• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects

    2017-05-28 07:28:44HayatIjazKhanWaqasAlsaediYasmeen

    T.Hayat,M.Ijaz Khan ,M.Waqas ,A.Alsaedi,T.Yasmeen *

    1 Department of Mathematics,Quaid-I-Azam University,45320,Islamabad 44000,Pakistan

    2 Nonlinear Analysis and Applied Mathematics(NAAM)Research Group,Department of Mathematics,Faculty of Science,King Abdulaziz University,P.O.Box 80257,Jeddah 21589,Saudi Arabia

    3 Department of Mechanical Engineering,Imperial College London,London SW7 2AZ,UK

    4 Department of Mechanical Engineering,University of Engineering&Technology Peshawar,Pakistan

    1.Introduction

    There are several materials like shampoos,mud,soaps,apple sauce,sugar solution,polymeric liquids,tomato paste,condensed milk,paints,and blood at low shear rate which show the characteristics of non-Newtonian fluids.The behavior of such materials cannot be explored by a single constitutive relationship because of their diverse properties.Hence different fluid models are developed in the past to describe the exact nature of non-Newtonian materials.Third grade fluid is a subclass of differential type non-Newtonian fluid.This fluid model exhibits shear thickening and shear thinning characteristics.Some studies on the third grade fluid can be seen in refs.[1–5].Further,the flow over a stretching surface is an important problem in many engineering processes with applications in various engineering and industrial processes like cooling of metallic sheets in a cooling bath,annealing and thinning of copper wires,aerodynamic extrusion of plastic and rubber sheets,drawing of plastic films and sheets,glass fiber and paper productionetc.It is worth mentioning to point out here that the stretching velocity is not linear necessarily in all the cases.The stretching velocity may be nonlinear or exponential.For example in annealing and thinning of copper wires,the desired quality product depends on the continuous stretching of surface with exponential dependence velocity distribution[6–10].

    It is well known fact that the raw materials are constructed to undergo chemical reaction in industrial chemical processes to convert cheaper raw materials into higher standard products.Such chemical transformations are performed in a reactor.The reactor has a key role to providing an appropriate environment for suitable time and allowing the removal of finished products.The study of chemical reaction has important role in chemical technologies like polymer production.No doubt a chemical reaction can be classified either through homogeneous or heterogeneous processes.Reaction rate in first order chemical reaction is directly proportional to the concentration.A large amount of research work has been reported in this field.For instance,Soret and Dufour effects in three-dimensional flow over an exponentially stretching surface with porous medium,chemical reaction and heat source/sink is studied by Hayatet al.[11].Bhattacharyya and Layek[12,13]addressed the behavior of chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet and also described the slip effects on the boundary layer flow and mass transfer over a vertical stretching sheet.MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration is examined by Maboodet al.[14].Sheikh and Abbas[15]explored the effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species.Convective flow of micropolar liquid with chemical reaction and mixed convection is examined by Swapnaet al.[16].Hayat et al.[17]reported carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with homogeneous-heterogeneous reactions.Characteristics of thermal radiation and chemical reaction in flow of nano fluid saturating porous medium is presented by Zhanget al.[18].Mythili and Sivaraj[19]reported the chemically reactive flow of Casson liquid towards a vertical cone.Narayana and Babu[20]analyzed thermal radiation and chemical reaction effects in flow of Jeffrey liquid over a stretched surface.Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface with chemical reaction is reported by Hayatet al.[21].Hayatet al.[22]explored stagnation point flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions.Homogeneous–heterogeneous reactions in MHD flow due to an unsteady curved stretching surface are scrutinized by Imtiazet al.[23].Hayatet al.[24]studied the impact of Cattaneo–Christov heat flux in Jeffrey fluid flow with homogeneous–heterogeneous reactions.Influences of thermal radiation and chemical reaction in MHD flow by a cylinder are explored by Machireddy[25].Flow due to nonlinear stretching surface with chemical reaction and porous medium is addressed by Ziabakshet al.[26].Bhattacharya[27]developed dual solutions for stagnation point flow past a stretching/shrinking sheet with chemical reaction.Chen and Sun[28]addressed boundary layer interaction of chemical reacting flow in shock tube.Influence of chemical reaction and radiation in MHD free convective flow are addressed by Rajuet al.[29].

    The study of magnetohydrodynamics(MHD) flow of an electrically conducting fluid over a stretching sheet has promising applications in modern metallurgical as well as in metal-working procedures.Many professional techniques regarding polymers require the cooling of continuous strips and filaments by drawing them from moving fluid.The final product depends greatly on the rate of cooling that is governed by the structure of the boundary layer close to the stretching sheet.Mukhopadhyayet al.[30]studied MHD flow of Casson fluid due to exponentially stretching sheet with thermal radiation.Impact of magnetohydrodynamics in bidirectional flow of nano fluid subject to second order slip velocity and homogeneous–heterogeneous reactions is reported by Hayatet al.[31].Linet al.[32]examined unsteady MHD pseudo-plastic nano fluid flow and heat transfer in a finite thin film over stretching surface with internal heat generation.Sheikholeslamiet al.[33]analyzed the effect of thermal radiation on magnetohydrodynamics nano fluid flow and heat transfer by means of two phase model.Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nano fluid is provided by Farooqet al.[34].Shehzadet al.[35]presented an analytical study to investigate thermal radiation effects in three-dimensional flow of Jeffrey nano fluid with internal heat generation and magnetic field.

    Here our main theme is to study the influences of magnetohydrodynamics(MHD) flow of third grade fluid by an exponentially stretching sheet.Mass transfer analysis is performed in the presence of first order chemical reaction.The governing nonlinear flow model is solved and homotopic solutions[36–53]of dimensionless velocity and concentration are presented.Physical quantities for various parameters of interest are examined.To our knowledge such analysis is not yet reported.

    2.Formulation

    Consider the two-dimensional hydromagnetic flow of third grade fluid over an exponentially stretching sheet.Mass transfer effects are taken into account in the presence of chemical reaction.An applied magnetic field of strengthB0is encountered normal to the flow direction.The magnetic Reynolds number is chosen small.Further the induced magnetic field is smaller in comparison to the applied magnetic field and is negligible.The two-dimensional boundary layer equations of an incompressible third grade fluid with mass transfer are[5,7]:

    Introducing the similarity variables as:

    Here ψ denotes the stream function,fthe dimensionless velocity and ? the dimensionless concentration.Employing above transformations,Eq.(1)is identically satisfied while Eqs.(2)–(4)are

    here α1,α2and β denote the fluid parameters,Hathe Hartman number,Scthe Schmidt number and γ the chemical reaction parameter.It is noted that γ > 0 is for destructive chemical reaction,γ < 0 for generative chemical reaction and γ=0 corresponds to non-reactive species.These quantities are defined as

    The skin friction coefficientCfand local Sherwood numberShxare

    Dimensionless expressions of skin friction coefficient and local Sherwood number are

    3.Series Solutions

    In order to obtain analytical solution,the selected initial guesses and auxiliary linear operators are:

    The above auxiliary linear operators satisfy the following properties

    whereCi(i=1?5)indicates the arbitrary constants.

    4.Zeroth-Order Deformation Problem

    The corresponding problems at the zeroth order are:

    in whichpis an embedding parameter and ?fand ??are the non-zero auxiliary parameters.The nonlinear operators are represented by Nfand N?.

    5.m th-Order Deformation Problem

    The resulting problems atmth order deformation are constructed as follows:

    whereCi(i=1?5)indicates the arbitrary constants which are determined by employing the boundary conditions(24)and(26)

    6.Convergence of the Developed Solutions

    To construct the series solutions by homotopy analysis technique it is also necessary to check their convergence.Convergence region is the region parallel to ??axis.Hence we have plotted the ??curves of the velocityf″(0)and concentration ?′(0)in Figs.1 and 2.Permissible values for the derived solutions are found in the ranges?1.15≤?f≤?0.20 and?1.15≤??≤?0.35.

    7.Discussion

    Description of various pertinent parameters on the velocity and concentration distributions is the main motto of this section.Figs.3 and 4 illustrate the variation of fluid parameters α1and α2on the velocity pro filef′(η)respectively.It is observed that the velocity pro filef′(η)is an increasing function of both α1and α2.Physically viscosity of the material reduces for larger values of α1and α2due to which force between the adjacent layers decreases and thus velocity of the fluid increases.Characteristics of Hartman numberHaon velocity distribution is displayed in Fig.5.It is found that velocity pro file decreasesvialargerHa.Physically by increasing magnetic field the Lorentz force increases.More resistance is offered to the motion of fluid and thus the velocity of the fluid is reduced.Impact of fluid parameter β on velocity distribution is depicted in Fig.6.It is examined that the velocity profile increases near the wall for larger values of β and it vanishes away from the wall.Moreover the momentum boundary layer thickness is also increasing function of β.In fact β is inversely proportional to the viscosity.For larger values of β the viscosity of the fluid decreases and hence the velocity pro file enhances.Effect of Schmidt numberScon concentration distribution is displayed in Fig.7.Here concentration pro file and associated boundary layer thickness are decreased when Schmidt numberScincreases.Physically the Schmidt number is dependent on mass diffusionDand an increase in Schmidt number corresponds to a decrease in mass diffusion and the concentration.Fig.8 depicts the influence of destructive chemical reaction parameter(γ > 0)on the concentration pro file ?(η).It is obvious that the fluid concentration decreases with an increase in the destructive chemical reaction parameter.In fact higher values of destructive chemical reaction parameter correspond to larger rate of destructive chemical reaction which dissipates or destroys the fluid specie more efficiently.Therefore concentration distribution decreases.Characteristics of generative chemical reaction parameter(γ<0)on the concentration profile ?(η)is disclosed through Fig.9.This figure illustrates that concentration field has an opposite behavior for(γ<0)when compared with(γ>0).Physically larger values of generative chemical reaction parameter correspond to higher rate of generative chemical reaction which generates the fluid specie more efficiently and therefore concentration distribution increases.Characteristics of α1and α2on skin friction are shown in Fig.10.It is seen that skin friction coefficient increases when α1and α2are enhanced.Fig.11 depict the influences of β andHaon skin friction.It is analyzed that skin friction coefficient increases for larger β andHa.Analysis ofScand γ on local Sherwood number is presented in Fig.12.This figure shows that local Sherwood number increases for higher values ofScand γ.

    Fig.1.??curve for f.

    Fig.2.??curve for ?.

    Fig.3.Impact of α1 on f′.

    Fig.4.Impact of α2 on f′.

    Fig.5.Impact of Ha on f′.

    Fig.6.Impact of β on f′.

    Fig.7.Impact of Sc on ?.

    Fig.8.Impact of γ > 0 on ?.

    Fig.9.Impact of γ < 0 on ?.

    Fig.10.Impacts of α1 and α2 on Rex 1/2Cf.

    Fig.11.Impacts of β and Ha on Rex 1/2Cf.

    Fig.12.Impacts of Sc and γ on

    Table 1 shows the convergence of the series solutions for different order of approximations.It is noted that 15th and 20th order of approximations are sufficient for the convergence of momentum and concentration equations respectively.Tables 2 and 3 give the comparison of present results in a limiting sense with the works done by Mukhopadhyayet al.[30],Elbashbeshy[54]and Chaudharyet al.[55].It is found that the obtained results in limiting sense are in good agreement.

    Table 1Convergence of homotopy solutions when α1=α2=β=Ha=0.1,Sc=γ=1.0 and?f=??=?0.6.

    Table 2Comparison for numerical values of f″(0)when α1=α2=β=Ha=0.

    Table 3Comparison for numerical values of f″(0)for Ha when α1=α2=β=0.

    8.Concluding Remarks

    We have investigated the characteristics of free convection boundary layer flow of third grade fluid induced by exponentially stretching sheet.The present analysis leads to the following observations.

    ?Influences of α1,α2and β on velocity distribution are similar in a qualitative manner.

    ?Magnetic field retards the fluid velocity and momentum boundary layer thickness.

    ?Concentration distribution has opposite results for destructive(γ>0)and generative(γ< 0)chemical reactions.

    ?An increase in Schmidt numberSccauses a decrease in the concentration distribution and the boundary layer thickness.

    ?Impacts of α1,α2,β andHaon skin friction are similar in a qualitative

    sense.

    ?Local Sherwood number enhances for largerScand γ.

    [1]S.Abelman,E.Momoniat,T.Hayat,Couette flow of a third grade fluid with rotating frame and slip condition,Nonlinear Anal.Real World Appl.10(2009)3329–3334.

    [2]T.Hayat,A.Sha fiq,A.Alsaedi,Effect of joule heating and thermal radiation in flow of third grade fluid over radiative surface,PLoS One9(2014)e83153.

    [3]S.Abbasbandy,T.Hayat,On series solution for unsteady boundary layer equations in a special third grade fluid,Commun.Nonlinear Sci.Numer.Simul.16(2011)3140–3146.

    [4]S.A.Shehzad,T.Hussain,T.Hayat,M.Ramzan,A.Alsaedi,Boundary layer flow of third grade nano fluid with Newtonian heating and viscous dissipation,J.Cent.South Univ.22(2015)360–367.

    [5]T.Hayat,A.Shafiq,A.Alsaedi,S.Asghar,Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity,AIP Adv.5(2015)087108.

    [6]K.Bhattacharyya,Steady boundary layer flow and reactive mass transfer past an exponentially stretching sheet in an exponentially moving free stream,J.Egypt.Math.Soc.20(2012)223–228.

    [7]S.Mukhopadhyay,R.S.R.Gorla,Diffusion of chemically reactive species of a Casson fluid flow over an exponentially stretching surface,Therm.Energy Power Eng.3(2014)216–221.

    [8]M.S.Alhuthali,S.A.Shehzad,H.Malaikah,T.Hayat,Three dimensional flow of viscoelastic fluid by an exponentially stretching surface with mass transfer,J.Pet.Sci.Eng.119(2014)221–226.

    [9]S.Mukhopadhyay,K.Bhattacharyya,G.C.Layek,Mass transfer over an exponentially stretching porous sheet embedded in a stratified medium,Chem.Eng.Commun.201(2014)272–286.

    [10]T.Hayat,S.Asad,M.Mustafa,A.Alsaedi,MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet,Comput.Fluids108(2015)179–185.

    [11]T.Hayat,T.Muhammad,S.A.Shehzad,A.Alsaedi,Soret and Dufour effects in threedimensional flow over an exponentially stretching surface with porous medium,chemical reaction and heat source/sink,Int.J.Numer.Methods Heat Fluid Flow25(2015)762–781.

    [12]K.Bhattacharyya,G.C.Layek,Chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet with suction or blowing,Chem.Eng.Commun.197(2010)1527–1540.

    [13]K.Bhattacharyya,G.C.Layek,Slip effects on diffusion of chemically reactive species in boundary layer flow due to a vertical stretching sheet with suction or blowing,Chem.Eng.Commun.198(2011)1354–1365.

    [14]F.Mabood,W.A.Khan,A.I.M.Ismail,MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration,Chem.Eng.J.273(2015)430–437.

    [15]M.Sheikh,Z.Abbas,Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species,J.Magn.Magn.Mater.396(2015)204–213.

    [16]G.Swapna,L.Kumar,P.Rana,B.Singh,Finite element modeling of a double-diffusive mixed convection flow of a chemically-reacting magneto-micropolar fluid with convective boundary condition,J.Taiwan Inst.Chem.Eng.47(2015)18–27.

    [17]T.Hayat,Z.Hussain,A.Alsaedi,S.Asghar,Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness,Adv.Powder Tech.(2016),http://dx.doi.org/10.1016/j.apt.2016.06.001.

    [18]C.Zhang,L.Zheng,X.Zhang,G.Chen,MHD flow and radiation heat transfer of nano fluids in porous media with variable surface heat flux and chemical reaction,Appl.Math.Model.39(2015)165–181.

    [19]D.Mythili,R.Sivaraj,In fluence of higher order chemical reaction and non-uniform heat source/sink on Casson fluid flow over a vertical cone and flat plate,J.Mol.Liq.216(2016)466–475.

    [20]P.V.S.Narayana,D.H.Babu,Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation,J.Taiwan Inst.Chem.Eng.59(2016)18–25.

    [21]T.Hayat,M.I.Khan,M.Farooq,A.Alsaedi,M.Waqas,T.Yasmeen,Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface,Int.J.Heat Mass Transf.99(2016)702–710.

    [22]T.Hayat,M.I.Khan,M.Farooq,T.Yasmeen,A.Alsaedi,Stagnation point flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions,J.Mol.Liq.220(2016)49–55.

    [23]M.Imtiaz,T.Hayat,A.Alsaedi,A.Hobiny,Homogeneous–heterogeneous reactions in MHD flow due to an unsteady curved stretching surface,J.Mol.Liq.221(2016)245–253.

    [24]T.Hayat,S.Qayyum,M.Imtiaz,A.Alsaedi,Impact of Cattaneo–Christov heat flux in Jeffrey fluid flow with homogeneous–heterogeneous reactions,PLoS One11(2016)e0148662.

    [25]G.R.Machireddy,Chemically reactive species and radiation effects on MHD convective flow past a moving vertical cylinder,Ain Shams Eng.J.4(2013)879–888.

    [26]Z.Ziabakhsh,G.Domairry,H.Bararnia,H.Babazadeh,Analytical solution of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porous medium,J.Taiwan Inst.Chem.Eng.41(2010)22–28.

    [27]K.Bhattacharyya,Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet,Int.Commun.Heat Mass Transfer38(2011)917–922.

    [28]S.Chen,Q.Sun,Numerical study of shock/boundary layer interaction of chemically reacting flow in shock tube,Procedia Eng.126(2015)617–621.

    [29]M.C.Raju,N.A.Reddy,S.V.K.Varma,Analytical study of MHD free convective,dissipative boundary layer flow past a porous vertical surface in the presence of thermal radiation,chemical reaction and constant suction,Ain Shams Eng.J.5(2014)1361–1369.

    [30]S.Mukhopadhyay,I.C.Moindal,T.Hayat,MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation,Chin.Phys.B23(2014)104701.

    [31]T.Hayat,M.Imtiaz,A.Alsaedi,Impact of magnetohydrodynamics in bidirectional flow of nano fluid subject to second order slip velocity and homogeneous–heterogeneous reactions,J.Magn.Magn.Mater.395(2015)294–302.

    [32]Y.Lin,L.Zheng,X.Zhang,L.Ma,G.Chen,MHD pseudo-plastic nano fluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation,Int.J.Heat Mass Transf.84(2015)903–911.

    [33]M.Sheikholeslami,D.D.Ganji,M.Y.Javed,R.Ellahi,Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model,J.Magn.Magn.Mater.374(2015)36–43.

    [34]U.Farooq,Y.L.Zhao,T.Hayat,A.Alsaedi,S.J.Liao,Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nano fluid,Comput.Fluids11(2015)69–75.

    [35]S.A.Shehzad,Z.Abdullah,A.Alsaedi,F.M.Abbaasi,T.Hayat,Thermally radiative three-dimensional flow of Jeffrey nano fluid with internal heat generation and magnetic field,J.Magn.Magn.Mater.397(2016)108–114.

    [36]M.Turkyilmazoglu,Solution of Thomas–Fermi equation with a convergent approach,Commun.Nonlinear Sci.Numer.Simul.17(2012)4097–4103.

    [37]S.Han,L.Zheng,C.Li,X.Zhang,Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model,Appl.Math.Lett.38(2014)87–93.

    [38]M.Sheikholeslami,M.Hatami,D.D.Ganji,Micropolar fluid flow and heat transfer in a permeable channel using analytical method,J.Mol.Liq.194(2014)30–36.

    [39]L.Zheng,C.Zhang,X.Zhang,J.Zhang,Flow and radiation heat transfer of a nano fluid over a stretching sheet with velocity slip and temperature jump in porous medium,J.Frankl.Inst.350(2013)990–1007.

    [40]F.M.Abbasi,S.A.Shehzad,T.Hayat,A.Alsaedi,M.A.Obid,Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nano fluid,AIPAdv.5(2015)037111.

    [41]T.Hayat,M.Waqas,S.A.Shehzad,A.Alsaedi,MHD stagnation point flow of Jeffrey fluid by a radially stretching surface with viscous dissipation and joule heating,J.Hydrol.Hydromech.63(2015)311–317.

    [42]U.Farooq,T.Hayat,A.Alsaedi,S.Liao,Heat and mass transfer of two-layer flows of third-grade nano- fluids in a verticalchannel,Appl.Math.Comput.242(2014)528–540.

    [43]S.Abbasbandy,T.Hayat,A.Alsaedi,M.M.Rashidi,Numerical and analytical solutions for Falkner–Skan flow of MHD Oldroyd-B fluid,Int.J.Numer.Methods Heat Fluid Flow24(2014)390–401.

    [44]T.Hayat,M.Farooq,A.Alsaedi,F.Al-Solamy,Impact of Cattaneo–Christov heat flux in the flow over a stretching sheet with variable thickness,AIP Adv.5(2015)087159.

    [45]T.Hayat,M.Waqas,S.A.Shehzad,A.Alsaedi,Effects of joule heating and thermophoresis on stretched flow with convective boundary conditions,Sci.Iran.B21(2014)682–692.

    [46]S.A.Shehzad,M.Waqas,A.Alsaedi,A.Alsaedi,Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid with convective boundary condition,J.Appl.Fluid Mech.9(2016)1437–1445.

    [47]M.Waqas,T.Hayat,M.Farooq,S.A.Shehzad,A.Alsaedi,Cattaneo–Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid,J.Mol.Liq.220(2016)642–648.

    [48]M.Khan,W.A.Khan,Three-dimensional flow and heat transfer to Burgers fluid using Cattaneo–Christov heat flux,J.Mol.Liq.221(2016)651–657.

    [49]T.Hayat,M.Waqas,S.A.Shehzad,A.Alsaedi,Mixed convection flow of viscoelastic nano fluid by a cylinder with variable thermal conductivity and heat source/sink,Int.J.Numer.Methods Heat Fluid Flow26(2016)214–234.

    [50]M.Khan,W.A.Khan,A.S.Alshomrani,Non-linear radiative flow of threedimensional Burgers nano fluid with new mass flux effect,Int.J.Heat Mass Transf.101(2016)570–576.

    [51]M.Waqas,M.I.Khan,M.Farooq,A.Alsaedi,T.Hayat,T.Yasmeen,Magnetohydrodynamic(MHD)mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition,Int.J.Heat Mass Transf.102(2016)766–772.

    [52]M.I.Khan,M.Z.Kiyani,M.Y.Malik,T.Yasmeen,M.W.A.Khan,T.Abbas,Numerical investigation of magnetohydrodynamic stagnation point flow with variable properties,Alex.Eng.J.(2016),http://dx.doi.org/10.1016/j.aej.2016.04.037.

    [53]M.Farooq,M.I.Khan,M.Waqas,T.Hayat,A.Alsaedi,M.I.Khan,MHD stagnation point flow of viscoelastic nano fluid with non-linear radiation effects,J.Mol.Liq.221(2016)1097–1103.

    [54]E.M.A.Elbashbeshy,Heat transfer over an exponentially stretching continuous surface with suction,Arch.Mech.53(2001)643–651.

    [55]S.Chaudhary,S.Singh,S.Chaudhary,Thermal radiation effects on MHD boundary layer flow over an exponentially stretching surface,Appl.Math.6(2015)295–303.

    亚州av有码| 白带黄色成豆腐渣| 欧美精品国产亚洲| 国产伦理片在线播放av一区| videossex国产| 免费观看a级毛片全部| 国产黄片美女视频| 免费一级毛片在线播放高清视频| 欧美精品国产亚洲| 小蜜桃在线观看免费完整版高清| 免费人成在线观看视频色| 国产精品99久久久久久久久| 亚洲最大成人中文| 白带黄色成豆腐渣| 三级国产精品欧美在线观看| 午夜福利高清视频| 国产av在哪里看| 3wmmmm亚洲av在线观看| 日韩制服骚丝袜av| 丰满人妻一区二区三区视频av| 黑人高潮一二区| 国产一区亚洲一区在线观看| 久久精品人妻少妇| 精品久久久噜噜| 欧美bdsm另类| 波野结衣二区三区在线| 天天一区二区日本电影三级| 欧美一级a爱片免费观看看| 一卡2卡三卡四卡精品乱码亚洲| 国产老妇伦熟女老妇高清| 91精品伊人久久大香线蕉| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久综合国产亚洲精品| 成人高潮视频无遮挡免费网站| 国产亚洲一区二区精品| 免费不卡的大黄色大毛片视频在线观看 | 日本免费在线观看一区| 国产精品野战在线观看| 国产在视频线在精品| 一级黄片播放器| 26uuu在线亚洲综合色| 国产精品不卡视频一区二区| 变态另类丝袜制服| 亚洲人成网站在线播| 亚洲av日韩在线播放| 岛国毛片在线播放| 亚洲乱码一区二区免费版| 一级毛片aaaaaa免费看小| 免费在线观看成人毛片| 亚洲高清免费不卡视频| 日韩精品有码人妻一区| 国产免费男女视频| 国产久久久一区二区三区| 一区二区三区乱码不卡18| 国产国拍精品亚洲av在线观看| 久久99蜜桃精品久久| 欧美日韩综合久久久久久| 97超碰精品成人国产| 日本一本二区三区精品| 国产亚洲av片在线观看秒播厂 | 在线a可以看的网站| 看黄色毛片网站| 十八禁国产超污无遮挡网站| 如何舔出高潮| 久久精品国产99精品国产亚洲性色| 热99re8久久精品国产| 最近的中文字幕免费完整| 一夜夜www| 国产高清不卡午夜福利| 欧美最新免费一区二区三区| 岛国毛片在线播放| 欧美不卡视频在线免费观看| 看黄色毛片网站| 国产一区二区三区av在线| 蜜桃久久精品国产亚洲av| 天天躁夜夜躁狠狠久久av| av线在线观看网站| 免费观看的影片在线观看| 久久99热这里只有精品18| 日韩在线高清观看一区二区三区| 国产成人a区在线观看| 国产在视频线在精品| 直男gayav资源| 国产麻豆成人av免费视频| videossex国产| 能在线免费看毛片的网站| 美女cb高潮喷水在线观看| 午夜免费激情av| 国模一区二区三区四区视频| 色哟哟·www| 亚洲不卡免费看| 青春草视频在线免费观看| 色综合色国产| 人妻夜夜爽99麻豆av| 伦理电影大哥的女人| 禁无遮挡网站| 精品欧美国产一区二区三| 男人的好看免费观看在线视频| 午夜老司机福利剧场| 国内精品宾馆在线| 一级黄片播放器| 久久人人爽人人片av| 久久精品夜色国产| 又爽又黄无遮挡网站| 干丝袜人妻中文字幕| 中文字幕亚洲精品专区| 日韩三级伦理在线观看| 亚洲av中文av极速乱| 久久鲁丝午夜福利片| 秋霞在线观看毛片| 又粗又硬又长又爽又黄的视频| av免费观看日本| 级片在线观看| 18禁裸乳无遮挡免费网站照片| 国国产精品蜜臀av免费| 亚洲欧美成人综合另类久久久 | 97在线视频观看| 国产精品日韩av在线免费观看| 舔av片在线| 视频中文字幕在线观看| 久久99热这里只频精品6学生 | 亚洲高清免费不卡视频| 亚洲国产色片| 能在线免费看毛片的网站| 自拍偷自拍亚洲精品老妇| 日韩人妻高清精品专区| 精华霜和精华液先用哪个| 国内揄拍国产精品人妻在线| 久久久久久久久大av| 国产精品乱码一区二三区的特点| 亚洲精品一区蜜桃| 三级国产精品片| 97超视频在线观看视频| 日韩大片免费观看网站 | 偷拍熟女少妇极品色| 我要搜黄色片| 亚洲最大成人手机在线| 久久精品久久久久久久性| 亚洲天堂国产精品一区在线| 国产激情偷乱视频一区二区| 白带黄色成豆腐渣| 在线观看av片永久免费下载| 午夜a级毛片| 九九热线精品视视频播放| 18禁在线无遮挡免费观看视频| 水蜜桃什么品种好| 观看免费一级毛片| 欧美高清成人免费视频www| 2022亚洲国产成人精品| 国产精品久久视频播放| 国产精品国产三级国产专区5o | 性插视频无遮挡在线免费观看| 亚洲美女搞黄在线观看| 久久精品91蜜桃| 国产av不卡久久| 少妇人妻精品综合一区二区| 网址你懂的国产日韩在线| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| 91精品一卡2卡3卡4卡| 免费看a级黄色片| 一区二区三区四区激情视频| 国产91av在线免费观看| 中文天堂在线官网| av在线天堂中文字幕| 如何舔出高潮| 亚洲精品aⅴ在线观看| 亚洲最大成人av| 一级av片app| 人妻制服诱惑在线中文字幕| www.色视频.com| 亚洲欧美清纯卡通| 欧美日本视频| www.色视频.com| 最近视频中文字幕2019在线8| 国产人妻一区二区三区在| 蜜桃久久精品国产亚洲av| 中文资源天堂在线| 国产精品一及| 三级国产精品片| 精品酒店卫生间| 亚洲精品乱久久久久久| 女人被狂操c到高潮| 99久久九九国产精品国产免费| 久久久久久伊人网av| 亚洲欧美日韩高清专用| 亚洲成av人片在线播放无| av国产免费在线观看| videossex国产| 啦啦啦韩国在线观看视频| 久久久午夜欧美精品| 99九九线精品视频在线观看视频| 天堂影院成人在线观看| 日韩av不卡免费在线播放| 免费观看人在逋| 亚洲国产精品久久男人天堂| 91午夜精品亚洲一区二区三区| 久久综合国产亚洲精品| 久久久久久久久久久丰满| 寂寞人妻少妇视频99o| 国产精品爽爽va在线观看网站| 亚洲欧美精品综合久久99| 中文亚洲av片在线观看爽| 亚洲欧洲日产国产| 亚洲不卡免费看| 日本黄大片高清| 91久久精品国产一区二区三区| 蜜桃亚洲精品一区二区三区| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 亚洲不卡免费看| 我的老师免费观看完整版| 免费看美女性在线毛片视频| 一级爰片在线观看| av国产免费在线观看| 国产精华一区二区三区| 看免费成人av毛片| 亚州av有码| 亚洲va在线va天堂va国产| 免费一级毛片在线播放高清视频| 精品一区二区免费观看| 人妻少妇偷人精品九色| 国语自产精品视频在线第100页| 国产av不卡久久| 一级av片app| 久久精品91蜜桃| av在线天堂中文字幕| 尤物成人国产欧美一区二区三区| av播播在线观看一区| 国产精品久久视频播放| 中国美白少妇内射xxxbb| www.色视频.com| 欧美xxxx性猛交bbbb| 黄色一级大片看看| 亚洲国产精品成人久久小说| av天堂中文字幕网| 美女xxoo啪啪120秒动态图| 久久久国产成人精品二区| 色网站视频免费| 国产成年人精品一区二区| 国产精品一二三区在线看| 最近中文字幕2019免费版| or卡值多少钱| 精品久久久噜噜| 美女大奶头视频| 国模一区二区三区四区视频| 久久亚洲国产成人精品v| 美女国产视频在线观看| 91精品国产九色| 国产成人精品久久久久久| 一个人免费在线观看电影| 国产高清三级在线| 精品国产三级普通话版| 午夜激情欧美在线| 精品久久久久久久人妻蜜臀av| 国产午夜福利久久久久久| 又爽又黄无遮挡网站| 午夜久久久久精精品| 99久久成人亚洲精品观看| 日韩 亚洲 欧美在线| 在线播放国产精品三级| 欧美+日韩+精品| 午夜日本视频在线| 国产一区二区亚洲精品在线观看| 一本一本综合久久| 秋霞伦理黄片| 国内少妇人妻偷人精品xxx网站| 天堂√8在线中文| 人妻少妇偷人精品九色| a级一级毛片免费在线观看| 天天躁夜夜躁狠狠久久av| 成人特级av手机在线观看| 51国产日韩欧美| 日韩在线高清观看一区二区三区| av在线观看视频网站免费| 欧美一区二区亚洲| 亚洲精品456在线播放app| 成人高潮视频无遮挡免费网站| 国产欧美另类精品又又久久亚洲欧美| 极品教师在线视频| 汤姆久久久久久久影院中文字幕 | or卡值多少钱| 久久久久久久亚洲中文字幕| 日本wwww免费看| 99热6这里只有精品| 最近中文字幕2019免费版| 一级毛片久久久久久久久女| 欧美一级a爱片免费观看看| 26uuu在线亚洲综合色| 久久精品夜色国产| 一区二区三区高清视频在线| 亚洲高清免费不卡视频| 欧美激情久久久久久爽电影| 免费看美女性在线毛片视频| 国产成人午夜福利电影在线观看| 九色成人免费人妻av| 国产在线一区二区三区精 | 国产精华一区二区三区| 黄色日韩在线| 成人午夜高清在线视频| 国产伦在线观看视频一区| 一边亲一边摸免费视频| 最近最新中文字幕大全电影3| 日本午夜av视频| 乱系列少妇在线播放| 欧美最新免费一区二区三区| 99国产精品一区二区蜜桃av| 欧美+日韩+精品| 男女边吃奶边做爰视频| 日韩视频在线欧美| 爱豆传媒免费全集在线观看| 日韩欧美国产在线观看| 日韩制服骚丝袜av| 亚洲美女搞黄在线观看| 少妇丰满av| 久久99热6这里只有精品| 国产免费福利视频在线观看| 亚洲高清免费不卡视频| 熟妇人妻久久中文字幕3abv| 99九九线精品视频在线观看视频| 波多野结衣巨乳人妻| 日韩三级伦理在线观看| 老女人水多毛片| 婷婷色综合大香蕉| 蜜桃亚洲精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 久久久国产成人免费| 国产精品一区二区在线观看99 | 性插视频无遮挡在线免费观看| 久久久久免费精品人妻一区二区| 久久精品综合一区二区三区| 日韩一区二区视频免费看| 国产精品,欧美在线| 精品99又大又爽又粗少妇毛片| 亚洲精品,欧美精品| 乱系列少妇在线播放| 天堂中文最新版在线下载 | 国产一区二区三区av在线| 国产精品一区www在线观看| 最近中文字幕2019免费版| 两个人视频免费观看高清| 在线播放无遮挡| 国产黄a三级三级三级人| 天堂影院成人在线观看| 久久久久久伊人网av| 亚洲人成网站在线播| 国产一区二区三区av在线| 非洲黑人性xxxx精品又粗又长| 成人毛片60女人毛片免费| 亚洲精品国产av成人精品| h日本视频在线播放| 69人妻影院| 91狼人影院| 国产精品爽爽va在线观看网站| 大又大粗又爽又黄少妇毛片口| 色综合亚洲欧美另类图片| 99久国产av精品| 日本五十路高清| 熟女人妻精品中文字幕| 国产乱人视频| 亚洲人与动物交配视频| 亚洲精品乱码久久久久久按摩| 一本一本综合久久| 国产精品一区二区性色av| 日本一二三区视频观看| 日本-黄色视频高清免费观看| 精品久久久久久久末码| 成人亚洲欧美一区二区av| 毛片一级片免费看久久久久| 国产精品国产高清国产av| 日本免费a在线| kizo精华| 偷拍熟女少妇极品色| 亚洲欧美成人精品一区二区| 我要看日韩黄色一级片| 国产伦理片在线播放av一区| 久久精品综合一区二区三区| 午夜免费男女啪啪视频观看| 舔av片在线| 波多野结衣巨乳人妻| 精品久久国产蜜桃| 亚洲人成网站在线观看播放| a级毛片免费高清观看在线播放| 国产色婷婷99| 有码 亚洲区| 黄色欧美视频在线观看| 麻豆国产97在线/欧美| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 久久草成人影院| 免费无遮挡裸体视频| 国产日韩欧美在线精品| 精品国产露脸久久av麻豆 | 精品欧美国产一区二区三| 91精品一卡2卡3卡4卡| www.色视频.com| 亚洲成人久久爱视频| 日本熟妇午夜| 国产精品,欧美在线| 精品无人区乱码1区二区| 波野结衣二区三区在线| 成人特级av手机在线观看| 高清毛片免费看| 亚洲精品自拍成人| 亚洲精品影视一区二区三区av| 天堂av国产一区二区熟女人妻| 精品久久久久久久久亚洲| 日韩亚洲欧美综合| 伊人久久精品亚洲午夜| 国产av不卡久久| 亚洲人成网站在线播| 日韩一本色道免费dvd| 男女视频在线观看网站免费| 一级毛片aaaaaa免费看小| 国产不卡一卡二| 中文字幕精品亚洲无线码一区| 精品酒店卫生间| 婷婷六月久久综合丁香| 日本免费一区二区三区高清不卡| 视频中文字幕在线观看| 韩国高清视频一区二区三区| 国产精品美女特级片免费视频播放器| 欧美日韩国产亚洲二区| 男人舔女人下体高潮全视频| 欧美xxxx性猛交bbbb| 国产老妇女一区| 我要搜黄色片| 一级毛片aaaaaa免费看小| 婷婷六月久久综合丁香| 久久久久性生活片| 你懂的网址亚洲精品在线观看 | 老司机福利观看| 边亲边吃奶的免费视频| 少妇猛男粗大的猛烈进出视频 | 久久6这里有精品| 午夜免费男女啪啪视频观看| 黑人高潮一二区| 九九爱精品视频在线观看| 国产精品福利在线免费观看| 国产精品嫩草影院av在线观看| 久久久久国产网址| 嫩草影院入口| 午夜福利在线观看免费完整高清在| 一本一本综合久久| 亚洲av中文av极速乱| 美女高潮的动态| 日本色播在线视频| 久久久久久久久久久丰满| 我的女老师完整版在线观看| 青春草视频在线免费观看| 男女边吃奶边做爰视频| 国产伦在线观看视频一区| 最近中文字幕高清免费大全6| 欧美不卡视频在线免费观看| 最近手机中文字幕大全| 国产一区亚洲一区在线观看| 国产日韩欧美在线精品| 男女边吃奶边做爰视频| 国产精品99久久久久久久久| av卡一久久| 亚洲中文字幕日韩| 久久久色成人| 亚洲精品自拍成人| 午夜激情欧美在线| 国产精品一区二区性色av| 精品久久久久久久久av| 久久久久久大精品| 亚洲图色成人| 蜜臀久久99精品久久宅男| 性色avwww在线观看| 国产精品不卡视频一区二区| 国产精品一及| 久久草成人影院| 男人舔奶头视频| 亚洲欧美日韩高清专用| 人体艺术视频欧美日本| 两个人视频免费观看高清| 国产精品人妻久久久久久| 99在线人妻在线中文字幕| 久久人妻av系列| 日韩中字成人| 亚洲一区高清亚洲精品| 在线观看66精品国产| 亚洲熟妇中文字幕五十中出| 亚洲不卡免费看| 3wmmmm亚洲av在线观看| 亚洲一区高清亚洲精品| 日韩精品青青久久久久久| 在现免费观看毛片| 夫妻性生交免费视频一级片| 91久久精品国产一区二区成人| 搞女人的毛片| 偷拍熟女少妇极品色| kizo精华| or卡值多少钱| 国产在线男女| 亚洲国产欧美人成| 一级毛片aaaaaa免费看小| 亚洲熟妇中文字幕五十中出| 午夜久久久久精精品| 菩萨蛮人人尽说江南好唐韦庄 | 久久韩国三级中文字幕| 观看美女的网站| 久久久久免费精品人妻一区二区| 日本免费a在线| 简卡轻食公司| 在线天堂最新版资源| 一本久久精品| 国产精品一区二区在线观看99 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 夫妻性生交免费视频一级片| av国产久精品久网站免费入址| 欧美激情久久久久久爽电影| 国产免费视频播放在线视频 | 精品一区二区三区人妻视频| 人妻少妇偷人精品九色| 国产精品国产三级专区第一集| 日本黄色片子视频| 久久久亚洲精品成人影院| 日本一二三区视频观看| 亚洲av日韩在线播放| 国产淫片久久久久久久久| 精品不卡国产一区二区三区| 日本免费a在线| 搞女人的毛片| 搡老妇女老女人老熟妇| 欧美日本视频| 久久久精品欧美日韩精品| 午夜免费男女啪啪视频观看| 久久精品综合一区二区三区| 国产激情偷乱视频一区二区| 欧美精品国产亚洲| 国产成人a区在线观看| 国产精品人妻久久久影院| 天堂网av新在线| 亚州av有码| 日韩视频在线欧美| 女人被狂操c到高潮| 久久99蜜桃精品久久| 久久精品久久久久久久性| av播播在线观看一区| 人妻系列 视频| 欧美日本亚洲视频在线播放| 99热这里只有是精品在线观看| 久久久午夜欧美精品| 99热全是精品| 汤姆久久久久久久影院中文字幕 | 尤物成人国产欧美一区二区三区| a级毛片免费高清观看在线播放| 国产精品.久久久| 成人性生交大片免费视频hd| 看非洲黑人一级黄片| 久久久精品大字幕| 免费观看性生交大片5| 精品熟女少妇av免费看| 免费看av在线观看网站| 免费电影在线观看免费观看| 亚洲精华国产精华液的使用体验| 成人无遮挡网站| 欧美一区二区精品小视频在线| 国产黄色视频一区二区在线观看 | 成人午夜高清在线视频| 欧美色视频一区免费| 高清午夜精品一区二区三区| av国产久精品久网站免费入址| 成年版毛片免费区| 精品国产一区二区三区久久久樱花 | 干丝袜人妻中文字幕| 国产 一区精品| 精品99又大又爽又粗少妇毛片| 国产伦精品一区二区三区视频9| 亚洲美女搞黄在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 久久鲁丝午夜福利片| 一级黄色大片毛片| 亚洲国产精品成人综合色| 亚洲,欧美,日韩| 深爱激情五月婷婷| 国产伦理片在线播放av一区| 我要看日韩黄色一级片| 久久亚洲国产成人精品v| 超碰av人人做人人爽久久| 国产免费男女视频| 日日干狠狠操夜夜爽| 免费无遮挡裸体视频| 日韩高清综合在线| 永久免费av网站大全| 狂野欧美白嫩少妇大欣赏| 亚洲精品,欧美精品| 特大巨黑吊av在线直播| 亚洲美女视频黄频| 真实男女啪啪啪动态图| 高清av免费在线| 波多野结衣巨乳人妻| 少妇裸体淫交视频免费看高清| 日本熟妇午夜| 国模一区二区三区四区视频| 永久网站在线| 三级毛片av免费| 亚洲成人精品中文字幕电影| 国产91av在线免费观看| 99久久中文字幕三级久久日本| 国产探花在线观看一区二区| 狂野欧美激情性xxxx在线观看| 国产成人freesex在线| 嫩草影院入口| 三级国产精品欧美在线观看| 秋霞在线观看毛片| 日本午夜av视频| 午夜久久久久精精品| 精品久久久久久久久av| 国产伦一二天堂av在线观看| 91久久精品国产一区二区成人| 日本-黄色视频高清免费观看| 午夜激情福利司机影院|