findings show that the mass transfer performance is strongly dependent on the rotor speed and interfacial tension.Improved column performance is observed within the system of lower interfacial tension.The results show that the continuous phase velocity has little influence the value ofKoda,whileKodaincreases with an increase in the dispersed phase velocity.The results also show that the correlations developed in the other types of extractors cannot be used to predict the mass transfer performance of the ARDC column.An empirical expression for the enhancement factor as a function of Reynolds number is also proposed.The proposed correlation which predicts the enhancement factor in the ARDC column can be applied to estimate the column height in different separation processes.The present study has provided valuable information on the mass transfer characteristics of ARDC column about which there are currently limited pieces of information.

    Nomenclature

    ainterfacial area,m2·m?3

    Bnnth coefficient in Eqs.(1)–(4)

    Dmolecular diffusivity,m2·s?1

    Dccolumn diameter,m

    Deffeffective diffusivity,m2·s?1

    DRimpeller diameter,m

    d32Sauter mean drop diameter,m

    Eaxial mixing coefficient,m2·s?1

    E?E?tv?s number(=gΔρd232/σ)

    efractional free cross-sectional area

    gacceleration due to gravity,m2·s?1

    Heffective height of the column,m

    hccompartment height,m

    Koverall mass transfer coefficient,m·s?1

    mdistribution ratio

    Nrotor speed,s?1

    Noxnumber of‘true’transfer unit(=KocaH/Vc)

    PPéclet number(=HV/E)

    Peccontinuous-phase Péclet number(=d32Vs/Dc)

    Qflow rate of the continuous or dispersed phase,m3·s?1

    Renhancement factor for mass transfer

    ReReynolds number(=d32Vsρc/ηc)

    ScSchmidt number(=η/ρD)

    ttime,s

    Vsuperficial velocity,m·s?1

    Vctrue velocity for continuous phase(=Vc/(1?xd)),m·s?1

    Vsslip velocity,m·s?1

    xmass fraction of acetone in continuous phase

    xddispersed phase holdup

    x* equilibrium mass fraction of acetone in continuous phase corresponding to dispersed phase

    ymass fraction of acetone in dispersed phase

    Δρ density difference between phases,kg·m?3

    λnnth coefficient if Eqs.(1)–(4)

    ρ density,kg·m?3

    κ viscosity ratio(ηd/ηc)

    η viscosity,Pa·s

    σ interfacial tension,N·m?1

    Subscripts

    c continuous phase

    d dispersed phase

    o overall value

    x x-phase(continuous phase in present case)

    y y-phase(dispersed phase in present case)

    Superscripts

    * equilibrium value

    ° inlet to column

    [1]M.Asadollahzadeh,Sh.Shahhosseini,M.Torab-Mostaedi,A.Ghaemi,Mass transfer performance in an Oldshue–Rushton column extractor,Chem.Eng.Res.Des.100(2015)104–112.

    [2]M.Asadollahzadeh,Sh.Shahhosseini,M.Torab-Mostaedi,Ghaemi,The effects of operating parameters on stage efficiency in an Oldshue–Rushton column,Chem.Ind.Chem.Eng.Q.22(1)(2016)75–83.

    [3]M.Asadollahzadeh,M.Torab-Mostaedi,Sh.Shahhosseini,A.Ghaemi,Holdup,characteristic velocity and slip velocity between two phases in a multi-impeller column for high/medium/low interfacial tension systems,Chem.Eng.Process.100(2016)65–78.

    [4]M.Asadollahzadeh,M.Torab-Mostaedi,Sh.Shahhosseini,A.Ghaemi,Experimental investigation of dispersed phase holdup and flooding characteristics in a multistage column extractor,Chem.Eng.Res.Des.105(2016)177–187.

    [5]A.Kumar,S.Hartland,Prediction of dispersed phase hold-up in rotating disc extractors,Chem.Eng.Commun.106(1987)56–87.

    [6]é.Moreira,L.M.Pimenta,L.L.Caneiro,P.C.L.Faria,M.B.Mansur,C.P.Pibeiro,Hydrodynamic behavior of a rotating disc contactor under low agitation conditions,Chem.Eng.Commun.192(2005)1017–1035.

    [7]Y.D.Wang,W.Y.Fei,J.H.Sun,Y.K.Wan,Hydrodynamics and mass transfer performance of a modified rotating disc contactor(MRDC),Chem.Eng.Res.Des.80(2002)392–400.

    [8]M.Asadollahzadeh,A.Ghaemi,M.Torab-Mostaedi,Sh.Shahhosseini,Experimental mass transfer coefficients in a pilot plant multistage column extractor,Chin.J.Chem.Eng.24(8)(2016)989–999.

    [9]Y.Kawase,Dispersed-phase holdup and mass transfer in a rotating disc contactor with perforated skirts,J.Chem.Technol.Biotechnol.48(1990)247–260.

    [10]S.Soltanali,Y.Ziaie-Shirkolaee,G.Amoabediny,H.Rashedi,A.Sheikhi,P.Chamanrokh,Hydrodynamics and mass transfer of rotating sieved disc contactors used for reversed micellar extraction of protein,Chem.Eng.Sci.64(2009)2301–2306.

    [11]B.D.Kadam,J.B.Joshi,R.N.Patil,Hydrodynamic and mass transfer characteristics of asymmetric rotating disc extractors,Chem.Eng.Res.Des.87(2009)756–769.

    [12]N.Outili,A.–.H.Meniai,G.Gneist,H.–.J.Bart,Model assessment for the prediction of mass transfer coefficients in liquid–liquid extraction columns,Chem.Eng.Technol.30(2007)758–763.

    [13]H.Gr?ber,Die Erw?rmung and abkühlung einfacher geometrischer k?rper,Z.Var.Dtsch.Ing.69(1925)705–711.

    [14]R.Kronig,J.C.Brink,On the theory of extraction from falling drops,Appl.Sci.Res.A2(1950)142–154.

    [15]A.E.Handlos,T.Baron,Mass and heat transfer from drops in liquid–liquid extraction,AIChE J.3(1957)127–136.

    [16]A.I.Johnson,A.E.Hamielec,Mass transfer inside drops,AIChE J.6(1960)145–149.[17]L.Steiner,Mass transfer rates from single drops and drop swarms,Chem.Eng.Sci.41(1986)1979–1986.

    [18]H.Bahmanyar,L.Nazari,A.Sadr,Prediction of effective diffusivity and using of it in designing pulsed sieve extraction columns,Chem.Eng.Process.47(2008)57–65.

    [19]M.Amanabadi,H.Bahmanyar,Z.Zarkeshan,M.A.Mousavian,Prediction of effective diffusion coefficient in rotating disc columns and application in design,Chin.J.Chem.Eng.17(2009)366–372.

    [20]M.Torab-Mostaedi,J.Safdari,M.Ghannadi-Maragheh,M.A.Moosavian,Prediction of overall mass transfer coefficient in a Hanson mixer-settler using effective diffusivity,J.Chem.Eng.Jpn.42(2009)78–85.

    [21]M.Torab-Mostaedi,J.Safdari,Prediction of mass transfer coefficients in a pulsed packed extraction column using effective diffusivity,Braz.J.Chem.Eng.26(2009)685–694.

    [22]M.Torab-Mostaedi,A.Ghaemi,M.Asadollahzadeh,Prediction of mass transfer coefficients in a pulsed disc and doughnut extraction column,Can.J.Chem.Eng.90(2012)1569–1577.

    [23]A.Hemmati,M.Torab-Mostaedi,M.Asadollahzadeh,Mass transfer coefficients in a Kühni extraction column,Chem.Eng.Res.Des.93(2015)747–754.

    [24]T.Mí?ek,R.Berger,J.Schr?ter,Standard Test Systems for Liquid Extraction Studies,EFCE Publ.Ser.46(1985)1.

    [25]H.R.C.Pratt,G.W.Stevens,Axial dispersion,in:J.D.Thornton(Ed.),Science and Practice in Liquid–Liquid Extraction,Oxford University Press,UK,1992,pp.461–492.

    [26]A.Kumar,S.Hartland,Prediction of axial mixing coefficients in rotating disc and asymmetric rotating disc extraction columns,Can.J.Chem.Eng.70(1992)77–87.

    综合色av麻豆| 久久精品国产99精品国产亚洲性色| 黄色日韩在线| 日韩大尺度精品在线看网址| 亚洲国产精品久久男人天堂| tocl精华| 色噜噜av男人的天堂激情| 12—13女人毛片做爰片一| 日韩精品中文字幕看吧| 精品久久久久久久久久免费视频| 女人被狂操c到高潮| 国产成人影院久久av| 亚洲欧美日韩无卡精品| 欧美日韩精品网址| 成人高潮视频无遮挡免费网站| 成人欧美大片| 少妇的丰满在线观看| 免费看美女性在线毛片视频| 一区福利在线观看| 亚洲电影在线观看av| 一区二区三区国产精品乱码| 国产麻豆成人av免费视频| 久久午夜亚洲精品久久| 国产成人精品久久二区二区91| 亚洲激情在线av| 中文字幕人成人乱码亚洲影| 亚洲国产高清在线一区二区三| 亚洲专区字幕在线| 精品久久久久久久久久免费视频| 亚洲成a人片在线一区二区| а√天堂www在线а√下载| 噜噜噜噜噜久久久久久91| 欧美黄色片欧美黄色片| 两个人的视频大全免费| 久久久精品大字幕| 国内精品久久久久久久电影| 一个人免费在线观看电影 | 一区二区三区激情视频| 亚洲午夜理论影院| 亚洲第一电影网av| 国产精品亚洲av一区麻豆| 午夜激情福利司机影院| 性色av乱码一区二区三区2| 在线永久观看黄色视频| av在线蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 欧美高清成人免费视频www| 欧美另类亚洲清纯唯美| 日本黄色片子视频| 久久午夜亚洲精品久久| 国产精品精品国产色婷婷| 美女午夜性视频免费| 全区人妻精品视频| 欧美乱码精品一区二区三区| 高清在线国产一区| 国内精品久久久久久久电影| 两性夫妻黄色片| 精品久久久久久久末码| 欧美zozozo另类| 国产成人精品久久二区二区91| 九九热线精品视视频播放| 最新中文字幕久久久久 | 亚洲av成人不卡在线观看播放网| av天堂中文字幕网| 高潮久久久久久久久久久不卡| 久久久精品大字幕| 亚洲avbb在线观看| 亚洲一区高清亚洲精品| 日韩有码中文字幕| 成年人黄色毛片网站| 色播亚洲综合网| 人人妻,人人澡人人爽秒播| 在线十欧美十亚洲十日本专区| 欧美精品啪啪一区二区三区| 观看免费一级毛片| 久久九九热精品免费| 女人高潮潮喷娇喘18禁视频| 亚洲成人免费电影在线观看| 国产精品98久久久久久宅男小说| av在线蜜桃| 成人av一区二区三区在线看| 在线十欧美十亚洲十日本专区| av天堂中文字幕网| 每晚都被弄得嗷嗷叫到高潮| 无遮挡黄片免费观看| 国产三级在线视频| 搡老岳熟女国产| 啦啦啦免费观看视频1| 亚洲欧美日韩东京热| 色av中文字幕| 午夜激情福利司机影院| av女优亚洲男人天堂 | 亚洲欧美日韩高清在线视频| 99久久精品一区二区三区| 精品99又大又爽又粗少妇毛片 | 免费大片18禁| 久久精品国产清高在天天线| 一a级毛片在线观看| 亚洲精品一区av在线观看| 日韩人妻高清精品专区| 久久国产精品影院| 国产精品一区二区三区四区免费观看 | 18禁国产床啪视频网站| 久久婷婷人人爽人人干人人爱| 精品电影一区二区在线| 18禁观看日本| 国产一级毛片七仙女欲春2| 国语自产精品视频在线第100页| 真人做人爱边吃奶动态| 日本一本二区三区精品| 中文字幕最新亚洲高清| 女人被狂操c到高潮| 成年免费大片在线观看| 精品熟女少妇八av免费久了| 老司机午夜十八禁免费视频| 99久久国产精品久久久| 色播亚洲综合网| 一本久久中文字幕| 青草久久国产| 欧美黑人巨大hd| 51午夜福利影视在线观看| 久久中文字幕一级| 国产精品女同一区二区软件 | 国产三级在线视频| 午夜免费观看网址| 一二三四社区在线视频社区8| 午夜福利免费观看在线| 制服丝袜大香蕉在线| 国产精品av久久久久免费| 国产亚洲欧美在线一区二区| 久久久水蜜桃国产精品网| 老汉色av国产亚洲站长工具| 国产高清视频在线观看网站| 九九久久精品国产亚洲av麻豆 | 床上黄色一级片| 嫩草影院精品99| 国产三级黄色录像| 欧美黑人欧美精品刺激| 88av欧美| 亚洲国产欧洲综合997久久,| 久久中文看片网| 日韩精品青青久久久久久| 中文亚洲av片在线观看爽| 在线观看66精品国产| 国产精品国产高清国产av| 999久久久精品免费观看国产| 久久久国产欧美日韩av| 色噜噜av男人的天堂激情| 床上黄色一级片| av在线天堂中文字幕| 老鸭窝网址在线观看| 男人和女人高潮做爰伦理| 中文字幕精品亚洲无线码一区| 热99re8久久精品国产| 99精品久久久久人妻精品| 一本久久中文字幕| 欧美色视频一区免费| 一级作爱视频免费观看| 精品无人区乱码1区二区| 一级作爱视频免费观看| 成人av在线播放网站| 久久久精品大字幕| 岛国在线观看网站| 在线a可以看的网站| 国产99白浆流出| 国产爱豆传媒在线观看| 999久久久国产精品视频| 18禁黄网站禁片免费观看直播| 国产精品香港三级国产av潘金莲| 精品国产三级普通话版| 国产成人福利小说| 男女之事视频高清在线观看| 亚洲av第一区精品v没综合| 久久久久久大精品| 舔av片在线| a级毛片a级免费在线| 欧美日韩乱码在线| 亚洲精华国产精华精| 国产综合懂色| 脱女人内裤的视频| 亚洲成av人片在线播放无| 一二三四在线观看免费中文在| 全区人妻精品视频| 欧美+亚洲+日韩+国产| 一区二区三区高清视频在线| 久久精品人妻少妇| 少妇人妻一区二区三区视频| 久久亚洲精品不卡| 亚洲狠狠婷婷综合久久图片| 偷拍熟女少妇极品色| 美女cb高潮喷水在线观看 | 真实男女啪啪啪动态图| 欧美最黄视频在线播放免费| 婷婷精品国产亚洲av| 亚洲专区中文字幕在线| 国产不卡一卡二| 美女黄网站色视频| 欧美日韩乱码在线| av女优亚洲男人天堂 | 不卡一级毛片| 97人妻精品一区二区三区麻豆| 久久精品国产清高在天天线| 哪里可以看免费的av片| 欧美zozozo另类| 午夜福利在线观看吧| 午夜激情欧美在线| 国内精品久久久久精免费| 岛国在线观看网站| 一二三四在线观看免费中文在| 精品国产超薄肉色丝袜足j| 欧美一区二区精品小视频在线| 丁香欧美五月| 亚洲av免费在线观看| 久久中文字幕人妻熟女| 亚洲国产色片| 国产久久久一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片女人18水好多| 一二三四在线观看免费中文在| 色在线成人网| 琪琪午夜伦伦电影理论片6080| 色播亚洲综合网| 国产麻豆成人av免费视频| 亚洲在线观看片| 亚洲专区国产一区二区| 久久久久亚洲av毛片大全| 国产av不卡久久| 欧美xxxx黑人xx丫x性爽| 中文字幕精品亚洲无线码一区| 久久午夜综合久久蜜桃| 一个人看视频在线观看www免费 | 岛国在线观看网站| 在线视频色国产色| 国产欧美日韩精品亚洲av| 午夜亚洲福利在线播放| 国产成人一区二区三区免费视频网站| 黄色丝袜av网址大全| 亚洲自偷自拍图片 自拍| 三级国产精品欧美在线观看 | 美女 人体艺术 gogo| 99久国产av精品| 搞女人的毛片| 成人国产一区最新在线观看| 在线观看一区二区三区| 成年女人永久免费观看视频| 国产伦人伦偷精品视频| 精品一区二区三区四区五区乱码| 最近最新中文字幕大全电影3| 欧美日韩精品网址| av天堂在线播放| a级毛片a级免费在线| 欧美日韩一级在线毛片| 亚洲av电影不卡..在线观看| 久久精品国产综合久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲成人精品中文字幕电影| 他把我摸到了高潮在线观看| 麻豆国产97在线/欧美| 日日干狠狠操夜夜爽| 国产成人av教育| 制服人妻中文乱码| 日本熟妇午夜| 色在线成人网| 淫秽高清视频在线观看| 最近最新免费中文字幕在线| 久久伊人香网站| 人妻丰满熟妇av一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲成人久久性| 国产主播在线观看一区二区| 一区福利在线观看| 久久久水蜜桃国产精品网| 成人无遮挡网站| 免费看日本二区| 成人精品一区二区免费| 日本黄大片高清| 久久精品国产亚洲av香蕉五月| 制服丝袜大香蕉在线| 国产69精品久久久久777片 | 五月玫瑰六月丁香| 听说在线观看完整版免费高清| 黄色片一级片一级黄色片| 最近最新中文字幕大全电影3| 在线观看免费视频日本深夜| 欧美在线黄色| 亚洲,欧美精品.| 亚洲七黄色美女视频| 成人av在线播放网站| 夜夜躁狠狠躁天天躁| 婷婷精品国产亚洲av| 国产又色又爽无遮挡免费看| 啦啦啦观看免费观看视频高清| 精品不卡国产一区二区三区| 日韩精品青青久久久久久| 色综合站精品国产| 国产精华一区二区三区| 99热这里只有精品一区 | 亚洲 国产 在线| 国产一区二区三区在线臀色熟女| av女优亚洲男人天堂 | 精品国产三级普通话版| 亚洲欧美日韩卡通动漫| 亚洲精品456在线播放app | 国产在线精品亚洲第一网站| 亚洲一区二区三区不卡视频| 午夜视频精品福利| 色综合站精品国产| 亚洲精品456在线播放app | 成人一区二区视频在线观看| 精品一区二区三区视频在线观看免费| 最新中文字幕久久久久 | 18禁裸乳无遮挡免费网站照片| 亚洲男人的天堂狠狠| 欧美日韩国产亚洲二区| 日韩精品青青久久久久久| 五月玫瑰六月丁香| 女警被强在线播放| 不卡av一区二区三区| 99国产极品粉嫩在线观看| 亚洲国产欧美人成| 欧美日韩福利视频一区二区| 91在线观看av| 美女免费视频网站| 高清毛片免费观看视频网站| 亚洲在线观看片| 国产亚洲av高清不卡| 国产精品香港三级国产av潘金莲| 亚洲七黄色美女视频| 国产精品亚洲av一区麻豆| 国产激情偷乱视频一区二区| 两个人的视频大全免费| 97超视频在线观看视频| 国产亚洲精品久久久com| 高潮久久久久久久久久久不卡| 97碰自拍视频| 亚洲aⅴ乱码一区二区在线播放| 美女扒开内裤让男人捅视频| 国内精品一区二区在线观看| 久久99热这里只有精品18| 成人av在线播放网站| 久久久久久久久中文| 三级国产精品欧美在线观看 | 免费观看的影片在线观看| svipshipincom国产片| 精品福利观看| 在线观看一区二区三区| 国产精品久久视频播放| 夜夜躁狠狠躁天天躁| 精品电影一区二区在线| 日本a在线网址| xxxwww97欧美| 激情在线观看视频在线高清| 国产免费av片在线观看野外av| 母亲3免费完整高清在线观看| 久久伊人香网站| 日韩人妻高清精品专区| 国产精品女同一区二区软件 | 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 美女黄网站色视频| 免费在线观看亚洲国产| 欧美日韩瑟瑟在线播放| 九九久久精品国产亚洲av麻豆 | 夜夜夜夜夜久久久久| 久久久久久久久中文| av天堂在线播放| 视频区欧美日本亚洲| 97超级碰碰碰精品色视频在线观看| 久久久久免费精品人妻一区二区| 久久久国产欧美日韩av| www.www免费av| 小蜜桃在线观看免费完整版高清| 久久国产乱子伦精品免费另类| 免费搜索国产男女视频| 级片在线观看| 小说图片视频综合网站| АⅤ资源中文在线天堂| 可以在线观看的亚洲视频| 国产aⅴ精品一区二区三区波| 老汉色∧v一级毛片| 日韩欧美一区二区三区在线观看| 久久久久久大精品| 久久久国产成人免费| 欧美日韩亚洲国产一区二区在线观看| 国产精品乱码一区二三区的特点| 国产精品av视频在线免费观看| www.www免费av| 免费一级毛片在线播放高清视频| 国产真人三级小视频在线观看| 丝袜人妻中文字幕| 亚洲av成人一区二区三| 欧美av亚洲av综合av国产av| 久久亚洲真实| 日韩欧美在线二视频| 免费在线观看影片大全网站| 国产黄a三级三级三级人| 国产视频内射| 亚洲最大成人中文| 九九久久精品国产亚洲av麻豆 | 精品欧美国产一区二区三| 精品久久久久久久人妻蜜臀av| 成人三级黄色视频| 男插女下体视频免费在线播放| 亚洲专区字幕在线| 日本免费一区二区三区高清不卡| 久久中文字幕人妻熟女| 中文字幕最新亚洲高清| 日韩欧美国产一区二区入口| 国产黄色小视频在线观看| 伦理电影免费视频| 国产乱人视频| 一边摸一边抽搐一进一小说| 午夜精品一区二区三区免费看| 色在线成人网| 黄片大片在线免费观看| 人妻丰满熟妇av一区二区三区| 欧美乱码精品一区二区三区| 日本一二三区视频观看| 亚洲成av人片免费观看| 中文资源天堂在线| 欧美午夜高清在线| 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 日日干狠狠操夜夜爽| 美女被艹到高潮喷水动态| 国产男靠女视频免费网站| 精品免费久久久久久久清纯| 国产欧美日韩精品一区二区| 在线视频色国产色| 久久久久九九精品影院| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩无卡精品| 99在线视频只有这里精品首页| 又黄又爽又免费观看的视频| 91麻豆精品激情在线观看国产| 国产97色在线日韩免费| 12—13女人毛片做爰片一| 免费在线观看亚洲国产| 国产成人影院久久av| 亚洲av片天天在线观看| 热99在线观看视频| 免费在线观看亚洲国产| 亚洲av成人一区二区三| 久久亚洲精品不卡| 国产精华一区二区三区| 日韩欧美在线乱码| 国产免费av片在线观看野外av| 久9热在线精品视频| 国产伦在线观看视频一区| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利视频1000在线观看| 中文资源天堂在线| 一进一出好大好爽视频| 18禁黄网站禁片午夜丰满| 国产熟女xx| 国产私拍福利视频在线观看| 亚洲人成伊人成综合网2020| 久久久久国产精品人妻aⅴ院| 久久久久久久久久黄片| 免费在线观看成人毛片| 亚洲熟女毛片儿| 午夜亚洲福利在线播放| 中文字幕av在线有码专区| 国产精品一及| 中出人妻视频一区二区| 日韩欧美 国产精品| 91久久精品国产一区二区成人 | 午夜久久久久精精品| 又粗又爽又猛毛片免费看| 亚洲国产精品成人综合色| 日韩大尺度精品在线看网址| 国产真人三级小视频在线观看| 成人av在线播放网站| 欧美日韩综合久久久久久 | 欧美av亚洲av综合av国产av| 性色avwww在线观看| www日本在线高清视频| 欧美黑人欧美精品刺激| 成人鲁丝片一二三区免费| 老熟妇仑乱视频hdxx| 免费看十八禁软件| 在线a可以看的网站| 日本 欧美在线| 欧美不卡视频在线免费观看| 免费大片18禁| 国产欧美日韩精品一区二区| 精品乱码久久久久久99久播| 美女扒开内裤让男人捅视频| 黄色日韩在线| 免费大片18禁| 一区二区三区国产精品乱码| 波多野结衣高清作品| av片东京热男人的天堂| 日本成人三级电影网站| 淫秽高清视频在线观看| 校园春色视频在线观看| 午夜影院日韩av| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 又大又爽又粗| 亚洲一区二区三区不卡视频| 国产精品日韩av在线免费观看| xxx96com| 日韩欧美一区二区三区在线观看| 91麻豆av在线| 亚洲专区中文字幕在线| 精品一区二区三区视频在线 | 国产精品99久久99久久久不卡| 观看美女的网站| 欧美乱码精品一区二区三区| 变态另类丝袜制服| 亚洲在线自拍视频| 99热只有精品国产| 日本在线视频免费播放| 亚洲美女黄片视频| 一进一出抽搐动态| 中文亚洲av片在线观看爽| 欧美在线一区亚洲| 超碰成人久久| 久久精品综合一区二区三区| 黄色丝袜av网址大全| 91av网一区二区| 99久久国产精品久久久| 国产午夜福利久久久久久| 两个人视频免费观看高清| 亚洲av中文字字幕乱码综合| 宅男免费午夜| www.精华液| 亚洲美女黄片视频| 精品一区二区三区四区五区乱码| 久久久久久人人人人人| 久久久久九九精品影院| 色老头精品视频在线观看| 中文字幕熟女人妻在线| 高潮久久久久久久久久久不卡| 国产精品久久久人人做人人爽| 99久久综合精品五月天人人| 嫩草影视91久久| 男人和女人高潮做爰伦理| 不卡av一区二区三区| 国产精品av久久久久免费| 国产激情偷乱视频一区二区| 九色成人免费人妻av| 人妻丰满熟妇av一区二区三区| 亚洲精品色激情综合| 日本一本二区三区精品| 男女下面进入的视频免费午夜| 亚洲人成伊人成综合网2020| 999久久久精品免费观看国产| a级毛片在线看网站| 亚洲国产精品合色在线| 国产精品av久久久久免费| 丁香六月欧美| 99热只有精品国产| 在线播放国产精品三级| 精华霜和精华液先用哪个| x7x7x7水蜜桃| 国产乱人视频| 欧美成狂野欧美在线观看| 少妇熟女aⅴ在线视频| 偷拍熟女少妇极品色| 亚洲中文日韩欧美视频| 亚洲精品国产精品久久久不卡| 国产成人av激情在线播放| 国产蜜桃级精品一区二区三区| 亚洲欧美精品综合久久99| 男人舔女人的私密视频| 精品无人区乱码1区二区| 国产av在哪里看| www国产在线视频色| 色在线成人网| 久久草成人影院| 亚洲美女视频黄频| av黄色大香蕉| 男人舔女人下体高潮全视频| 国产日本99.免费观看| 日本免费一区二区三区高清不卡| 男插女下体视频免费在线播放| 三级男女做爰猛烈吃奶摸视频| av视频在线观看入口| 免费在线观看视频国产中文字幕亚洲| 一个人免费在线观看的高清视频| 亚洲欧美日韩高清在线视频| 美女高潮喷水抽搐中文字幕| 观看免费一级毛片| 香蕉av资源在线| 国产人伦9x9x在线观看| avwww免费| 熟女少妇亚洲综合色aaa.| 天天躁狠狠躁夜夜躁狠狠躁| 夜夜夜夜夜久久久久| www.自偷自拍.com| 99久久国产精品久久久| 91字幕亚洲| 狂野欧美白嫩少妇大欣赏| 大型黄色视频在线免费观看| 女警被强在线播放| 亚洲专区中文字幕在线| 狂野欧美白嫩少妇大欣赏| 999久久久国产精品视频| 国产日本99.免费观看| 国产真人三级小视频在线观看| 亚洲avbb在线观看| 国产不卡一卡二| 校园春色视频在线观看| 热99在线观看视频| 法律面前人人平等表现在哪些方面| 精华霜和精华液先用哪个| 欧美极品一区二区三区四区| 久久精品aⅴ一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 欧美午夜高清在线| 国产aⅴ精品一区二区三区波| 久久99热这里只有精品18| 久久久久精品国产欧美久久久|