• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Eulerian–Lagrangian simulation of bubble coalescence in bubbly flow using the spring-dashpot model

    2017-05-28 07:28:38JingXueFeiguoChenNingYangWeiGe

    Jing Xue ,Feiguo Chen ,Ning Yang ,*,Wei Ge

    1 State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,P.O.Box 353,Beijing 100190,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    In bubbly flows the bubble size distribution(BSD)is of critical importance to characterize the fluid flow and mass transfer and reflect the bubble coalescence and breakage.In the traditional Eulerian–Eulerian methods,both the liquid and the gas phase are treated as interpenetrating continuum,and the behavior of individual bubbles such as the position,velocity and size of each bubble is not directly simulated.To reconstruct the BSD,a population balance equation(PBE)is required to be integrated into the Eulerian–Eulerian method.The PBE also needs the coalescence kernel function and breakage kernel function,both of which are based on statistical models.Various PBE kernel functions have been proposed in literature,such as Coulaloglou and Tavlarides[1],Prince and Blanch[2],Luo and Svendsen[3],Alopaeuset al.[4],Lehret al.[5].

    In Eulerian–Lagrangian method,the bubble size distribution could be explicitly modeled since each bubble is tracked individually.When two bubbles collide with each other,they may bounce off or coalesce,depending on the relative velocity and the radii.The criteria to determine coalescence and breakage events need to be established.Based on the hard-sphere method of Delnoijet al.[6],a few researchers have applied some coalescence and break-up models in Eulerian–Lagrangian framework.Sommerfeldet al.[7]proposed a coalescence model based on the stochastic model in their simulation without considering the bubble breakage.Darmanaet al.[8]reported a deterministic coalescence model.Lauet al.[9]established a complete coalescence and breakage model and predicted the BSD for the experiments of the Deen case.In the work of Sungkornet al.[10],a stirred reactor was simulated with bubble breakage and coalescence.Jainet al.[11]simulated a micro-structured bubble column.Gruberet al.[12]established a stochastic coalescence and break-up model within the Eulerian–Lagrangian framework.Lauet al.[13]presented a review of break-up and coalescence models and studied the influence of several parameters on the simulation of BSD.

    To our knowledge there is no report about the spring-dashpot collisional model in the simulation of bubble coalescence,though the model is more physical than the hard-sphere model to model the soft bubbles and calculate the bubble contact time.This may be partly attributed to the lack of bubble interaction parameters for spring-dashpot model since few literatures concerned on the performance of the spring-dashpot model in gas–liquid systems.We have already verified the applicability of the spring-dashpot model for gas–liquid systems in our previous work[14],and in this paper we further establish a preliminary modeling framework to incorporate the bubble collisions by using the spring-dashpot model and the bubble coalescence and breakage into the Eulerian–Lagrangian simulation.

    2.Model Formation

    2.1.Bubble dynamics

    Each bubble is tracked individually in the Eulerian–Lagrangian simulation.All the forces exerted on a bubble is summed up,and then the velocityvand positionris updated within a fixed time step by:

    where fbrepresents the buoyancy force,fgthe gravity,fdthe drag force,flthe lift force and fvmthe virtual mass force.The buoyancy and gravity force are written together as:

    2.2.Liquid phase hydrodynamics

    The averaged Navier–Stokes equation is employed for liquid phase.The gas volume fraction and the momentum exchange rate are added to reflect the existence of bubbles:

    The item Φ represents the interfacial forces exerted by fluid on a bubble like buoyancy,drag,lift and virtual mass,then averaged on each cell:

    The final equation becomes:

    2.3.Collision model

    The simplified linear model by Cundall and Strack[16]is used to calculate the contact force between bubbles.The normal contact force between two bubblesaandbis calculated from:

    where δnrepresents the overlap between two bubbles,κnthe normal spring stiffness coefficient,ηnthe normal damping coefficient,nabthe normal unit vector and uabthe relative velocity.The tangential component is given in a similar manner:

    δtis the tangential displacement,κtthe tangential spring stiffness coefficient, ηnthe tangential damping coefficient,and μ the friction coefficient.

    In our previous work,the experimental systems of Becker case[17]and Deen case[18]were simulated without considering bubble coalescence or breakage.We found that the simulation of Becker case was insensitive to the normal stiffness coefficient,and the normal stiffness coefficient 1 N·m?1gave slightly more accurate results than 0.01 N·m?1or 50 N·m?1.The simulation of Deen case indicated that 1 N·m?1of the normal stiffness coefficient predicted the closest fluid velocity to the experimental data.In this paper,we will further incorporate the bubble coalescence and breakage models and investigate the influence of spring-dashpot model parameters on bubble contact time.

    2.4.Coalescence model

    The film drainage model of Prince and Blanch[2]is implemented in the simulation.Coalescence occurs when two bubbles collide and the time for the liquid film between the bubbles to drain is smaller than the bubble contact time.The film drainage time is given as:

    where θ0is the initial film thickness and θfthe final thickness.For airwater system θ0is taken as 10?4m and θfis 10?8m[19].req.is the equivalent radius as defined by Chesters and Hofman[20]:

    In hard-sphere models the contact time should be zero since the collision is assumed to be instantaneous;whereas for modeling the coalescence the contact time should be a considerable positive value.Sommerfeldet al.[7]supplemented an additional approximation which assumes that the contact time is proportional to the deformation distance divided by the normal relative velocity.Darmanaet al.[8]and Lauet al.[13]adopted this method in their simulation.However,this approximation can be eliminated in the spring-dashpot model as the contact time is detected and recorded during the modeling of collision process.Hence the coalescence criterion in our model is given by:

    2.5.Break-up model

    There are several mechanisms and corresponding models in literatures accounting for break-up,including turbulent fluctuation,shear stress,interfacial instability.In this study we only utilize a simple break-up model for simplicity.The deformation stress arises from the velocity fluctuations and bubbles will break when the Weber number is greater than a critical value:

    when a bubble is judged to break,a uniform random numberxbetween 0 and 1 is generated by the computer,then the inverse transform method is used to obtain the random number γ for the size distribution function.

    The mother bubble is resized to become the larger daughter bubble and the other new smaller bubble is randomly placed around the larger one.It should be pointed out that the U-shape distribution is selected in this paper because its cumulative distribution function is easily obtained in our method.However,an M-shape distribution[5,22]can be more physical since it incorporates the influence of both additional pressure and surface energy.

    2.6.Code implementation

    The open source CFD package OpenFOAM is utilized in our work to establish a complete program for flow field calculation,bubble tracking,coalescence and break-up.The default gas–solid solver DPMFoam is rebuilt to make it consistent with the governing equations above.And we add the spring-dashpot collision model and the bubble coalescence and breakage models mentioned above.The break-up events are also handled in the code.For simplicity we assumed that the momentum of bubbles is conserved during the breakage or coalescence process and the velocity of each daughter bubble is equal to that of the mother bubble.A brief flowsheet of the process is shown in Fig.1:

    Fig.1.Flowchart of the solver.

    Fig.2 illustrates coalescence and break-up process.The new diameter,velocity and position after coalescence are calculated according to:

    where Δr is a random vector with a magnitude of 0.6 × (da+db).

    Fig.2.Illustration of the coalescence and break-up process.

    3.Simulation Setup

    3.1.The Deen case

    A square bubble column(Fig.3)of the Deen case is simulated in the study.The column has a height of 0.45 m and a cross section of 0.15 m×0.15 m.The gas distributor is fixed at the center of the bottom with 49 pores.The bubble diameter is initially 4 mm according to Deenet al.[18].The superficial gas velocity is 4.9 mm·s?1,thus about 3290 bubbles are injected into the system per second.The no-slip condition for the liquid is imposed on the walls except the top where the freeslip condition is used.The collision between bubbles and sidewall are handled by the hard-sphere model with a restitution coefficient of 1.The large eddy simulation(LES)is selected for turbulence.The simulation time is set to 180 s,of which the first 20s are discarded due to start-up effects.More detailed parameters are given in Table 1.

    3.2.Selection of the normal stiffness coefficient

    In the spring-dashpot model for bubbles,the normal stiffness coefficient plays the important role.It determines the magnitude of the overlap between bubbles,thus the contact time and coalescence rate.However there is hitherto no experimental data for bubble stiffness coefficients,and we refer to the work of Chesters[23]in which the coalescence processes were modeled.

    Fig.3.Schematic view of the bubble column.

    Table 1Detailed simulation settings

    Chesters estimated the interaction force between bubbles of the same radiusRas:

    wherearepresents the intersection radius.If the normal overlap δnis small,this radius can be expressed as:

    Sincef~ κnδnin the spring-dashpot model,the normal stiffness coefficient can be derived as:

    For the air-water system in this paper,the surface tension is about 0.075 N·m?1,thus the normal stiffness coefficient is in the order of 0.5 N·m?1.In our previous work 1 N·m?1is found most suitable in the prediction of fluid velocity for the coalescence-free cases.In this paper,we further evaluated the different normal stiffness coefficient(0.5 N·m?1,0.75 N·m?1and 1.0 N·m?1)in the calculation.

    4.Results and Discussion

    Lauet al.[13]reported that different daughter size distributions and critical Weber numbers resulted in similar multimodal bubble size distribution in their deterministic coalescence and break-up models.The critical Weber number ranging from 1 to 12 leads to different heights of the peaks of bubble size distribution.Actually the critical number should be evaluated from experiments or direct numerical simulations.Here we only use the U-shape daughter bubble size distribution and a critical Weber number of 1 in the three cases.A snapshot of the simulation and the time-averaged fluid field are shown in Fig.4.Fig.5 shows the time-averaged vertical liquid velocity pro file at the height of 0.25 m.The solid line represents the experimental data of Deenet al.[24],in which kitchen salt was added to inhibit the bubble coalescence and break-up.The maximum velocity magnitude is higher than the same case without coalescence or break-up.The simulation without considering the coalescence and break-up is in better agreement with the experiment.The simulations of different stiffness coefficient show similar trends,and the use of models of coalescence and breakup plays more important roles in the simulation of vertical velocity.

    Fig.4.(a)Snapshot of the bubbles in the column.(b)time-averaged liquid velocity on the mid-depth plane.

    Fig.5.Mean vertical velocity at the height of 0.25 m.

    4.1.Coalescence rates

    The coalescence rates on the mid-depth plane are illustrated in Fig.6.Since the number density of bubbles is quite high at the inlet,collisions occur frequently and results in high coalescence rate there.Besides,coalescence also prefers to occur in the left-top and right-top corners.This can be attributed to the vortices near the upper corners,which make the bubbles to recirculate and increase the possibility to collide(Fig.7).The coalescence rate is sensitive to the normal stiffness coefficient.Higher normal stiffness coefficient leads to shorter contact time between bubbles and lower probability of coalescence.The normal stiffness coefficient of 1 N·m?1obtains a maximum coalescence rate of only 50·s?1;whereas for 0.5 N·m?1the maximum coalescence rate is 180·s?1.Also the coalescence rate at inlet seems to be underestimated at 1 N·m?1.

    4.2.Bubble size distribution

    The predicted BSDs(Fig.8)show the same trend with the particle imaging technique(PIV)measurement by Hansen[25],except the peak at 4 mm.As mentioned before,in this study only the shear stress for break-up is considered,the break-up rates are likely to be underestimated.Thus a large number of bubbles with initial diameters 4 mm go through the column without breakage.This may also be related to the critical Weber number or the method to calculate the mean square velocity difference in Eq.(16).

    The simulation of κn=0.5 N·m?1seems better than that of κn=1 N·m?1and κn=0.75 N·m?1,which contains less bubbles with diameters of 4 mm and more bubbles with diameters<2 mm.Since the stiffness coefficients are not directly relevant to the break-up processes,the difference can be only attributed to the coalescence processes.For κn=0.5 N·m?1,more bubbles with initial diameters 4 mm can first coalesce and then break up.Fig.9 indicates that at 0.5 N·m?1the break-up rate is also higher.This may imply that a lower normal stiffness coefficient achieves better balance of coalescence and break-up.

    All the tails of the three BSDs terminate at about 6 mm,which is consistent with the results of stochastic approach of Gruberet al.[12],but in Hansen's experiment there are a significant number of large bubbles with diameters above 6 mm.This accordance might indicate that more suitable parameters for the film drainage model is required.

    5.Conclusions

    Fig.6.Coalescence rates on mid-depth plane.(a)–(c)Normal stiffness coefficient 1.0 N·m?1,0.75 N·m?1,0.5 N·m?1.

    We have simulated a 3D bubble column with consideration of bubble coalescence and break-up under Eulerian–Lagrangian framework.We utilized the spring-dashpot model in bubbly flow to handle the collisions between bubbles and record the contact time.The latter is then incorporated into the film-drainage coalescence model to determine the occurrence of bubble coalescence.A simple model related to the critical Weber number is used for bubble break-up.The simulations with different normal stiffness coefficients were carried out to study the applicability of the spring-dashpot in bubble coalescence.It indicates that the coalescence rates and BSDs are both pertinent to the normal stiffness coefficient.A slight increase in normal stiffness coefficient results in a remarkable lower coalescence rate.A normal stiffness coefficient of 0.5 N·m?1seems give the highest coalescence rate and the best BSD.It seems the film drainage model underestimates the coalescence rate of large bubbles since both our simulation and the stochastic approach of Gruberet al.[12]contain less bubbles with diameters above 6 mm than the experimental observation of Hansen[25].This paper here presents a preliminary study and analysis of the Eulerian–Lagrangian simulation with the spring-dashpot model.It should be pointed out that the simulation depends on the model parameters in the spring-dashpot model,and the bubble coalescence and breakage models.These parameters may have to be determined by more micro-scale experiments or direct numerical simulations.Also the simulation results are influenced by numerical algorithms in collision detection and contact time record method,all of which needs further in-depth study.

    Fig.7.Collision frequency on mid-depth plane.(a)–(c)Normal stiffness coefficient 1.0 N·m?1,0.75 N·m?1,0.5 N·m?1.

    Fig.8.Overall bubble size distribution.(a)–(c)normal stiffness coefficient 1.0 N·m?1,0.75 N·m?1,0.5 N·m?1.

    Fig.9.Break-up rates on mid-depth plane.(a)–(c)normal stiffness coefficient 1.0 N·m?1,0.75 N·m?1,0.5 N·m?1.

    Nomenclature

    Cddrag coefficient(dimensionless)

    dbbubble diameter,m

    EoEotvos number(dimensionless)

    g gravitational acceleration,m2·s?1

    ReReynolds number(dimensionless)

    rbbubble location,m

    Δttime step,s

    Ufliquid velocity,m·s?1

    Vbbubble volume,m3

    vbbubble velocity,m·s?1

    WeWeber number(dimensionless)

    δnnormal displacement,m

    δttangential displacement,m

    εfliquid volume fraction(dimensionless)

    ηnnormal damping coefficient,kg·s?1

    ηttangential damping coefficient,kg·s?1

    κnnormal stiffness coefficient,N·m?1

    κttangential stiffness coefficient,N·m?1

    ρbbubble density,kg·m?3

    ρfliquid density,kg·m?3

    σ surface tension,N·m?1

    Acknowledgments

    The authors wish to acknowledge the long term support from the National Natural Science Foundation of China(Grant No.91434121),Ministry of Science and Technology of China(Grant No.2013BAC12B01)and State Key Laboratory of Multiphase complex systems(Grant No.MPCS-2015-A-03)and Chinese Academy of Sciences(Grant No.XDA07080301).

    [1]C.A.Coulaloglou,L.L.Tavlarides,Description of interaction processes in agitated liquid–liquid dispersions,Chem.Eng.Sci.32(1977)1289–1297.

    [2]M.J.Prince,H.W.Blanch,Bubble coalescence and break-up in air-sparged bubble columns,AIChE J.36(1990)1485–1499.

    [3]H.Luo,H.F.Svendsen,Theoretical model for drop and bubble breakup in turbulent dispersions,AIChE J.42(1996)1225–1233.

    [4]V.Alopaeus,J.Koskinen,K.I.Keskinen,J.Majander,Simulation of the population balances for liquid–liquid systems in a non-ideal stirred tank.Part 2 — Parameter fitting and the use of the multiblock model for dense dispersions,Chem.Eng.Sci.57(2002)1815–1825.

    [5]F.Lehr,M.Millies,D.Mewes,Bubble-size distributions and flow fields in bubble columns,AIChE J.48(2002)2426–2443.

    [6]E.Delnoij,F.A.Lammers,J.A.M.Kuipers,W.P.M.van Swaaij,Dynamic simulation of dispersed gas–liquid two-phase flow using a discrete bubble model,Chem.Eng.Sci.52(9)(1997)1429–1458.

    [7]M.Sommerfeld,E.Bourloutski,D.Br?der,Euler/Lagrange calculations of bubbly flows with consideration of bubble coalescence,Can.J.Chem.Eng.81(2003)508–518.

    [8]D.Darmana,N.G.Deen,J.A.M.Kuipers,Parallelization of an Euler–Lagrange model using mixed domain decomposition and a mirror domain technique:Application to dispersed gas–liquid two-phase flow,J.Comput.Phys.220(1)(2006)216–248.

    [9]Y.M.Lau,N.G.Deen,J.A.M.Kuipers,Bubble breakup in Euler–Lagrange simulations of bubbly flow,7th Int.Conf.on Multi-phase Flow(ICMF),Tampa,FL,2010.

    [10]R.Sungkorn,J.J.Derksen,J.G.Khinast,Euler–Lagrange modeling of a gas–liquid stirred reactor with consideration of bubble breakage and coalescence,AIChE J.58(2012)1356–1370.

    [11]D.Jain,Y.M.Lau,J.A.M.Kuipers,N.G.Deen,Discrete bubble modeling for a microstructured bubble column,Chem.Eng.Sci.100(2013)496–505.

    [12]M.C.Gruber,S.Radl,J.G.Khinast,Coalescence and break-up in bubble columns:Euler–Lagrange simulations using a stochastic approach,Chem.Ing.Tech.7(2013)1118–1130.

    [13]Y.M.Lau,W.Bai,N.G.Deen,J.A.M.Kuipers,Numerical study of bubble break-up in bubbly flows using a deterministic Euler–Lagrange framework,Chem.Eng.Sci.108(2014)9–22.

    [14]J.Xue,Applicability of the soft-sphere model in bubbly flowMaster Thesis University of Chinese Academy of Sciences,China,2016.

    [15]A.Tomiyama,Struggle with computational bubble dynamics,Third International Conference on Multiphase Flow,ICMF'98,Lyon,France,1998.

    [16]P.A.Cundall,O.D.L.Strack,A discrete numerical model for granular assemblies,Geotechnique29(1979)47–65.

    [17]S.Becker,A.Sokolichin,G.Eigenberger,Gas–liquid flow in bubble columns and loop reactors:Part II.Comparison of detailed experiments and flow simulations,Chem.Eng.Sci.49(1994)5747–5762.

    [18]N.G.Deen,B.H.Hjertager,T.Solberg,Comparison of PIV and LDA measurement methods applied to the gas–liquid flow in a bubble column,Presented at the 10th international symposium on applications of laser techniques to fluid mechanics,Lisbon,Portugal,2000.

    [19]R.Kirkpatrick,M.Lockett,Influence of approach velocity on bubble coalescence,Chem.Eng.Sci.29(1974)2362–2373.

    [20]A.K.Chesters,G.Hofman,Bubble coalescence in pure liquids,Appl.Sci.Res.38(1982)353–361.

    [21]C.Tsouris,L.L.Tavlarides,Breakage and coalescence models for drops in turbulent dispersions,AIChE J.40(1994)395–406.

    [22]T.Wang,J.Wang,Y.Jin,A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow,Chem.Eng.Sci.58(2003)4629–4637.

    [23]A.K.Chesters,The modeling of coalescence processes in fluid–liquid dispersions:A review of current understanding,Chem.Eng.Res.Des.Trans.Inst.Chem.Eng.Part A69(1991)259–270.

    [24]N.G.Deen,T.Solberg,B.H.Hjertager,Large Eddy simulation of the gas–liquid flow in a square cross-sectioned bubble column,Chem.Eng.Sci.56(2001)6341–6349.

    [25]R.Hansen,Computational and experimental study of bubble size in bubble columnsPh.D.Thesis Aalborg University,Denmark,2009.

    边亲边吃奶的免费视频| 亚洲在线观看片| 色播亚洲综合网| 亚洲内射少妇av| 精品国产一区二区三区久久久樱花 | 深夜a级毛片| 国产一级毛片在线| 97人妻精品一区二区三区麻豆| 女人久久www免费人成看片 | 国内精品一区二区在线观看| 国产精品女同一区二区软件| .国产精品久久| 日韩成人伦理影院| 蜜桃久久精品国产亚洲av| 日韩亚洲欧美综合| 性色avwww在线观看| 日韩精品有码人妻一区| 神马国产精品三级电影在线观看| 午夜福利在线观看免费完整高清在| 小蜜桃在线观看免费完整版高清| 国产精品蜜桃在线观看| 日日摸夜夜添夜夜爱| 美女大奶头视频| 1000部很黄的大片| 精品国产露脸久久av麻豆 | 久久人人爽人人爽人人片va| 汤姆久久久久久久影院中文字幕 | 日韩一区二区三区影片| 99久久无色码亚洲精品果冻| 五月玫瑰六月丁香| 汤姆久久久久久久影院中文字幕 | 色视频www国产| 国产成人a∨麻豆精品| 久久精品影院6| 91aial.com中文字幕在线观看| 国产高清不卡午夜福利| 看片在线看免费视频| 美女被艹到高潮喷水动态| 久久精品国产99精品国产亚洲性色| 丰满乱子伦码专区| 久久99精品国语久久久| 美女脱内裤让男人舔精品视频| 岛国毛片在线播放| 久久久欧美国产精品| 国内精品宾馆在线| 狂野欧美激情性xxxx在线观看| 97超视频在线观看视频| 精品国产三级普通话版| 中文天堂在线官网| 欧美97在线视频| 一级av片app| 国产美女午夜福利| 亚洲精品国产成人久久av| 久久精品国产自在天天线| 日韩欧美精品v在线| 纵有疾风起免费观看全集完整版 | АⅤ资源中文在线天堂| 男女啪啪激烈高潮av片| 色网站视频免费| 女人久久www免费人成看片 | 亚洲精品久久久久久婷婷小说 | 久久久亚洲精品成人影院| 伊人久久精品亚洲午夜| 成人综合一区亚洲| 中文字幕制服av| 99久国产av精品国产电影| 久久99热这里只频精品6学生 | 天美传媒精品一区二区| 日韩欧美三级三区| 黄片无遮挡物在线观看| 日本黄大片高清| 日韩,欧美,国产一区二区三区 | 久久99热这里只有精品18| 国产高潮美女av| 看十八女毛片水多多多| 成人午夜精彩视频在线观看| 久久精品国产亚洲av天美| 51国产日韩欧美| 嫩草影院入口| 青春草亚洲视频在线观看| 国产高清视频在线观看网站| h日本视频在线播放| 午夜久久久久精精品| 国产69精品久久久久777片| 国产精品国产三级国产专区5o | 国产精品电影一区二区三区| 免费看美女性在线毛片视频| 全区人妻精品视频| 国产精品国产高清国产av| 亚洲天堂国产精品一区在线| 最近手机中文字幕大全| 欧美zozozo另类| 99久久无色码亚洲精品果冻| 国产高清有码在线观看视频| 久久久精品94久久精品| 美女黄网站色视频| 日韩人妻高清精品专区| 亚洲第一区二区三区不卡| 精品人妻偷拍中文字幕| 国产毛片a区久久久久| 中文资源天堂在线| 亚洲欧美成人精品一区二区| 国产亚洲av片在线观看秒播厂 | 国产一区二区三区av在线| 伦理电影大哥的女人| 免费av观看视频| 日韩视频在线欧美| 欧美高清性xxxxhd video| 麻豆精品久久久久久蜜桃| 国产精品嫩草影院av在线观看| 一个人观看的视频www高清免费观看| 男女国产视频网站| 国产欧美另类精品又又久久亚洲欧美| 男人舔女人下体高潮全视频| 日日啪夜夜撸| 麻豆久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 国产精品电影一区二区三区| 国产色爽女视频免费观看| 成人一区二区视频在线观看| 18禁裸乳无遮挡免费网站照片| 国产黄色小视频在线观看| 少妇猛男粗大的猛烈进出视频 | 一级毛片我不卡| 国产黄片视频在线免费观看| 亚洲av一区综合| 欧美一区二区国产精品久久精品| 国产午夜精品久久久久久一区二区三区| 天堂中文最新版在线下载 | 精品一区二区三区人妻视频| 色5月婷婷丁香| 三级经典国产精品| 欧美最新免费一区二区三区| av在线亚洲专区| 欧美高清成人免费视频www| 中文字幕av在线有码专区| 国产色婷婷99| 欧美潮喷喷水| 亚洲在线观看片| 亚洲人成网站在线播| 欧美丝袜亚洲另类| 在线免费十八禁| 亚洲最大成人手机在线| 一级毛片我不卡| videossex国产| 亚洲五月天丁香| 欧美zozozo另类| 亚洲婷婷狠狠爱综合网| 哪个播放器可以免费观看大片| av免费观看日本| 草草在线视频免费看| 免费电影在线观看免费观看| 亚洲自偷自拍三级| 日韩三级伦理在线观看| 久久精品国产自在天天线| 久久久午夜欧美精品| 欧美日韩一区二区视频在线观看视频在线 | 国产精品久久久久久av不卡| 一个人免费在线观看电影| 久久久精品欧美日韩精品| 亚洲自偷自拍三级| 热99在线观看视频| 免费av毛片视频| 男女边吃奶边做爰视频| 综合色av麻豆| 成人特级av手机在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产精品爽爽va在线观看网站| or卡值多少钱| 91久久精品国产一区二区三区| 国产精品爽爽va在线观看网站| 久久久精品94久久精品| 色哟哟·www| 一级毛片电影观看 | 久久精品久久精品一区二区三区| 日本爱情动作片www.在线观看| 观看美女的网站| 天天躁日日操中文字幕| 亚洲av电影在线观看一区二区三区 | 久久精品久久精品一区二区三区| av视频在线观看入口| 69av精品久久久久久| 国产精品熟女久久久久浪| 午夜激情福利司机影院| av线在线观看网站| 亚洲不卡免费看| 亚洲av不卡在线观看| 午夜精品国产一区二区电影 | 丝袜喷水一区| 国产亚洲一区二区精品| 秋霞在线观看毛片| 亚洲欧美精品综合久久99| 男人狂女人下面高潮的视频| a级毛色黄片| 久久久久久久久久久丰满| 欧美变态另类bdsm刘玥| 亚洲无线观看免费| 伦精品一区二区三区| 女人久久www免费人成看片 | 亚洲国产欧洲综合997久久,| 色吧在线观看| 亚洲内射少妇av| 欧美zozozo另类| 国产黄色小视频在线观看| 91久久精品国产一区二区成人| 国产免费视频播放在线视频 | 天美传媒精品一区二区| 亚洲欧美精品自产自拍| 夫妻性生交免费视频一级片| 国产av码专区亚洲av| 精品一区二区三区人妻视频| 日韩一本色道免费dvd| 国产精品福利在线免费观看| 国产不卡一卡二| 男人舔奶头视频| 国产极品天堂在线| 美女国产视频在线观看| 最近视频中文字幕2019在线8| 18禁在线无遮挡免费观看视频| 最近2019中文字幕mv第一页| 精品99又大又爽又粗少妇毛片| 成人亚洲精品av一区二区| 中文字幕制服av| 亚洲国产精品久久男人天堂| 秋霞伦理黄片| 国产精品.久久久| 亚洲国产精品合色在线| 插逼视频在线观看| 国产女主播在线喷水免费视频网站 | 最近2019中文字幕mv第一页| 亚洲精品乱码久久久v下载方式| 成人一区二区视频在线观看| 亚洲无线观看免费| 日本-黄色视频高清免费观看| 日本五十路高清| 成人三级黄色视频| 免费播放大片免费观看视频在线观看 | 国产成人精品一,二区| 99热这里只有是精品在线观看| 99热这里只有是精品在线观看| 男人狂女人下面高潮的视频| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久国产电影| 久久久久久久久久久丰满| 亚洲人成网站高清观看| 中文字幕久久专区| 国产激情偷乱视频一区二区| 免费一级毛片在线播放高清视频| 中文字幕久久专区| 久久亚洲国产成人精品v| 精品不卡国产一区二区三区| ponron亚洲| 麻豆久久精品国产亚洲av| 亚洲美女视频黄频| 日本午夜av视频| 亚洲精品亚洲一区二区| 国产乱人视频| 日本午夜av视频| 国产一区二区在线av高清观看| 亚洲av一区综合| 亚洲av电影在线观看一区二区三区 | 一级爰片在线观看| av线在线观看网站| 国产成人精品一,二区| 精品久久久久久久人妻蜜臀av| 国产伦一二天堂av在线观看| 在线天堂最新版资源| 国产午夜福利久久久久久| 午夜福利高清视频| 亚洲成人中文字幕在线播放| 欧美精品国产亚洲| 色综合站精品国产| 99九九线精品视频在线观看视频| 久99久视频精品免费| 成人性生交大片免费视频hd| 欧美高清性xxxxhd video| 精品久久久久久久久久久久久| 久久这里有精品视频免费| 亚洲最大成人中文| 亚洲中文字幕一区二区三区有码在线看| 村上凉子中文字幕在线| 黑人高潮一二区| 一夜夜www| 午夜爱爱视频在线播放| 日本三级黄在线观看| 欧美高清成人免费视频www| 最近中文字幕2019免费版| 中文欧美无线码| 精品午夜福利在线看| 国产黄色小视频在线观看| 麻豆成人午夜福利视频| 成年av动漫网址| kizo精华| 水蜜桃什么品种好| 欧美高清成人免费视频www| 国产精品野战在线观看| 女人久久www免费人成看片 | 激情 狠狠 欧美| 国产精华一区二区三区| 如何舔出高潮| 欧美变态另类bdsm刘玥| 99视频精品全部免费 在线| 91aial.com中文字幕在线观看| 亚洲av福利一区| 性插视频无遮挡在线免费观看| a级毛色黄片| 国产探花在线观看一区二区| h日本视频在线播放| 免费看a级黄色片| 亚洲内射少妇av| 欧美xxxx性猛交bbbb| 晚上一个人看的免费电影| 欧美97在线视频| 一个人看视频在线观看www免费| 亚洲av中文av极速乱| 少妇的逼好多水| 99在线视频只有这里精品首页| 亚洲在线自拍视频| 成年女人看的毛片在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产欧洲综合997久久,| 99久久无色码亚洲精品果冻| 欧美高清性xxxxhd video| 日韩,欧美,国产一区二区三区 | 国产精品av视频在线免费观看| 亚州av有码| 亚洲五月天丁香| 晚上一个人看的免费电影| 亚洲人成网站高清观看| 91狼人影院| 91aial.com中文字幕在线观看| 久久精品综合一区二区三区| 一级毛片我不卡| 亚洲国产精品国产精品| 亚洲国产高清在线一区二区三| 亚州av有码| 日日干狠狠操夜夜爽| 国产视频内射| 99久久精品一区二区三区| 国产老妇女一区| 亚洲激情五月婷婷啪啪| 久久久成人免费电影| 久久综合国产亚洲精品| 99热全是精品| 亚洲成av人片在线播放无| 午夜福利在线观看免费完整高清在| 日本午夜av视频| 免费观看人在逋| 国产视频内射| 日韩欧美在线乱码| 两个人的视频大全免费| 黑人高潮一二区| 最近手机中文字幕大全| 亚洲精品乱码久久久v下载方式| 日本熟妇午夜| 亚洲精品亚洲一区二区| 麻豆国产97在线/欧美| 欧美色视频一区免费| 国产av一区在线观看免费| 网址你懂的国产日韩在线| 国产 一区精品| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| 成人欧美大片| 三级国产精品欧美在线观看| 国产亚洲91精品色在线| 亚洲四区av| 美女被艹到高潮喷水动态| 亚洲精品aⅴ在线观看| 五月玫瑰六月丁香| 欧美色视频一区免费| 亚洲三级黄色毛片| 亚洲欧美精品综合久久99| 可以在线观看毛片的网站| 国内少妇人妻偷人精品xxx网站| or卡值多少钱| 国产精品蜜桃在线观看| 日韩一区二区视频免费看| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 能在线免费看毛片的网站| 国产综合懂色| 国产毛片a区久久久久| 在线观看66精品国产| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品影视一区二区三区av| 日本一本二区三区精品| 色网站视频免费| 97人妻精品一区二区三区麻豆| 在线观看美女被高潮喷水网站| 婷婷色av中文字幕| 国产精品人妻久久久久久| 国产极品天堂在线| 听说在线观看完整版免费高清| 亚洲精品456在线播放app| 网址你懂的国产日韩在线| 国产伦精品一区二区三区视频9| 久久午夜福利片| 老女人水多毛片| 免费观看在线日韩| av又黄又爽大尺度在线免费看 | 在线免费十八禁| 午夜免费男女啪啪视频观看| 亚洲精品日韩在线中文字幕| 成人漫画全彩无遮挡| 亚洲精品456在线播放app| 久久久久国产网址| 免费播放大片免费观看视频在线观看 | 免费不卡的大黄色大毛片视频在线观看 | 91av网一区二区| 色播亚洲综合网| 乱码一卡2卡4卡精品| 国产极品精品免费视频能看的| 精品久久久久久久久av| 免费在线观看成人毛片| 亚洲色图av天堂| 看非洲黑人一级黄片| 丰满少妇做爰视频| 啦啦啦韩国在线观看视频| 黄片无遮挡物在线观看| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 精品人妻视频免费看| 丰满少妇做爰视频| 欧美潮喷喷水| 成人国产麻豆网| 欧美成人一区二区免费高清观看| 别揉我奶头 嗯啊视频| 精品国产一区二区三区久久久樱花 | 老司机福利观看| www.av在线官网国产| 久久久久久伊人网av| 水蜜桃什么品种好| 国产免费男女视频| 七月丁香在线播放| 亚洲欧美日韩高清专用| 色5月婷婷丁香| 亚洲欧美成人综合另类久久久 | 欧美+日韩+精品| 七月丁香在线播放| 在线免费观看不下载黄p国产| 国产伦在线观看视频一区| 免费av毛片视频| 午夜激情欧美在线| 夫妻性生交免费视频一级片| 中文精品一卡2卡3卡4更新| 干丝袜人妻中文字幕| 人人妻人人澡人人爽人人夜夜 | 中文亚洲av片在线观看爽| 一边亲一边摸免费视频| 久久99热6这里只有精品| 国语自产精品视频在线第100页| 精品午夜福利在线看| 三级国产精品片| 波野结衣二区三区在线| 亚洲av福利一区| 一级av片app| 亚洲成人av在线免费| 男女国产视频网站| 建设人人有责人人尽责人人享有的 | 99在线人妻在线中文字幕| 韩国av在线不卡| 亚洲经典国产精华液单| 国产黄a三级三级三级人| 日日摸夜夜添夜夜爱| 一卡2卡三卡四卡精品乱码亚洲| 中文天堂在线官网| 99久久无色码亚洲精品果冻| av专区在线播放| 欧美bdsm另类| 狂野欧美白嫩少妇大欣赏| 欧美最新免费一区二区三区| 国产亚洲最大av| 国产精品永久免费网站| 日产精品乱码卡一卡2卡三| 性色avwww在线观看| 人人妻人人看人人澡| 精品一区二区免费观看| 国产精品国产三级国产专区5o | 一级二级三级毛片免费看| 亚洲av成人精品一区久久| 国产精品无大码| 一级毛片我不卡| 欧美人与善性xxx| 九色成人免费人妻av| 亚洲精品乱码久久久v下载方式| 欧美一区二区精品小视频在线| 成人性生交大片免费视频hd| 亚洲三级黄色毛片| 少妇人妻一区二区三区视频| 午夜精品在线福利| 国产亚洲精品av在线| 久久久久精品久久久久真实原创| 欧美xxxx性猛交bbbb| 人体艺术视频欧美日本| 嫩草影院新地址| 天堂av国产一区二区熟女人妻| 九九久久精品国产亚洲av麻豆| 国产精品美女特级片免费视频播放器| 精品少妇黑人巨大在线播放 | 少妇人妻精品综合一区二区| 精品酒店卫生间| 97在线视频观看| 国产av一区在线观看免费| 亚洲激情五月婷婷啪啪| 丰满少妇做爰视频| 国产免费男女视频| 亚洲精品色激情综合| 美女高潮的动态| 大话2 男鬼变身卡| 少妇猛男粗大的猛烈进出视频 | 国产国拍精品亚洲av在线观看| 91精品国产九色| 日本免费一区二区三区高清不卡| 性插视频无遮挡在线免费观看| 日韩在线高清观看一区二区三区| 日韩制服骚丝袜av| 美女高潮的动态| 欧美一区二区精品小视频在线| 好男人视频免费观看在线| 中国美白少妇内射xxxbb| 亚洲18禁久久av| 中文在线观看免费www的网站| 在线观看一区二区三区| 亚洲欧美清纯卡通| 不卡视频在线观看欧美| 99在线人妻在线中文字幕| 日本一本二区三区精品| 男女下面进入的视频免费午夜| 成人鲁丝片一二三区免费| 又粗又爽又猛毛片免费看| 亚洲va在线va天堂va国产| 国产精品.久久久| 日本av手机在线免费观看| 在线播放无遮挡| 综合色av麻豆| 久久人妻av系列| 日本色播在线视频| 国产亚洲一区二区精品| 99视频精品全部免费 在线| 99国产精品一区二区蜜桃av| 色5月婷婷丁香| 国产成人精品婷婷| av黄色大香蕉| 国产午夜精品久久久久久一区二区三区| 亚洲av免费高清在线观看| 大香蕉久久网| 97在线视频观看| 国产高清三级在线| 七月丁香在线播放| 亚洲图色成人| 久久久久精品久久久久真实原创| 嘟嘟电影网在线观看| 2021天堂中文幕一二区在线观| 日韩 亚洲 欧美在线| 成人毛片a级毛片在线播放| 久久久久网色| 午夜福利在线观看免费完整高清在| 久久午夜福利片| 国产精品1区2区在线观看.| 亚洲av电影在线观看一区二区三区 | 国产伦精品一区二区三区四那| 色吧在线观看| 国产综合懂色| 国产精品av视频在线免费观看| 国产单亲对白刺激| 日韩欧美精品v在线| 女人被狂操c到高潮| 深夜a级毛片| 国产v大片淫在线免费观看| 久久99蜜桃精品久久| 人妻系列 视频| 男人舔奶头视频| 精品人妻熟女av久视频| 人妻夜夜爽99麻豆av| 性色avwww在线观看| 黄色日韩在线| 国产成人a∨麻豆精品| 伊人久久精品亚洲午夜| 国产成人精品婷婷| 久久久精品大字幕| 亚洲自偷自拍三级| 国产精品麻豆人妻色哟哟久久 | 少妇人妻一区二区三区视频| 国产精品一二三区在线看| 蜜臀久久99精品久久宅男| 午夜激情欧美在线| 日韩av在线免费看完整版不卡| 成人性生交大片免费视频hd| 纵有疾风起免费观看全集完整版 | 亚洲伊人久久精品综合 | 特级一级黄色大片| 国产精品女同一区二区软件| 色5月婷婷丁香| 在线观看美女被高潮喷水网站| 尾随美女入室| 69av精品久久久久久| 美女脱内裤让男人舔精品视频| 毛片女人毛片| 日韩av不卡免费在线播放| 成人av在线播放网站| 久久久久久九九精品二区国产| 午夜爱爱视频在线播放| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区| 亚洲精品日韩在线中文字幕| 在线免费观看不下载黄p国产| 亚洲精品日韩在线中文字幕| 一级黄片播放器| 亚洲欧美精品专区久久| 蜜桃亚洲精品一区二区三区| 精华霜和精华液先用哪个| 午夜福利成人在线免费观看| 日韩精品有码人妻一区| 亚洲图色成人|