• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization☆

    2017-05-28 07:28:50EunSungJoXinghaiAnPravinIngoleWonKilChoiYeongSungParkHyungKeunLee

    Eun-Sung Jo ,Xinghai An ,Pravin G.Ingole ,Won-Kil Choi,Yeong-Sung Park ,Hyung-Keun Lee ,*

    1 Korea Institute of Energy Research(KIER),71-2 Jang-dong,Yuseong-gu,Daejeon 305343,Republic of Korea

    2 Department of Environmental Engineering,Daejeon University,Daejeon,Republic of Korea

    3 Department of Advanced Energy and Technology,University of Science and Technology(UST),217 Gajeong-ro,Yuseong-gu,Daejeon 305-350,Republic of Korea

    1.Introduction

    Membrane gas separation is a developing technology since it has many promising industrial applications like H2/CO separations,SO2/CO2/N2separation,and natural gas promotion[1,2].Especially in CO2capture,membrane processes have attracted great attention due to several merits such as low cost,high energy efficiency,environmental sustainability and simple scaling up[3].According to most researches and studies,polymeric membrane separation is still restricted by the well-known trade-off trend between gas permeability and selectivity[4].Many researches have been carried out to achieve desired separation performance using polymeric membrane thereby meeting technoeconomic requirement of CO2capture[5–8].Our recent pilot plant study[9]showed that CO2removal efficiency and CH4concentration in retentate are increased by post-treatment.Additionally,feed flow rate also has an influence on CO2removal efficiency owing to driving force change.The permeability of a specific gas through the membrane is the product of its diffusivity and solubility.The contribution of diffusivity to permeability is typically small so that a significant increase in permeability insinuates the improvement in solubility[10].

    The separation of CO2from CH4is of main importance in numerous industrial processes such as biogas upgrading,natural gas sweetening,and land fill gas purification[11].The use of sustainable and renewable energy resource is required in a view of the fact that of environmental pollution and global warming owing to the emission of greenhouse gases.Several industrial technologies typically engaged for this separation intention containing chemical absorption,pressure swing adsorption(PSA)and the main is membrane separation[12].Membrane separation technology has materialized and concerned rising interest in CO2separation and capture research during the last two decades,owing to its high energy efficiency,simplicity in design and module manufacture and environmental compatibility[2].Diverse membrane categories include polymeric membranes,inorganic membranes,and mixed matrix membranes for the CO2/CH4separation that are available.Herewith in this work we used the polymeric membranes for CO2/CH4mixture gas separation.

    One of the most widely investigated glassy polymeric membrane materials for CO2/CH4separation is polysulfone(PSf).Pure-and mixed-gas permeation properties using PSf have been extensively explored for gas separation because of its low price,chemical stability,and mechanical strength[13].It is well known that the polymeric membranes mechanical performance engaged the deformation of a material underneath the influence of an applied force.In the separation process using membrane,the membrane considered as a permselective barrier between two phases and membrane is at the heart of a process.For example,transport through the PSf membrane will take place as a result of the driving force acting on the individual components in the feed[14,15].The gas substances transport transversely through the membrane either by pressure or by concentration difference to obtain a higher permeance,excess pressure will frequently apply to the upstream of the membrane.Herewith present experiments,applied pressure is up to 5 bar and there is no effect on the mechanical properties of the PSf hollow fiber membrane.Compared with CA,PSf has lower CO2permeability and CO2/CH4selectivity but higher plasticization pressure[16].Plasticization pressure has become an important factor in practice due to its effect on membrane selectivity.Membrane with higher plasticization pressure can maintain the selectivity better than that with lower plasticization pressure under high CO2feed concentration or high operation pressure[17].Although various types of PSf-based membranes for CO2/CH4separation have been developed,industrially available membranes are limited.Many studies have been done to overcome those difficulties by changing membrane manufacturing process,formulation,and material modification[18].

    Interfacial polymerization(IP)has become an entrench method for the preparation of thin film composite(TFC)membranes for diverse applications[19–21],like ultrathin responsive and enantioselective films[22,23].The major advantages of the IP process involve the formation of an ultrathin active thin film[24],the minimization of macro void fault[25],and the tunable functional groups[26].Many researches have been focused on the preparation of TFC membranes for gas separation using IP technique,and the results showed that IP is also an effective way for the synthesis of gas separation membranes[27].Yunet al.[28]studied the effects of polymerization conditions on membrane structure and performance.

    In the view of abovementioned advantages of TFC membranes,we aimed to design and explore TFC hollow fiber membranes(HFM)for the application of CO2/CH4mixture gas separation.To our best knowledge,it is a pioneering work to fabricate polymeric inner-selective TFC hollow fiber membranes in this field.The effects of interfacial polymerization conditions on single gas as well as CO2/CH4mixture gas separation performance of TFC HFM were studied.

    The most suitable procedure for TFC HFM fabrication has been identified based on mentioned study.The outcome ofthis study may provide useful insights towards the design of inner-selective PSf-based TFC HFM for next generation of gas separation.

    2.Experimental

    2.1.Materials

    The polysulfone(PSf)ultrafiltration membranes with an average molecular weight cut-off of 6000,were supplied by Guiyang Shidai Huitong Film Technology Co.Ltd.(China).The coating materials used in interfacial polymerization process,1,3–cyclohexanebis–methylamine(CHMA,purity>99.5%),and trimesoyl chloride(TMC,purity>99.5%)were purchased from Sigma-Aldrich.N-hexane(99.9%,Fisher Scientific,NJ)was purchased and used as a solvent for TMC.All chemical reagents used for this study were used as received.Deionized(DI)water from Milli-Q ultrapure water purification system(Millipore)was used as aqueous phase solvent.Pure CO2(99.5%,SAFETY GAS,KOREA)and CH4(99.9%,SAFETY GAS,KOREA)were used as carrier gas.The balanced(mixed)gas in a ratio of 30:70 was used.

    2.2.Characterization of composite hollow fiber membranes

    The chemical characterization of composite hollow fiber membranes was accomplished by ATR-FTIR spectra(Bruker)at 600–4000 cm?1.The surface morphology of fiber surface and cross-section was examined by Scanning Electron Microscopy(SEM,S-4700,HITACHI).The completely dried sample fibers were moisturized with distilled water and fractured by liquid nitrogen.The surface topography of membranes before and after interfacial polymerization was studied by atomic force microscope/Surface Probe Microscope(Nanoman AFM system,Veeco)in tapping mode.Small strip of membranes were placed on a specific sample holder and 3 μm × 3 μm areas were scanned.Mean roughness(Ra),root mean squareZvalues(Rms),and maximum vertical distance between the highest and lowest data points(Rmax)were used to quantify the surface topology of membranes.The mean roughness was specifically used to quantify the difference between various membrane surfaces and was determined by the averages of at least 5 sections of several fibers.

    2.3.Preparation of composite membrane by interfacial polymerization

    The thin film composite(TFC)membrane was prepared by coating a selective layer in situ on the inside surface of PSf hollow fiber membrane via interfacial polymerization(IP)between organic and aqueous phase monomers as shown in Fig.1.1,3-cyclohexanebis methylamine(CHMA)was selected as the aqueous phase monomer and trimesoyl chloride(TMC)was selected as the organic phase monomer.The operating conditions for fabricating TFC membranes were classified and summarized.By using an inside coating apparatus,the PSf hollow fiber membrane module was firstly equipped in the unit.After that,aqueous solution containing 1,3-cyclohexanebis methylamine(CHMA)was continuously circulated for 10 min at constant flow rate followed by purging for 3 min atconstant flow rate using N2gas to remove excess solution.Then the hexane solution containing TMC in desired concentration was circulated for 5 min at constant flow rate followed by N2purging.The polymerization reaction occurs inside PSf hollow fiber membrane resulting in formation of an ultrathin layer of cross-linked co-polyamide.The composite membrane so obtained was cured in hot air circulation at 70 °C for 10 min in an oven(oven accuracy:0.1 °C)whereby the polymer layer attains chemical stability[29].Table 1 discloses the compositions of aqueous and organic phase solutions,and reaction times used for interfacial polymerization as well.

    Fig.1.Reaction scheme by using CHMA and TMC for the preparation thin film composite(TFC)membrane(inside coating)by interfacial polymerization method.

    Table 1Composition of aqueous and organic solutions and reaction times used for the preparation of selective layer

    2.4.Pure gas permeation

    The experimental set-ups for pure gas permeation was illustrated in Fig.2.The experimental conditions are summarized in Table 2.To determine the pure gas permeance,the module was fed with CO2(99.5%,SAFETY GAS,KOREA)and CH4(99.99%,SAFETY GAS,KOREA)towards tube side of membranes,respectively.The permeate side was maintained at atmospheric pressure,and the direction of permeate flow was controlled in counter-current mode for maximum efficiency.Both retentate and permeate flow rates were measured with bubble flow meters with a range of 0.1–0.5 MPa in pressure(pressure gauge error:±0.8%)and 293.15–323.15 K in temperature.

    The permeance is described by the following equation:

    whereQPis the permeate flow rate through the membrane,△Pis the gas pressure difference across the membrane,andAis the effective membrane area.The unit of permeance is expressed as mol·m?2·s?1·Pa?1or cm3(STP)·cm?2·cmHg?1·s?1in the SI system.However,the more widely used and accepted expression for permeance is gas permeation units(GPU),where 1 GPU=1 × 10?6cm3(STP)·cm?2·cmHg?1·s?1[30].

    The ideal selectivity is the ratio of the pure gas permeances as follows:

    2.5.Mixed gas permeation

    The CO2/CH4mixture gas separation system was illustrated in Fig.2.Experimental conditions and mixture gas compositions are listed in Table 2.The CO2/CH4mixture in a ratio of 70:30 as balanced gas was used.The effects of various operating variables(e.g.,pressure,temperature,and stage cut)were tested.In particular,pressure and stage-cut were controlled by retentate side via a back pressure regulator installed at the retentate side.The operating temperature was kept constant by air circulation inside an oven for balancing with hollow fiber module and feed gas.The permeate side was maintained at atmospheric pressure.The permeate and retentate gas flow rates were measured by bubble flow meters.The compositions of the retentate and permeate streams were determined by a CO2/CH4analyzer(Madur,model:maMoS-400).All measurements were recorded when the system reached its steady state.

    The mixture gas permeance can be determined by the following equation[31]

    Table 2Experimental condition for single gas and mixture gas separation

    wherePiis permeance of component gasi(GPU)in the mixture,Vis total permeate flow rate(cm3·s?1)of componenti,pFandpPare the feed and permeate pressure(kPa),xis logarithmic mean of feed and retentate compositions,and accordinglyxiF,xiRare feed and retentate compositions of componenti.

    Since gas mixtures show non-ideal gas effects,individual permeances were calculated using fugacity instead of partial pressure at feed side[32,33].Thus,the permeance in the mixture can be rewritten as follows:

    Fig.2.Schematic diagram of gas permeation experiment apparatus.

    whereQPis permeate flow rate(cm3·s?1),xiis the permeate side composition of componenti,fFis the fugacity of each component at feed side.yiandziare the composition of componentiat retentate and feed sides,respectively.Fugacity of each gas approaches the ideal behavior in the limit of low pressure because it is related with standard chemical potential differences for different gases arisen solely from internal molecular structures.The Peng–Robinson equation is used for calculating the fugacity coefficients of each component in the mixture since it supports the widest range of operating conditions and the greatest variety of the systems.This equation is easy to use and it often accurately represents the correlation among temperature,pressure,and phase compositions in binary and multi-component systems[25].It is also reported that Peng–Robinson equation yields a good estimate for the non-polar gas and slightly polar gas[34].

    The stage-cut is an important factor to determine separation performance of the mixture gas,and it is expressed as follows:

    The feed flow rate(ml·min?1)is summation of permeate and retentate flow rates.Therefore,the feed flow rate was controlled by the retentate flow rate.The separation factor for mixture gas is defined as follows:

    where π indicates relative change of compositions between feed and permeate sides,CiandCjare compositions of componentiandj,respectively.F and P represent feed and permeate side.

    3.Results and Discussions

    3.1.ATR-FTIR analysis

    The IR spectrum of composite membranes is listed in Fig.3(prepared by CHMA-TMC monomers).It shows a strong amide-I band at 1648 cm?1which is the characteristic of the C=O stretching vibrations of the amide group.A strong characteristic amide-II band,which occurs from the couplings of in-plane N–H bending and C–N stretching vibrations of the C–N–H group,is observed at 1546 cm?1.These two bands(amide-I and amide-II)are characteristics for amides because of their constant position and strong intensities.The amide-II band splits into a multiplet,with peak positions at 1576,1550,and 1545 cm?1.The split in amide-II band is caused by the difference in the dipoles of C–N bond of C(=O)–N–H and C(=O)–N– groups.It is well known that the ν(C=O)frequency shifts with the functional group that bonds directly to the carbon atom.Electron withdrawing substituent's cause an electrostatic stabilization of the C=O group and a shift of the C=O frequency to higher values,while electron donating substituent's destabilize the C=O group.

    Fig.3.ATR-FTIR of PSf and thin film composite membranes(a)PD1,(b)PD2,(c)PD3 and(d)PD4 prepared at different conditions.

    3.2.SEM analysis

    The morphology of composite membranes was observed in scanning electron microscope.Fig.4 displays the effect of monomer concentration on thickness of TFC membrane.The fig.4(a–d)showed the cross section images of TFC membrane along with surface images shown in Fig.4(e–h)of membrane prepared with different CHMA concentrations,and with different TMC concentrations.The surface thickness depends on the monomer concentration and degree of cross-linking.TFC membrane formed when aqueous phase monomer reacts with organic phase monomer.Therefore,increased aqueous phase monomer contributed increasing surface thickness by diffuse with organic phase monomer[35].According to the studies about the effect of organic phase monomer on gas permeance[35–37],the organic phase also increased thickness as the monomer concentration increased as shown in Fig.4.

    3.3.AFM image

    Fig.5 presents the AFM 3D images of the top surfaces of the TFC membranes.The bar at the bottom of each image indicates the vertical deviations in the sample with the white regions being the highest and the black regions the lowest.The values of mean roughness(Ra),were obtained based on a 3.0 μm × 3.0 μm scan area.The average roughness values have been obtained from depth pro file of the membrane sample area of 3.0 μm × 3.0 μm.The root-mean-square roughness(Rms)of PSf membrane and the TFC membranes(PD1,PD2,PD3,PD4)samples are obtained in between(4.9±0.7)nm and(75.9±2.5)nm,suggesting more rough surface could be generated after the interfacial polymerization of CHMA with TMC.The roughness might be resulted from the fluctuation on the polyamide-organic solvent interface[38].Recently,we found the roughness could be also affected by the competition between the reactions of TMC with amine group of aromatic ring on the film surface[39].

    3.4.Effect of aqueous phase concentration and organic phase concentration on CO2/CH4 permeance and selectivity

    Experimentally determined values of skin layer thickness,CO2permeance,CH4permeance,and CO2/CH4selectivity for TFC membranes according to different CHMA concentrations are plotted in Figs.6,7 and 8 respectively.Observed skin layer thickness varies slightly around 140 nm in CHMA concentration range of 0.5%–1.0%.In addition,with CHMA concentration increasing,observed extent of crosslinking increases continuously.Besides,as shown in Fig.6,with CHMA concentration increasing,CO2permeance increases whereas CH4permeance increases slowly.Moreover,CO2/CH4selectivity is found to be increased with an increase in CHMA concentration.CO2permeance is less correlated with skin layer thickness(negatively)and crosslinking(positively)while CH4permeance correlates more with skin layer thickness(negatively)and but less with crosslinking(negatively).The relationship between structural properties and performance for TFC membranes prepared with different CHMA concentrations can be explained as follows.Our previous study has proved that the monomers in both aqueous and organic phases play important roles in determining skin layer thickness of TFC membranes[14].However,TMC is fixed in this experiment,which drives IP process to be controlled by the diffusion of CHMA through the aqueous phase into the reaction region.Hence,skin layer thickness is determined by CHMA concentration rather than TMC concentration[14].When the CHMA concentration in aqueous phase is very low(0.5%),there is not enough CHMA to form an integrated network structure[40].Meanwhile,the excess acyl chloride groups are hydrolyzed to form a loose structure with a very low crosslinking extent[40].As the CHMA concentration is further increased,nearly fully crosslinked skin layer gradually forms,contributing to the further increase of the crosslinking extent.Fig.4 shows the representative SEM images of membranes prepared with various CHMA and TMC concentrations.By visual inspection,skin layer thicknesses increase rapidly in high concentration range from 0.5%to 1.0%.Besides,observed extent of crosslinking correlates with TMC concentration moderately in the lower range but strongly in the higher range.These relationships suggest that TMC concentration in organic phase governs skin layer thickness of TFC membrane in the whole range of TMC concentration.Higher TMC concentration facilitates the formation of crosslinked skin layer in smaller TMC concentration range,and vice versa.At a low TMC concentration(0.5%),the reaction rate is very low,which produces limited polymers[41].With increasing TMC concentration from 0.5%to 1.0%,the rate of polymerization reaction becomes higher,which produces a thicker skin layer under the same reaction time[42].Generally,TMC molecules participate in two competitive processes,i.e.polymerization and oxidation.At a low TMC concentration(0.5%),the polymerization reaction rate is low,leading to the oxidation of a large proportion of TMC and yield of–COOH groups.Therefore,a lower crosslinking extent is obtained at a lower TMC concentration.With increasing TMC concentration,the polymerization reaction rate is largely accelerated[43],which results in a larger proportion of TMC reacting with CHMA to gain a more crosslinked polymer.The selectivity for TFC membranes prepared with different CHMA and TMC concentrations are presented in Fig.8.

    Fig.4.SEM images of thin film composite membrane(a)PD1,(b)PD2,(c)PD3 and(d)PD4 are the cross section images and(e)PD1,(f)PD2,(g)PD3 and(h)PD4 are the surface images prepared at different conditions.

    The mixture gas separation results are shown in Fig.9.Fig.9(a)and(b)present the permeance of CO2and CH4in mixture gas.In the mixture gas,where CO2is permeated more preferentially than CH4through all TFC membranes,since CO2has high quadrupole moment while methane is nonpolar.With the stronger electrostatic interactions between CO2and the membrane,the CH4permeance becomes lower in the mixture system.Moreover,a comparison ofFig.9(a)and(b)indicates that in the system of CO2/CH4mixture,the CO2permeances through the composite membranes are remarkably higher than that of CH4.Fig.9(c)shows the CO2/CH4mixture gas selectivities through all TFC membranes that decrease with increasing stage cut.Besides,the selectivity of PD1 is significantly higher than that of all TFC membranes,but it incessantly decreases while increasing stage cut,compare to other TFC membranes.For example,atstage cut0.1,the CO2/CH4selectivity of PD1 is up to 28,which is obviously higher than that of all TFC membranes.Given that many industrial membrane based separation applications are performed in low stage cut region for to obtain outstanding selectivity.As a result,the TFC membrane PD1 can enhance selectivity for CO2/CH4,especially in the low stage cut region.All these results phenomena proved that the material concentrations used to prepare TFC PD1 shows significantly positive impact on the CO2capacity and CO2/CH4selectivity of the composite membrane.

    Fig.5.AFM images of thin film composite membranes(a)PD1,(b)PD2,(c)PD3 and(d)PD4 prepared at different conditions.

    Fig.6.Comparison of CO2 permeance on various concentrations at 30°C.

    Fig.7.Comparison of CH4 permeance on various concentrations at 30°C.

    Fig.8.Comparison of CO2/CH4 selectivity on various concentrations at 30°C.

    3.5.Effect of pressure on CO2/CH4 permeance and selectivity

    The impact of operating pressure on the gas permeability at five different pressures(0.1 to 0.5 MPa)are shown in Fig.10.As it is observed,permeability of carbon dioxide and methane through all TFC membranes does not significantly change with trans-membrane pressure difference.For both CO2and CH4,it can be interpreted by the fact that the permeability is related to two determinant factors,namely diffusion and solution.Representative CO2/CH4permeance of TFC membranes prepared with different concentrations of aqueous and organic solvents are plotted in Fig.10.With increasing feed pressure,the concentration of CO2in membrane phase increases.Thus,some carriers may be tiedup with the CO2molecules and can combine with excess CO2,resulting in an increase in CO2permeance with increase pressure.However,CO2permeance of TFC membranes prepared with different concentration of monomer varies at a higher pressure range from 0.1 to 0.5 MPa(Fig.10)since the carriers in the membranes are saturated with CO2to their maximum capacity under high pressure[44].

    3.6.Effect of temperature on CO2/CH4 permeance and selectivity

    Fig.11 present permeance of CO2and CH4through TFC membranes(PD1)prepared in this study according to different temperatures.As temperature increases,gas diffusivity through TFC membranes increases,causing the increase in permeance.Permeance of CH4is more sensitive to temperature through all TFC membranes than that of CO2permeance.As shown in Fig.11,permeance of CO2and CH4are increased by increasing temperature for all TFC membranes studied in our research,as explained above,the permeance of both gases through TFC membranes increase with increasing operating temperature,causing the CO2/CH4selectivity to decrease.

    Fig.9.Comparison of(a)CO2 permeance,(b)CH4 permeance and(c)CO2/CH4 selectivity in mixture gas on various concentrations at 30°C.

    Fig.10.Effect of pressure on permeance and selectivity for PD1,PD2,PD3 and PD4 thin film composite membranes.

    3.7.Comparison with other membranes

    The performance of TFC membranes obtained in this work and others reported elsewhere are listed in Table 3[45–50].The TFC-PD1 membrane prepared with 1.0%CHMA and 0.5%TMC showed the best selectivity of 28 whereas TFC-PD2 membrane prepared with 1.0%CHMA and 1.0%TMC showed the best CO2permeance of 37.Moreover,as shown in Table 3,the CO2permeance,CH4permeance and CO2/CH4selectivity of the state-of-the-art polymeric membranes with high performance by physical separation mechanisms in laboratory level(entry numbers 1–6 in Table 3)are close to the trade-off bound.As comparison,CO2permeances of TFC membranes in this work are higher than those by physical separation.TFC membranes with further improved performance can be obtained by the selection of other aqueous monomers along with preparative conditions based on the findings of this work.

    4.Conclusions

    Four types of TFC membranes have been prepared and investigated to find optimum performance.The results showed that partial pressure of either diffusing gas through supported TFC membranes does not have any effect on permeability.Moreover,permeability of gases increases with increasing temperature.TFC membranes for CO2/CH4separation were prepared using CHMA and TMC by interfacial polymerization on PSf support membrane.The relationships among conditions of skin layer formation,skin layer structure,and membrane separation performance were investigated.Generally,higher CHMA concentration in the aqueous solvent could produce thicker,and less crosslinked skin layers,while lower CHMA concentration in the aqueous solvent could produce thinner,and more crosslinked skin layers.TMC concentration in organic phase determines skin layer thickness,whereas CHMA concentration in aqueous phase governs the crosslinking extent of skin layer.Overall,under the circumstances of forming an integrated skin layer,membranes with high CO2permeance and high CO2/CH4selectivity could be obtained at equimolar concentrations and decreased TMC concentration,respectively.The above culminations have great academic consequence for the controlled preparation of gas separation membranes.

    Table 3Comparison of CO2/CH4 separation performance of the membrane obtained in this work with other membranes

    [1]O.C.David,D.Gorri,A.Urtiaga,I.Ortiz,Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2post combustion mixtures using a matrimid membrane,J.Membr.Sci.378(2011)359–368.

    [2]K.H.Kim,P.G.Ingole,J.H.Kim,H.K.Lee,Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2mixed gas,Chem.Eng.J.233(2013)242–250.

    [3]S.Roussanaly,R.Anantharaman,K.Lindqvist,H.Zhai,E.Rubin,Membrane properties required for post-combustion CO2capture at coal- fired power plants,J.Membr.Sci.511(2016)250–264.

    [4]L.M.Robeson,The upper bound revisited,J.Membr.Sci.320(2008)390–400.

    [5]S.Wang,Y.Liu,S.Huang,H.Wu,Y.Li,Z.Tian,Z.Jiang,Pebax–PEG–MWCNT hybrid membranes with enhanced CO2capture properties,J.Membr.Sci.460(2014)62–70.

    [6]I.Taniguchi,T.Kai,S.Duan,S.Kazama,H.Jinnai,A compatible crosslinker for enhancement of CO2capture of poly(amidoamine)dendrimer-containing polymeric membranes,J.Membr.Sci.475(2015)175–183.

    [7]V.Na fisi,M.-B.H?gg,Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2capture,J.Membr.Sci.459(2014)244–255.

    [8]H.Lin,Z.He,Z.Sun,J.Vu,A.Ng,M.Mohammed,J.Kniep,T.C.Merkel,T.Wu,R.C.Lambrecht,CO2-selective membranes for hydrogen production and CO2capture—part I:membrane development,J.Membr.Sci.457(2014)149–161.

    [9]K.H.Kim,W.K.Choi,H.D.Jo,J.H.Kim,H.K.Lee,Hollow fiber membrane process for the pretreatment of methane hydrate from land fill gas,Fuel Process.Technol.121(2014)96–103.

    [10]N.V.Blinova,F.Svec,Functionalized high performance polymer membranes for separation of carbon dioxide and methane,J.Mater.Chem.A2(2014)600–604.

    [11]F.Wang,S.Fu,G.Guo,Z.Z.Jia,S.J.Luo,R.B.Guo,Experimental study on hydratebased CO2removal from CH4/CO2mixture,Energy104(2016)76–84.

    [12]U.Cakal,L.Yilmaz,H.Kalipcilar,Effect of feed gas composition on the separation of CO2/CH4mixtures by PES-SAPO 34-HMA mixed matrix membranes,J.Membr.Sci.417–418(2012)45–51.

    [13]P.Sukitpaneenit,T.-S.Chung,Fabrication and use of hollow fiber thin film composite membranes for ethanol dehydration,J.Membr.Sci.450(2014)124–137.

    [14]P.G.Ingole,W.Choi,K.H.Kim,H.D.Jo,W.K.Choi,J.S.Park,H.K.Lee,Preparation,characterization and performance evaluations of thin film composite hollow fiber membrane for energy generation,Desalination345(2014)136–145.

    [15]P.G.Ingole,M.I.Baig,W.K.Choi,H.K.Lee,Synthesis and characterization of polyamide/polyester thin- film nanocomposite membranes achieved by functionalized TiO2nanoparticles for water vapor separation,J.Mater.Chem.A4(2016)5592–5604.

    [16]K.H.Kim,P.G.Ingole,J.H.Kim,H.K.Lee,Experimental investigation and simulation of hollow fiber membrane process for SF6 recovery from GIS,Polym.Adv.Technol.24(2013)997–1004.

    [17]Y.Zhang,N.L.Le,T.S.Chung,Y.Wang,Thin- film composite membranes with modified polyvinylidene fluoride substrate for ethanol dehydration via pervaporation,Chem.Eng.Sci.118(2014)173–183.

    [18]V.Freger,Kinetics of film formation by interfacial polycondensation,Langmuir21(2005)1884–1894.

    [19]P.G.Ingole,W.K.Choi,G.B.Lee,H.K.Lee,Thin- film-composite hollow- fiber membranes for water vapor separation,Desalination(2016),http://dx.doi.org/10.1016/j.desal.2016.06.003.

    [20]P.G.Ingole,H.C.Bajaj,K.Singh,Preparation and performance evaluation of enantioselective polymer composite materials,RSC Adv.3(2013)3667–3676.

    [21]P.G.Ingole,N.P.Ingole,Methods for separation of organic and pharmaceutical compounds by different polymer materials,Korean J.Chem.Eng.31(2014)2109–2123.

    [22]P.G.Ingole,H.C.Bajaj,K.Singh,Optical resolution of racemic lysine monohydrochloride by novel enantioselective thin film composite membrane,Desalination305(2012)54–63.

    [23]P.G.Ingole,H.C.Bajaj,K.Singh,Membrane separation processes:Optical resolution of lysine and asparagine amino acids,Desalination343(2014)75–81.

    [24]C.W.Tsai,C.Tasi,R.C.Ruaan,C.C.Hu,K.R.Lee,Interfacially polymerized layers for oxygen enrichment:A method to overcome Robeson's upper-bound limit,ACS Appl.Mater.Interfaces5(2013)5563–5568.

    [25]M.R.Kosuri,W.J.Koros,Defect-free asymmetric hollow fiber membranes from Torlon,a polyamide-imide polymer,for high pressure CO2separations,J.Membr.Sci.320(2008)65–72.

    [26]T.Mohammadi,M.T.Moghadam,M.Saeidi,M.Mahdyarfar,Acid gas permeation behavior through poly(ester urethane urea)membrane,Ind.Eng.Chem.Res.47(2008)7361–7367.

    [27]M.Wang,Z.Wang,S.Li,C.Zhang,J.Wang,S.Wang,A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2separation from flue gas,Energy Environ.Sci.6(2013)539–551.

    [28]S.H.Yun,P.G.Ingole,K.H.Kim,W.K.Choi,J.H.Kim,H.K.Lee,Properties and performances of polymer composite membranes correlated with monomer and polydopamine for flue gas dehydration by water vapour permeation,Chem.Eng.J.258(2014)348–356.

    [29]P.G.Ingole,W.Choi,K.H.Kim,C.H.Park,W.K.Choi,H.K.Lee,Synthesis,characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation,Chem.Eng.J.243(2014)137–146.

    [30]R.J.Sadus,Calculating critical transitions of fluid mixtures:theory vs.experiment,AIChE J.40(1994)1376–1403.

    [31]Y.Yampolskii,I.Pinnau,B.Freeman,Material science of membranes for gas and vapor separation,John Wiley&sons Ltd.,England,2006.

    [32]M.Peer,S.M.Kamali,M.Nahdeyarfar,T.Mohammadi,Separation of hydrogen from carbon monoxide using a hollow fiber polyimide membrane:experimental and simulation,Chem.Eng.Technol.30(2007)1418–1425.

    [33]P.Coutsikos,K.Magoulas,G.M.Kontogeorgis,Prediction of solid–gas equilibria with the Peng–Robinson equation of state,J.Supercrit.Fluids25(2003)197–212.

    [34]X.W.Yu,Z.Wang,Z.H.Wei,S.J.Yuan,J.Zhao,J.X.Wang,Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2capture,J.Membr.Sci.362(2010)265–278.

    [35]M.I.Baig,P.G.Ingole,W.K.Choi,S.R.Park,E.C.Kang,H.K.Lee,Development of carboxylated TiO2incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration,J.Membr.Sci.514(2016)622–635.

    [36]S.Li,Z.Wang,C.Zhang,M.Wang,F.Yuan,J.Wang,S.Wang,Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2separation,J.Membr.Sci.436(2013)121–131.

    [37]Y.Liu,B.He,J.Li,R.D.Sandersonc,L.Li,S.Zhang,Formation and structural evolution of biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization,J.Membr.Sci.373(2011)98–106.

    [38]P.G.Ingole,K.H.Kim,C.H.Park,W.K.Choi,H.K.Lee,Preparation,modification and characterization of polymeric hollow fiber membranes for pressure-retarded osmosis,RSC Adv.4(2014)51430–51439.

    [39]P.G.Ingole,K.Singh,H.C.Bajaj,Enantioselective polymeric composite membrane for optical resolution of racemic mixtures of α-amino acids,Sep.Sci.Technol.46(2011)1898–1907.

    [40]W.Choi,P.G.Ingole,J.S.Park,D.W.Lee,J.H.Kim,H.K.Lee,H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method,Chem.Eng.Res.Des.102(2015)297–306.

    [41]M.I.Baig,P.G.Ingole,W.K.Choi,S.R.Park,E.C.Kang,H.K.Lee,Water vapor permeation behavior of interfacially polymerized polyamide thin film on hollow fiber membrane substrate,J.Taiwan Inst.Chem.Eng.60(2016)623–635.

    [42]K.Singh,P.G.Ingole,H.Bhrambhatt,A.Bhattachayra,H.C.Bajaj,Preparation,characterization and performance evaluation of chiral selective composite membranes,Sep.Purif.Technol.78(2011)138–146.

    [43]A.L.Ahmad,B.S.Ooi,Properties-performance of thin film composites membrane:study on trimesoyl chloride content and polymerization time,J.Membr.Sci.255(2005)67–77.

    [44]K.T.Woo,G.Dong,J.Lee,J.S.Kim,Y.S.Do,W.H.Lee,H.S.Lee,Y.M.Lee,Ternary mixed-gas separation for flue gas CO2capture using high performance thermally rearranged(TR)hollow fiber membranes,J.Membr.Sci.510(2016)472–480.

    [45]E.P.Favvas,G.C.Kapantaidakis,J.W.Nolan,A.C.Mitropoulos,N.K.Kanellopoulos,Preparation characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid 5218 precursor,J.Mater.Process.Technol.186(2007)102–110.

    [46]E.P.Favvas,E.P.Kouvelos,G.E.Romanos,G.I.Pilatos,A.C.Mitropoulos,N.K.Kanellopoulos,Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor,J.Porous Mater.15(2008)625–633.

    [47]A.Sharif,H.Koolivand,G.Khanbabaie,M.Hemmati,J.Aalaie,M.R.Kashani,A.Gheshlaghi,Improvement of CO2/CH4separation characteristics of polyethersulfone by modifying with polydimethylsiloxane and nano-silica,J.Polym.Res.19(2012)9916.

    [48]W.N.W.Salleh,A.F.Ismail,Carbon hollow fiber membranes derived from PEI/PVP for gas separation,Sep.Purif.Technol.80(2011)541–548.

    [49]M.Z.Pedram,M.Omidkhah,A.E.Amooghin,Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4separation,J.Ind.Eng.Chem.20(2014)74–82.

    [50]C.Cao,R.Wang,T.S.Chung,Y.Liu,Formation of high-performance 6FDA-2,6-DAT asymmetric composite hollow fiber membranes for CO2/CH4separation,J.Membr.Sci.209(2002)309–319.

    国产国语露脸激情在线看| 精品国产国语对白av| 五月开心婷婷网| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩精品网址| 高潮久久久久久久久久久不卡| 校园人妻丝袜中文字幕| 国产成人免费无遮挡视频| 脱女人内裤的视频| 精品高清国产在线一区| 校园人妻丝袜中文字幕| 色视频在线一区二区三区| 国产色视频综合| 精品人妻熟女毛片av久久网站| 久久久欧美国产精品| 国产成人欧美| 在现免费观看毛片| svipshipincom国产片| 青草久久国产| 中文字幕人妻丝袜制服| 欧美黑人欧美精品刺激| 尾随美女入室| 久久久精品免费免费高清| 纯流量卡能插随身wifi吗| 一本综合久久免费| 一级毛片电影观看| 青青草视频在线视频观看| 亚洲人成电影免费在线| 别揉我奶头~嗯~啊~动态视频 | 精品卡一卡二卡四卡免费| 国产高清国产精品国产三级| 老司机午夜十八禁免费视频| 永久免费av网站大全| av视频免费观看在线观看| 欧美日韩亚洲高清精品| av国产久精品久网站免费入址| 免费av中文字幕在线| 久久久国产一区二区| 中文字幕人妻熟女乱码| 日本av免费视频播放| 国产高清不卡午夜福利| 永久免费av网站大全| 母亲3免费完整高清在线观看| 国产精品一国产av| 国产黄频视频在线观看| 美女大奶头黄色视频| 久久久国产精品麻豆| 亚洲国产毛片av蜜桃av| 秋霞在线观看毛片| 国产亚洲av高清不卡| 午夜激情av网站| 亚洲av综合色区一区| av不卡在线播放| 色婷婷久久久亚洲欧美| 一级a爱视频在线免费观看| 国产黄色视频一区二区在线观看| 亚洲成人免费电影在线观看 | 午夜精品国产一区二区电影| 免费日韩欧美在线观看| 欧美精品av麻豆av| 色婷婷av一区二区三区视频| 只有这里有精品99| 看十八女毛片水多多多| 日韩熟女老妇一区二区性免费视频| 性色av乱码一区二区三区2| 国产色视频综合| 如日韩欧美国产精品一区二区三区| 美女主播在线视频| 18禁裸乳无遮挡动漫免费视频| 夫妻午夜视频| 久久青草综合色| 久久国产亚洲av麻豆专区| 国产精品 欧美亚洲| www.熟女人妻精品国产| www.精华液| av在线播放精品| 日韩免费高清中文字幕av| 亚洲欧美激情在线| 欧美av亚洲av综合av国产av| 亚洲精品美女久久久久99蜜臀 | 国产97色在线日韩免费| 久久综合国产亚洲精品| 婷婷色综合www| 在线观看www视频免费| 国产又爽黄色视频| 午夜福利,免费看| 叶爱在线成人免费视频播放| 国产欧美亚洲国产| 欧美 亚洲 国产 日韩一| 中文乱码字字幕精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 蜜桃在线观看..| 国产成人精品久久久久久| 久久性视频一级片| 可以免费在线观看a视频的电影网站| 黄色毛片三级朝国网站| 午夜91福利影院| 一边摸一边抽搐一进一出视频| 国产精品99久久99久久久不卡| 久久精品国产a三级三级三级| 欧美人与善性xxx| 日韩视频在线欧美| 国产亚洲一区二区精品| 丝袜喷水一区| 波野结衣二区三区在线| 亚洲国产av影院在线观看| 丝袜美足系列| 十八禁高潮呻吟视频| 女人久久www免费人成看片| 久久九九热精品免费| 国产成人91sexporn| 黑人欧美特级aaaaaa片| 国语对白做爰xxxⅹ性视频网站| 久久国产精品影院| 亚洲伊人色综图| 亚洲,欧美精品.| 男女下面插进去视频免费观看| 国产97色在线日韩免费| 91精品伊人久久大香线蕉| 久久精品久久久久久久性| 亚洲成人免费av在线播放| 视频区欧美日本亚洲| 免费高清在线观看视频在线观看| 免费久久久久久久精品成人欧美视频| 脱女人内裤的视频| 欧美成人午夜精品| 国产真人三级小视频在线观看| 丝袜美腿诱惑在线| 麻豆av在线久日| av又黄又爽大尺度在线免费看| 国产精品一区二区免费欧美 | 国产伦理片在线播放av一区| 十八禁网站网址无遮挡| 深夜精品福利| 视频在线观看一区二区三区| 亚洲欧美成人综合另类久久久| av天堂久久9| 亚洲欧美一区二区三区久久| 日韩免费高清中文字幕av| 侵犯人妻中文字幕一二三四区| 激情视频va一区二区三区| 好男人电影高清在线观看| 亚洲第一av免费看| 欧美黑人欧美精品刺激| 午夜免费男女啪啪视频观看| 老汉色av国产亚洲站长工具| 在线精品无人区一区二区三| 国产亚洲欧美在线一区二区| 精品国产一区二区三区久久久樱花| 视频区欧美日本亚洲| 亚洲av日韩在线播放| 人人妻人人澡人人看| 国产精品欧美亚洲77777| 2021少妇久久久久久久久久久| 老熟女久久久| 亚洲图色成人| 久久鲁丝午夜福利片| 久久久亚洲精品成人影院| 欧美日韩综合久久久久久| 免费观看a级毛片全部| 久久午夜综合久久蜜桃| 国产精品国产三级国产专区5o| 国产精品久久久人人做人人爽| 久久精品国产亚洲av高清一级| av片东京热男人的天堂| 亚洲成人手机| 中文字幕制服av| 国产在线免费精品| 日本色播在线视频| 久久综合国产亚洲精品| 韩国高清视频一区二区三区| 国产午夜精品一二区理论片| 黄频高清免费视频| 亚洲综合色网址| 99国产精品一区二区三区| 免费少妇av软件| 波野结衣二区三区在线| 免费不卡黄色视频| 国语对白做爰xxxⅹ性视频网站| 精品亚洲成国产av| 中文字幕另类日韩欧美亚洲嫩草| 色综合欧美亚洲国产小说| 在线观看免费高清a一片| 精品福利永久在线观看| 人人妻人人澡人人看| 国产日韩一区二区三区精品不卡| 国产精品免费视频内射| 赤兔流量卡办理| 丝袜人妻中文字幕| 中国国产av一级| 亚洲精品一卡2卡三卡4卡5卡 | 肉色欧美久久久久久久蜜桃| 日韩av不卡免费在线播放| 极品人妻少妇av视频| 1024视频免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 97精品久久久久久久久久精品| 在线观看www视频免费| 少妇精品久久久久久久| 51午夜福利影视在线观看| 成年女人毛片免费观看观看9 | 99国产精品一区二区三区| 天天影视国产精品| 性色av乱码一区二区三区2| 777米奇影视久久| 欧美精品啪啪一区二区三区 | 亚洲av在线观看美女高潮| 老司机影院毛片| 七月丁香在线播放| 午夜福利影视在线免费观看| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 欧美日韩亚洲国产一区二区在线观看 | 极品人妻少妇av视频| 国语对白做爰xxxⅹ性视频网站| 日本91视频免费播放| 久久精品国产亚洲av高清一级| 一边亲一边摸免费视频| 老司机在亚洲福利影院| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 啦啦啦视频在线资源免费观看| 韩国精品一区二区三区| 人妻一区二区av| 视频区图区小说| 我要看黄色一级片免费的| 成年动漫av网址| 男女下面插进去视频免费观看| 久久久久精品国产欧美久久久 | 精品久久久久久电影网| 黄片播放在线免费| 免费在线观看影片大全网站 | 亚洲欧洲国产日韩| 久久国产亚洲av麻豆专区| 18禁观看日本| 五月开心婷婷网| 日韩伦理黄色片| 丝袜美足系列| 在线观看人妻少妇| 免费高清在线观看日韩| 日本av免费视频播放| 伦理电影免费视频| 侵犯人妻中文字幕一二三四区| 午夜福利一区二区在线看| 纵有疾风起免费观看全集完整版| 两人在一起打扑克的视频| 中文字幕精品免费在线观看视频| 精品人妻一区二区三区麻豆| 久久女婷五月综合色啪小说| av福利片在线| 日日夜夜操网爽| 狠狠精品人妻久久久久久综合| 黄色视频不卡| bbb黄色大片| 亚洲中文日韩欧美视频| 亚洲国产成人一精品久久久| 欧美激情极品国产一区二区三区| 最黄视频免费看| 丁香六月欧美| 亚洲精品国产av蜜桃| 国产精品九九99| 久9热在线精品视频| 啦啦啦中文免费视频观看日本| 亚洲国产欧美日韩在线播放| www.av在线官网国产| 视频区图区小说| av电影中文网址| 青春草视频在线免费观看| 美女大奶头黄色视频| 久久影院123| 欧美亚洲日本最大视频资源| 国产三级黄色录像| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 国产真人三级小视频在线观看| 亚洲精品久久久久久婷婷小说| av在线播放精品| 狠狠精品人妻久久久久久综合| 视频区欧美日本亚洲| 国产精品亚洲av一区麻豆| 老司机影院成人| 午夜福利一区二区在线看| 又大又爽又粗| 精品一区二区三区av网在线观看 | 亚洲成人国产一区在线观看 | 欧美 亚洲 国产 日韩一| 99久久人妻综合| 亚洲成色77777| 黄色片一级片一级黄色片| 人人妻人人添人人爽欧美一区卜| 飞空精品影院首页| 99re6热这里在线精品视频| 亚洲熟女精品中文字幕| 99国产精品99久久久久| 精品人妻一区二区三区麻豆| 中文字幕另类日韩欧美亚洲嫩草| 大片电影免费在线观看免费| 老司机在亚洲福利影院| 欧美变态另类bdsm刘玥| 久久精品亚洲av国产电影网| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 一级,二级,三级黄色视频| 精品一区二区三区av网在线观看 | 一区在线观看完整版| 久久 成人 亚洲| 无遮挡黄片免费观看| a级毛片在线看网站| 精品少妇久久久久久888优播| 99久久人妻综合| 国产女主播在线喷水免费视频网站| 中文字幕最新亚洲高清| 黄色 视频免费看| 老司机影院毛片| 男女边吃奶边做爰视频| 亚洲国产欧美日韩在线播放| 免费观看人在逋| 国产日韩一区二区三区精品不卡| 黑人巨大精品欧美一区二区蜜桃| 天天操日日干夜夜撸| 激情五月婷婷亚洲| 中文字幕制服av| 母亲3免费完整高清在线观看| 脱女人内裤的视频| 999精品在线视频| 国产在视频线精品| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o | 午夜福利乱码中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 激情视频va一区二区三区| 精品福利永久在线观看| 中文字幕av电影在线播放| 91麻豆精品激情在线观看国产 | 女警被强在线播放| 丰满少妇做爰视频| 国产欧美日韩一区二区三 | 肉色欧美久久久久久久蜜桃| av片东京热男人的天堂| 9热在线视频观看99| 久久鲁丝午夜福利片| 满18在线观看网站| 欧美人与性动交α欧美精品济南到| 日韩人妻精品一区2区三区| 在线观看国产h片| 亚洲 国产 在线| 国产伦人伦偷精品视频| 大片电影免费在线观看免费| 欧美 日韩 精品 国产| 成年美女黄网站色视频大全免费| 在线观看免费午夜福利视频| 最近手机中文字幕大全| 亚洲国产日韩一区二区| 国产一卡二卡三卡精品| 欧美人与性动交α欧美软件| 手机成人av网站| 国产一区二区激情短视频 | 黄色一级大片看看| www.精华液| 韩国高清视频一区二区三区| 亚洲九九香蕉| 久久热在线av| videos熟女内射| 欧美日韩视频精品一区| 国产成人a∨麻豆精品| 久久久国产欧美日韩av| 男的添女的下面高潮视频| 高潮久久久久久久久久久不卡| 巨乳人妻的诱惑在线观看| 成人黄色视频免费在线看| 精品久久久精品久久久| www.av在线官网国产| 国产精品欧美亚洲77777| 亚洲国产看品久久| 精品熟女少妇八av免费久了| 老司机在亚洲福利影院| 午夜福利在线免费观看网站| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看| 纵有疾风起免费观看全集完整版| 精品国产一区二区三区久久久樱花| 高清av免费在线| 又紧又爽又黄一区二区| 亚洲欧美一区二区三区黑人| 成人18禁高潮啪啪吃奶动态图| www.自偷自拍.com| 久久精品国产亚洲av高清一级| 黑人猛操日本美女一级片| 黄网站色视频无遮挡免费观看| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇久久久久久888优播| 亚洲第一青青草原| 免费av中文字幕在线| 天天影视国产精品| 国产成人免费观看mmmm| 国产一级毛片在线| 亚洲三区欧美一区| 国产三级黄色录像| 国产高清国产精品国产三级| 欧美精品啪啪一区二区三区 | 18禁黄网站禁片午夜丰满| 水蜜桃什么品种好| 纵有疾风起免费观看全集完整版| 亚洲自偷自拍图片 自拍| 国产精品.久久久| 91精品伊人久久大香线蕉| 大香蕉久久网| 一级毛片女人18水好多 | 久久久久精品国产欧美久久久 | 一级黄色大片毛片| 国产精品九九99| 精品一区二区三区av网在线观看 | www.熟女人妻精品国产| 国产精品久久久av美女十八| 亚洲精品久久久久久婷婷小说| 9191精品国产免费久久| 十八禁网站网址无遮挡| 欧美另类一区| tube8黄色片| 黄色片一级片一级黄色片| 日韩 亚洲 欧美在线| 男女之事视频高清在线观看 | 亚洲国产毛片av蜜桃av| 一区二区av电影网| 妹子高潮喷水视频| 国产精品 国内视频| 老司机深夜福利视频在线观看 | 国产免费福利视频在线观看| 9191精品国产免费久久| 人妻一区二区av| 多毛熟女@视频| 日韩 欧美 亚洲 中文字幕| 精品欧美一区二区三区在线| 亚洲国产毛片av蜜桃av| av又黄又爽大尺度在线免费看| 午夜影院在线不卡| 国产精品人妻久久久影院| 国产又爽黄色视频| 亚洲国产欧美在线一区| 日本欧美视频一区| 久久久国产一区二区| 精品视频人人做人人爽| 亚洲欧洲日产国产| av视频免费观看在线观看| 国产高清videossex| kizo精华| 两个人看的免费小视频| 国产午夜精品一二区理论片| 国产高清videossex| 亚洲第一青青草原| 久久久久久久久免费视频了| 久久国产精品影院| 亚洲,欧美精品.| 人人澡人人妻人| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 成年人免费黄色播放视频| 少妇猛男粗大的猛烈进出视频| 亚洲成色77777| 91九色精品人成在线观看| 精品国产乱码久久久久久男人| 精品国产国语对白av| 香蕉丝袜av| 不卡av一区二区三区| 纵有疾风起免费观看全集完整版| 亚洲午夜精品一区,二区,三区| 亚洲av欧美aⅴ国产| 少妇 在线观看| 国产精品偷伦视频观看了| 国产成人欧美| 又大又黄又爽视频免费| 亚洲伊人色综图| e午夜精品久久久久久久| 欧美精品高潮呻吟av久久| 高清av免费在线| 久久毛片免费看一区二区三区| 国产高清videossex| 久久天堂一区二区三区四区| 伦理电影免费视频| 亚洲视频免费观看视频| 搡老乐熟女国产| 午夜福利,免费看| 黄片播放在线免费| 99re6热这里在线精品视频| 校园人妻丝袜中文字幕| 老汉色av国产亚洲站长工具| 亚洲精品久久午夜乱码| 成年人免费黄色播放视频| 国精品久久久久久国模美| 黄色一级大片看看| 久久国产亚洲av麻豆专区| 国产精品.久久久| 91精品伊人久久大香线蕉| 国产亚洲欧美在线一区二区| 99国产精品99久久久久| 午夜福利免费观看在线| 亚洲国产欧美网| 99国产综合亚洲精品| 高清欧美精品videossex| 日本a在线网址| 亚洲一区中文字幕在线| 交换朋友夫妻互换小说| 欧美日韩av久久| 视频在线观看一区二区三区| 午夜两性在线视频| 在线观看免费日韩欧美大片| 激情视频va一区二区三区| 免费人妻精品一区二区三区视频| 777久久人妻少妇嫩草av网站| 亚洲欧美精品自产自拍| av国产久精品久网站免费入址| 人人妻人人澡人人爽人人夜夜| 欧美 日韩 精品 国产| 丝袜在线中文字幕| 一级,二级,三级黄色视频| 亚洲自偷自拍图片 自拍| 在线天堂中文资源库| 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美| 亚洲美女黄色视频免费看| 欧美日韩精品网址| 男女之事视频高清在线观看 | 国产片特级美女逼逼视频| 国产成人精品久久二区二区91| 国产片特级美女逼逼视频| 久久99一区二区三区| 下体分泌物呈黄色| a级毛片在线看网站| 亚洲专区国产一区二区| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩另类电影网站| 一区二区三区精品91| 国产成人欧美| 女警被强在线播放| 国产在线一区二区三区精| 桃花免费在线播放| 免费少妇av软件| 欧美中文综合在线视频| 久久久欧美国产精品| 久久人人爽av亚洲精品天堂| 欧美日本中文国产一区发布| 99国产精品99久久久久| 色网站视频免费| 2021少妇久久久久久久久久久| 久久99一区二区三区| 亚洲专区国产一区二区| 十八禁人妻一区二区| 欧美日韩黄片免| 女警被强在线播放| 亚洲图色成人| 色婷婷av一区二区三区视频| 亚洲欧美色中文字幕在线| 一级片'在线观看视频| 少妇精品久久久久久久| 最新在线观看一区二区三区 | 国产欧美亚洲国产| 人人澡人人妻人| 亚洲第一青青草原| 搡老乐熟女国产| 欧美黑人精品巨大| 国产日韩一区二区三区精品不卡| 国产精品国产av在线观看| 男女国产视频网站| 国产精品久久久人人做人人爽| 丰满迷人的少妇在线观看| 久久精品国产亚洲av涩爱| 日日爽夜夜爽网站| 欧美日韩综合久久久久久| 在现免费观看毛片| 男女边摸边吃奶| 999精品在线视频| 日本wwww免费看| 少妇精品久久久久久久| 日本猛色少妇xxxxx猛交久久| 18禁国产床啪视频网站| 啦啦啦在线免费观看视频4| 天天添夜夜摸| 99国产精品一区二区三区| 色精品久久人妻99蜜桃| 另类精品久久| 国产麻豆69| 国产一区有黄有色的免费视频| 欧美另类一区| 一二三四社区在线视频社区8| 9191精品国产免费久久| 国产成人精品久久二区二区91| 日韩一区二区三区影片| 在线观看免费午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲午夜精品一区二区久久| 国产精品二区激情视频| 王馨瑶露胸无遮挡在线观看| 满18在线观看网站| 亚洲成人免费电影在线观看 | 国产精品久久久人人做人人爽| xxxhd国产人妻xxx| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区av网在线观看 | 2018国产大陆天天弄谢| 免费看不卡的av| 国精品久久久久久国模美| 日韩熟女老妇一区二区性免费视频| 在现免费观看毛片| 免费女性裸体啪啪无遮挡网站| 国产亚洲av高清不卡| 国产精品秋霞免费鲁丝片| 久久久精品免费免费高清| 精品高清国产在线一区| 男女边摸边吃奶| 老汉色∧v一级毛片| 一本—道久久a久久精品蜜桃钙片| 久久毛片免费看一区二区三区| 91精品国产国语对白视频| 欧美激情高清一区二区三区| 亚洲三区欧美一区|